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Abstract: Problem statement: During the last thirty years many public-key cgraphic protocols
based on either the complexity of integer factdiriwaof large semiprimes or the Discrete Logarithm
Problem (DLP) have been developéghproach: Although several factorization algorithms with sub
exponential complexity have been discovered, themeRSA Factoring Challenge demonstrated that
it was still necessary to use several thousand otemg working in a coordinated effort for several
months to factor an integer that was a product of two primeResults. In this research it was
demonstrated how to find integer factorsrofusing an algorithm for a constrained DLP. Several

numerical examples illustrate details of the alfons. One of these algorithms has @)
complexity and, if the search is balanced, it msmlexity Oa“*log”* n), wherealpha>1.

Key words: Balanced searchsubexponential complexity, integer factorizatioonstrained discrete
logarithm problem, RSA factoring challenge, pulidgy cryptography

INTRODUCTION Factorization: Supposep and q are unknown distinct
primes and
Attempts to find efficient algorithms for integer
factorization of a semiprime = pqg have a long history. N = Pq (1)

Pierre Ferm&t, Leonhard Eulé? and other great _ _
mathematicians of the past suggested various If the productn is known, the problem is to
algorithms. Unfortunately, the complexities of thei determine the primgsandq.

algorithms do not allow for efficient factoring of o )

semiprimes with hundreds decimal digits. During theDefinition of constrained DLP: Letg, h, n, EandT be
last twenty five years various factorization algoms Known integers that satisfy the equation

were discoverePé7*l°*11'13'16'2°'2.2] Several of these

algorithms have a sub-exponential complékify'¥ ~ g'modn=h (2)
Yet, the recent RSA Factoring Challefigeshowed

that it required the coordinated efforts of manywhereE<x<T<n is an unknown integer. In this case the
researchers, using several thousand computersaioy m Problem is how to find ma if x exists.

months, to factor a single semiprime. The sttidy S

presented a non-deterministic  polynomial-time M ultiplicative inverse modulo n: If g andn are co-
algorithm which shows that for factoring it is  Prime, then there exists a unique inte§eb<n such
sufficient to compute discrete logarithms modul@he  that

researc shows that a xedni-calculus attack on the

DLP for elliptic curve&” can also be used to factor gbmoch =1 3)
integers. A deterministic algorithm for factoring o

semiprimes is provided in this research. The algorithm: Let's assume that there exists an

algorithm A which efficiently solves the Eq. 2.

MATERIALSAND METHODS
Step 1: Using the Extended Euclid AlgoritHthor the

Reduction of factorization to constrained DLP: Now  algorithnf™®, proposed by the author of this study, find
we define the integer factorization problem andppse  the multiplicative inversé of g modulon (3)

the discrete logarithm problem as a method of its

solution. Step 2: Using the algorithnd, solve the DLB*%
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g'moch =b 4) B:=¢(n)=(p-1)(a-2) (16)

whereb satisfies (3) Euler's theoret? implies that:

Step 3: Let h:=n- (5) b= g"*moch 17)
Step 4: Solve the quadratic equation: Indeed:
Z-hz+n=0 (6)

bg=g""g= g(p-l)(q-l) (mod pq) =1 (18)
then

Thereforey = n-p-q.
p=z; q:=g2 (7) Thus, Eq. 7 can be re-written as:
Modular Multiplicative Inverse (MMI): The Z —-(p+q)z+pg=0 (19)
algorithm for the MMI consists of two stages: Down-
stage and Up-stage. Finally, Viéte's theorefi! implies the validity of

(8).
Step 5: count:=0; T:=n; B:=b

Remark 1: (17) implies that the solution of equation
Step 6: { Down-stage}: count:=count+1 (8) (4) always exists.

Q.E.D.

H:=TmodB;F =(T-H) /B (9) Let's illustrate the algorithm.

store all values dof in astack; RESULTSAND DISCUSSION

Step 7: If H=0, then the MMI inverse does not exist; Numeric illustration: Let n = 97965643. Select an

{as a resultF=gcdf, b)}; integerg = 22'. S
The multiplicative inverse ofjf modulon equals
while H>1, re-assigi:=B; B:=H; (10) ~ b=40076854, (Tablel).

Verification shows thalb = 40076854 is indeed the
multiplicative inverse ofj = 22:

repeatStep 6

countess:=count: (11) namely, 22x 40076854 mod 97965643

Initialize T:=0; B:=1 (12) Applying algorithm A to solve the DLP:

Step 8;{ Up-stage}; count:=count-1 (13) 22" mod 97965643 = 40076854
19796.

H: =BF+T (14) Solving the quadratic equation:

Step 9: while count>1, re-assigi:=B; B:=H; Z“—hz+n=27"-19796+ 97965643

repeatStep 8; We determine that:

if count=0 andcountess is odd, 212~ 9898469

Table 1: Computation of MMI of = 22 modulmn

thenMMI:=H elseMMI:=n-H (15) T = 97965643 B= 22 H=17 5 > 1
Stack F=4452983 1 3 2 **
Algorithm validation: Let: b=40076854 9 7 2 1 0

675



J. Computer <ci., 5(9): 674-679, 2009
Therefore: nM-1)/M-M<B<T<n (27)

1 =2=9967,0. =2 = 9829
P ' a 2 and,ifM=x3/H,then:

Direct verification:indeed:
= n[-1a+(n-12)7-1] |<g(n)4 (V-1 (28)
pg = 97965643 [ [ ( ) ﬂ L( ]) J
Example 2: Letn = 868575847.
Let's selecg = 2.
Then its multiplicative inversk modulon equals
b =434287924.
There are sixteen solutions that satisfy the

Dealing with multiplicity of DLP solutions: If nis a
prime andg is a generator (primitive root), then the
DLP (2) has a unique solution and as a resultetiea
unique multiplicative inverse in (3). However,nfis a
composite, then the following identity holds foreeyg

that is relatively prime witim = pq: equation:
g"modpg =1 (20) g’ modn = 43428792
Where: Here are listed three of thenv. = 54280434,

108560869,..868486959 (largest one smaller tham).
To avoid values o smaller thanE the search for
L:=(p-1)(a-1) /ged(p- 1a- ) (21)  must be strictly on the intervaE[T].
The maximal solution satisfies the inequalitie8)(2
Therefore, there exists more then one solution tavith the upper bound og(n) <T = 868516904.

Eq. 4. Indeed, if: On the other hand, if1 :L\/EJ = 954, then from the

inequalities (28)p(n) 867664550.
Therefore, from the algorithm we find that
v=868486959+; h=n-v=88888 and from the equation:

b=g""modpq (22)

then for every integan that satisfies the inequality:

7> —-8888& + 868575842

1smL-1<¢(n)-1<pg=n (23)
We derive:
also holds:
7, = 44444+33267,
b=g™ " modpq (24) ie.,p:=z=777110: =2z = 11177.

D Algorithm (4)-(15) revisited: Step2 of the Algorithm

For instance, there are several solutions of thi > . L
(4)-(15) can be modified. From Euler’s identity it

in the numerical example provided above. One ofithe

is v=18017. To avoid ambiguity it is essentialitaifon  follows that:
[E, T] the largest integer that satisfies Eq. 4.
N 9" =g"" (modpq) (29)
Propositionl: Let:
M < min(p q)' B = ¢(n) (25) Therefore, modify (4) as follows:

using the algorithrd\, solve the DLP:
and

T=| (Va-1) | (26)

g' =g""(modn) (30)

and then solve the equation:

Then for everyn = pg the following inequalities
hold: Z-vz+n=0 (31)
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Finally, p =z andq = z,.

pre-computed and stored {these are baby steps} for

In order to decide which of two algorithms is bett from 0to S and (g's)y bmodn are computed foy

we need to compare the time complexifyg) to

compute g’ in (30) and the time complexity(b) to
compute the multiplicative inversein (4).

n-1

from 0 toS-1 {these are giant steps}.

7: Solve the problem

Step

Computer experiments demonstrate that theg(E*Z)*%b(modn);

average number of required steps for computation of

the multiplicative inversé is much smaller than the

(993811 2)+90y

{2 mod100393%= 50197(

corresponding average number of steps (3logn)/as a result, we findy=73 andz=74};

required for exponentiatiogl’ " .

General purpose O(\S/ﬁ ) factoring algorithm: Let us
demonstrate the algorithm.

Example 3: Letn = 1003939.

Step 1: Verify thatn is not divisible by primes smaller
than or equal tom = LQ/HJ =89, otherwise n is

factorized after at modfl/logM trials;

Step2: Compute the upper bouridand lower boundE

ong(n): T= [(\/ﬁ —1ﬂ = 100183¢;
E =Ln—\3/F—\3/;J = 993811,

Step 3: Select an integeg<M that is relatively prime
with n; {all integers smaller thaiM are co-prime with
n}; let g=2;

find

Step4: Using the algorithm (8)-(15), the

multiplicative inverséd of g; {b=501970};

Step 5: Solve the DLP:
g'modh = b; (4), Where/D[E,T]

Remark 2: The DLP problem (4) may be solved using
any known algorithm for the DLP, including Pollasd’
rho-algorithnf'®.

Solution of DL P via baby-step giant-step algorithm:
Step 6: Let v:i=E+Sy+Zz where s:=[JT-E|=90 and
0<z<S; 0<y<S-1 are unknown integers.

Remark 3: If the Baby-Step Giant-Step (BSGS)

E+z

algorithm is usédf’, then the valuegg™** modn are
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Step 8: Computev= E+Sy+z=1000455;

Remark 4: Another solution of the DLR=500227 is
excluded by the condition thetE;

Step 9: Computeh:=n-v=3484, (5);

Step 10: Solve the equatioz’ —hz+n =0 (6):
p:=z =3167; q=2z,= 31i

Indeed,n=pg=1003939.

Complexity of algorithm: Both variablesy andz {see
Step6.2} are changing on the interval §), where

s [Nt ]2y (v -1) (-3 <) -
i —2nsfa+1=3/n1-0(/n) J-o(<)

In addition, M/logM divisions/trials are used in
Step 1. Therefore, the algorithm described in Step
10 has time-space complexity:

o(/n 110gn) +(</n) = 0(</n)

(32)

(33)

CONCLUSION

It is essential to stress that a seemingly simple
algorithm for integer factorization (Step 1-8} isded
on the strong assumption that we know a
computationally efficient algorithm Aor solution of
the DLP. The discussed algorithms based on this
assumption imply that the complexity of the integer
factorization problem cannot be higher than the
complexity of the DLP. It is important to emphasize
that we are comparing the information-based
complexities of problems, not the algorithms used t
solve them. A specific algorithm is a method tHédraa
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finite number of well-defined and executable steps7.

provably delivers a solution to a class of problems
Unless it is an optimal algoritHt'%, it is plausible
that its computational complexity can be later =il

In contrast, the information-based complexity of a8.

specific problem is an intrinsic characteristic tbie
problem itself. Presently, there are no strict fgoo
demonstrating that integer factorization and/or Eie
problem is intrinsicall}complex We can only plausibly

assume that they are not computationally “simple™.

problems. The proposed Algorithm (4)-(15) implieatt
the integer factorization problem has either thmesa

complexity as the DLP or is less complex than th®D  10.
The algorithm described in the Step 1-10 has a

computational complexity Q). Furthermore, if the

search is balanced, it has complexity: 11.

o(n*3log"* n) (34)
wherealpha>1 is an integer.
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