
Journal of Computer Science 5 (9): 674-679, 2009
ISSN 1549-3636
© 2009 Science Publications

674

Integer Factorization: Solution via Algorithm for
Constrained Discrete Logarithm Problem

Boris S. Verkhovsky

Department of Computer Science,
New Jersey Institute of Technology, Newark, NJ, USA

Abstract: Problem statement: During the last thirty years many public-key cryptographic protocols
based on either the complexity of integer factorization of large semiprimes or the Discrete Logarithm
Problem (DLP) have been developed. Approach: Although several factorization algorithms with sub-
exponential complexity have been discovered, the recent RSA Factoring Challenge demonstrated that
it was still necessary to use several thousand computers working in a coordinated effort for several
months to factor an integer n that was a product of two primes. Results: In this research it was
demonstrated how to find integer factors of n using an algorithm for a constrained DLP. Several
numerical examples illustrate details of the algorithms. One of these algorithms has O(3 n)
complexity and, if the search is balanced, it has complexity O(n1/3log1/α n), where alpha>1.

Key words: Balanced search, subexponential complexity, integer factorization, constrained discrete

logarithm problem, RSA factoring challenge, public key cryptography

INTRODUCTION

 Attempts to find efficient algorithms for integer
factorization of a semiprime n = pq have a long history.
Pierre Fermat[9], Leonhard Euler[8] and other great
mathematicians of the past suggested various
algorithms. Unfortunately, the complexities of their
algorithms do not allow for efficient factoring of
semiprimes with hundreds decimal digits. During the
last twenty five years various factorization algorithms
were discovered[6,7,10,11,13,16,20-22]. Several of these
algorithms have a sub-exponential complexity[7,11,13].
Yet, the recent RSA Factoring Challenge[12] showed
that it required the coordinated efforts of many
researchers, using several thousand computers for many
months, to factor a single semiprime. The study[1]
presented a non-deterministic polynomial-time
algorithm which shows that for factoring n it is
sufficient to compute discrete logarithms modulo n. The
research[4] shows that a xedni-calculus attack on the
DLP for elliptic curves[14] can also be used to factor
integers. A deterministic algorithm for factoring of
semiprimes is provided in this research.

MATERIALS AND METHODS

Reduction of factorization to constrained DLP: Now
we define the integer factorization problem and propose
the discrete logarithm problem as a method of its
solution.

Factorization: Suppose p and q are unknown distinct
primes and

n = pq (1)

 If the product n is known, the problem is to
determine the primes p and q.

Definition of constrained DLP: Let g, h, n, E and T be
known integers that satisfy the equation

gx mod n = h (2)

where E<x<T<n is an unknown integer. In this case the
problem is how to find maxx, if x exists.

Multiplicative inverse modulo n: If g and n are co-
prime, then there exists a unique integer 0<b<n such
that

gbmodn = 1 (3)

The algorithm: Let’s assume that there exists an
algorithm A which efficiently solves the Eq. 2.

Step 1: Using the Extended Euclid Algorithm[5] or the
algorithm[15], proposed by the author of this study, find
the multiplicative inverse b of g modulo n (3)

Step 2: Using the algorithm A, solve the DLP[23-28]:

J. Computer Sci., 5 (9): 674-679, 2009

675

gvmodn = b (4)

where b satisfies (3)

Step 3: Let h:=n- (5)

Step 4: Solve the quadratic equation:

z2 - hz + n = 0 (6)

then

1 2
: ; := =p z q z (7)

Modular Multiplicative Inverse (MMI): The
algorithm for the MMI consists of two stages: Down-
stage and Up-stage.

Step 5: count:=0; T:=n; B:=b

Step 6: {Down-stage}: count:=count+1 (8)

(): mod ; : /H T B F T H B= = − (9)

store all values of F in a stack;

Step 7: If H=0, then the MMI inverse does not exist;
{as a result, F=gcd(n, b)};

while H>1, re-assign T:=B; B:=H; (10)

repeat Step 6

countess:=count; (11)

Initialize T:=0; B:=1 (12)

Step 8:{ Up-stage}: count:=count-1 (13)

pop up F from the stack;

H: =BF+T (14)

Step 9: while count>1, re-assign T:=B; B:=H;

repeat Step 8;

if count=0 and countess is odd,

then MMI:=H else MMI:=n-H (15)

Algorithm validation: Let:

() () (): 1 1B n p qϕ= = − − (16)

 Euler’s theorem[3] implies that:

b = gn-p-qmodn (17)

Indeed:

()() ()1 1 mod 1− −− −= = =p qn p qbg g g pqg (18)

Therefore, v = n-p-q.
 Thus, Eq. 7 can be re-written as:

()2 0z p q z pq− + + = (19)

 Finally, Viète’s theorem[17] implies the validity of
(8).

Remark 1: (17) implies that the solution of equation
(4) always exists.
 Q.E.D.
Let’s illustrate the algorithm.

RESULTS AND DISCUSSION

Numeric illustration: Let n = 97965643. Select an
integer g = 22.
 The multiplicative inverse of g modulo n equals
b = 40076854, (Table1).
 Verification shows that b = 40076854 is indeed the
multiplicative inverse of g = 22:

namely, 22 40076854 mod 97965643 1× =

 Applying algorithm A to solve the DLP:

22v mod 97965643 = 40076854

 We determine that v = 97945847 and h = n-v =
19796.
 Solving the quadratic equation:

2 2 19796 97965643 0zz hz n z− + = − + =

 We determine that:

z1,2 = 9898±69

Table 1: Computation of MMI of g = 22 modulo n
T = 97965643 B = 22 H = 17 5 2 1
Stack F = 4452983 1 3 2 **
b=40076854 9 7 2 1 0

J. Computer Sci., 5 (9): 674-679, 2009

676

Therefore:

p: = z1= 9967, q: = z2 = 9829

 Direct verification: indeed:

pq = 97965643

Dealing with multiplicity of DLP solutions: If n is a
prime and g is a generator (primitive root), then the
DLP (2) has a unique solution and as a result, there is a
unique multiplicative inverse in (3). However, if n is a
composite, then the following identity holds for every g
that is relatively prime with n = pq:

mod 1Lg pq = (20)

Where:

()() (): 1 1 / gcd 1, 1L p q p q= − − − − (21)

 Therefore, there exists more then one solution to
Eq. 4. Indeed, if:

1 modLb g pq−= (22)

then for every integer m that satisfies the inequality:

()1 1 1mL n pq nϕ≤ − ≤ − < = (23)

also holds:

1 modmLb g pq−= (24)

 For instance, there are several solutions of the DLP
in the numerical example provided above. One of them
is v=18017. To avoid ambiguity it is essential to find on
[E, T] the largest integer v that satisfies Eq. 4.

Proposition1: Let:

() ()min , :;M p q B nϕ≤ = (25)

and

 ()2

: 1T n= − 
 

 (26)

 Then for every n = pq the following inequalities
hold:

(1) /n M M M B T n− − ≤ ≤ < (27)

and, if 3M n= , then:

() () ()2 23 3: 1/4 1/2 1 1= − − − ≤ ≤ −    +    E n n n nϕ (28)

Example 2: Let n = 868575847.
 Let’s select g = 2.
 Then its multiplicative inverse b modulo n equals
b = 434287924.
 There are sixteen solutions that satisfy the
equation:

mod 434287924vg n =

 Here are listed three of them: v = 54280434,
108560869,…,868486959 (largest one smaller than n).
To avoid values of v smaller than E the search for v
must be strictly on the interval [E, T].
 The maximal solution satisfies the inequalities (27)
with the upper bound on ϕ(n) <T = 868516904.

 On the other hand, if 3=  
 M n = 954, then from the

inequalities (28) ϕ(n) 867664550.
 Therefore, from the algorithm we find that
v=868486959<n; h=n-v=88888 and from the equation:

2 88888 868575847 0z z− + =

We derive:

z1,2 = 44444±33267,
i.e., p: = z1= 77711, q: = z2 = 11177.

Algorithm (4)-(15) revisited: Step2 of the Algorithm
(4)-(15) can be modified. From Euler’s identity it
follows that:

()1 modp q ng g pq+ −= (29)

 Therefore, modify (4) as follows:
using the algorithm A, solve the DLP:

()1 modv ng g n−= (30)

and then solve the equation:

2 0z vz n− + = (31)

J. Computer Sci., 5 (9): 674-679, 2009

677

Finally,
1 2
 and p z q z= = .

 In order to decide which of two algorithms is better
we need to compare the time complexity T(g) to

compute 1ng − in (30) and the time complexity T(b) to

compute the multiplicative inverse b in (4).
 Computer experiments demonstrate that the
average number of required steps for computation of
the multiplicative inverse b is much smaller than the
corresponding average number of steps (3logn)/2

required for exponentiation 1ng − .

General purpose O(3 n) factoring algorithm: Let us
demonstrate the algorithm.

Example 3: Let n = 1003939.

Step 1: Verify that n is not divisible by primes smaller

than or equal to 3 89M n= =   , otherwise n is

factorized after at most M/logM trials;

Step2: Compute the upper bound T and lower bound E

on ()nϕ : ()2

1 1001836T n= − = 
 

;

3 2 3 993811E n n n= − − = 
 

;

Step 3: Select an integer g<M that is relatively prime
with n; {all integers smaller than M are co-prime with
n}; let g=2;

Step4: Using the algorithm (8)-(15), find the
multiplicative inverse b of g; {b=501970};

Step 5: Solve the DLP:

gvmodn = b; (4), where [],v E T∈

Remark 2: The DLP problem (4) may be solved using
any known algorithm for the DLP, including Pollard’s
rho-algorithm[10].

Solution of DLP via baby-step giant-step algorithm:
Step 6: Let v:=E+Sy+z; where : 90= − =  S T E and

0 z S≤ ≤ ; 0 1y S≤ ≤ − are unknown integers.

Remark 3: If the Baby-Step Giant-Step (BSGS)

algorithm is used[16], then the values modE zg n+ are

pre-computed and stored {these are baby steps) for z

from 0 to S and () modS y
g b n− are computed for y

from 0 to S-1 {these are giant steps}.

Step 7: Solve the problem

() ()mod ;++ =SyE z
g b n

() 90993811
{2 mod1003939 501970;

++ =yz

as a result, we find y=73 and z=74};

Step 8: Compute v= E+Sy+z=1000455;

Remark 4: Another solution of the DLP v=500227 is
excluded by the condition that v>E;

Step 9: Compute h:=n-v=3484, (5);

Step 10: Solve the equation 2 0z hz n− + = (6):

1 2
: 3167; : 317p z q z= == =

Indeed, n=pq=1003939.

Complexity of algorithm: Both variables y and z {see
Step6.2} are changing on the interval [0, S], where

() ()
() ()

2
3 2 3

3 2 3 3 3 3

: 1

2 11

= − ≥ − − − − =

+ = − =Θ

  

 − +  

S T E n n n n

n n n n n nο

 (32)

 In addition, M/logM divisions/trials are used in
Step 1. Therefore, the algorithm described in Steps 1-
10 has time-space complexity:

() () ()3 3 3/ logΟ + Θ = Οn n n n (33)

CONCLUSION

 It is essential to stress that a seemingly simple
algorithm for integer factorization (Step 1-8} is based
on the strong assumption that we know a
computationally efficient algorithm A for solution of
the DLP. The discussed algorithms based on this
assumption imply that the complexity of the integer
factorization problem cannot be higher than the
complexity of the DLP. It is important to emphasize
that we are comparing the information-based
complexities of problems, not the algorithms used to
solve them. A specific algorithm is a method that after a

J. Computer Sci., 5 (9): 674-679, 2009

678

finite number of well-defined and executable steps
provably delivers a solution to a class of problems.
Unless it is an optimal algorithm[18,19], it is plausible
that its computational complexity can be later reduced.
In contrast, the information-based complexity of a
specific problem is an intrinsic characteristic of the
problem itself. Presently, there are no strict proofs
demonstrating that integer factorization and/or the DL
problem is intrinsically complex. We can only plausibly
assume that they are not computationally “simple”
problems. The proposed Algorithm (4)-(15) implies that
the integer factorization problem has either the same
complexity as the DLP or is less complex than the DLP.
The algorithm described in the Step 1-10 has a
computational complexity O(3 n). Furthermore, if the
search is balanced, it has complexity:

O(n1/3log1/α n) (34)

where alpha>1 is an integer.

ACKNOWLEDGEMENT

 I express my appreciation to A. J. Menezes for
advice, X. Ma and Md. S. Sadik for assistance in
computer experiments and P. Fay for assistance and
suggestions that improved the style of this research.

REFERENCES

1. Bach, E., 1984. Discrete logarithms and factoring.

Technical Report: CSD-84-186, UC-Berkeley,
USA. http://portal.acm.org/citation.cfm?id=894497

2. Buhler, J. and N. Koblitz, 1998. Lattice basis
reduction, Jacobi sums and hyperelliptic
cryptosystems. Bull. Aust. Math. Soc., 58: 147-154.
http://www.zentralblattmath.org/ioport/en/?id=427
888&type=txt

3. Gauss, C.F., 1986. Disquisitiones Arithmeticae.
Yale University Press, ISBN: 0387962549, pp: 472.

4. Jacobson, M.J., N. Koblitz, J.H. Silverman, A. Stein
and E. Teske, 2000. Analysis of the xedni calculus
attack. Des. Codes Cryptogr., 20: 41-64.
http://portal.acm.org/citation.cfm?id=377938

5. Knuth, D., 1997. The Art of Computer
Programming: Fundamental Algorithms. 2nd Edn.,
Addison Wesley, Reading, MA., USA., ISBN:
0201896834, pp: 650-652.

6. Lenstra Jr., H.W., 1987. Factoring integers with
elliptic curves. Ann Math., 2: 649-673.
https://openaccess.leidenuniv.nl/bitstream/1887/38
26/1/346_086.pdf

7. Lenstra, A.K. and J.H.W. Lenstra, 1993. The
development of the number field sieve. Lecture
Notes Math., 1554: 131-131.
http://cat.inist.fr/?aModele=afficheN&cpsidt=61493

8. James, M., 1996. Turning Euler's factoring method
into a factoring algorithm. Bull. London Math.
Soc., 4: 351-355.
http://blms.oxfordjournals.org/cgi/content/abstract/
28/4/351

9. McKee, J., 1999. Speeding Fermat's factoring
method. Math. Comput., 68: 1729-1737.
http://portal.acm.org/citation.cfm?id=333551

10. Pollard, J.P., 1975. Monte Carlo method for
factorization. BIT. Num. Math., 15: 331-334. DOI:
10.1007/BF01933667

11. Pomerance, C., 1985. The quadratic sieve factoring
algorithm. Proceeding of the EUROCRYPT 84
Workshop on Advances in Cryptology: Theory and
Application of Cryptographic Techniques,
(ACT’85), Springer-Verlag, Berlin, Paris, France,
pp: 169-182.

 http://portal.acm.org/citation.cfm?id=20194
12. Frenke, J., 2004. Mathematicians collaborate to

solve RSA factoring challenge. High Performance
Comput., 13.
http://www.tgc.com/hpcwire/hpcwireWWW/04/04
30/107585.html

13. Crandall, R. and C. Pomerance, 2001. Prime
Numbers: A Computational Perspective. 1st Edn.,
Springer, ISBN: 0-387-94777-9, pp: 227-244.

14. Silverman, J., 2000. The xedni calculus and the
elliptic curve discrete logarithm problem. Des.
Codes Cryptogr., 20: 5-40.
http://portal.acm.org/citation.cfm?id=377935.377937

15. Verkhovsky, B., 1999. Multiplicative inverse
algorithm and its complexity. Proceeding of the
International Conference on InterSYMP-99, July 28-
30, Baden-Baden Germany, pp: 62-67.

16. Verkhovsky, B., 2008. Generalized baby-step
giant-step algorithm for discrete logarithm
problem. Advances in Decision Technology and
Intelligent Information Systems, 2008, IIAS,
Baden-Baden, Germany, ISBN: 978-1-897233-26-
9, pp: 88-89.

17. Viète, F. and F. van Schooten, 1970. Opera
Mathematica.
http://www.amazon.de/exec/obidos/ASIN/B0000B
TZBF/ref=nosim/mathworld02-21

18. Traub, J.F., 1980. A General Theory of Optimal
Algorithms. ACM Monograph Series, ISBN:
9780126976502.

19. Traub, J.F., G.W. Wasilkowski and H. Wozniakowski,
1983. Information, Uncertainty, Complexity.
Addison-Wesley, Reading, MA., ISBN:
0201078902.

J. Computer Sci., 5 (9): 674-679, 2009

679

20. Pomerance, C., J.W. Smith and R. Tuler, 1988. A
pipeline architecture for factoring large integers
with the quadratic sieve algorithm. SIAM J.
Comput., 17: 387-403.
http://portal.acm.org/citation.cfm?id=45486

21. Lenstra, A.K., 2000. Integer factoring. Des. Codes
Cryptogr., 19: 101-128. DOI:
10.1023/A:1008397921377

22. Seysen, M., 1987. A probabilistic factorization
algorithm with quadratic forms of negative
discriminant. Math. Comput., 48: 757-780.
http://www.jstor.org/stable/2007842

23. Schirokauer, O., 2000. Using number fields to
compute logarithms in finite fields. Math. Comput.,
69: 1267-1283.

 http://portal.acm.org/citation.cfm?id=349887
24. LaMacchia, B.A. and A.M. Odlyzko, 1991.

Computation of discrete logarithms in prime fields.
Des. Codes Cryptogr., 19: 47-62. DOI:
10.1007/BF00123958

25. Adleman, L.M. and J. DeMarrais, 1993. A
subexponential algorithm for discrete logarithms
over all finite fields. Math. Comput., 61: 1-15.
http://www.jstor.org/stable/2152932

26. Enge, A. and P. Gaudry, 2000. A general
framework for sub-exponential discrete logarithm
algorithms. Research Report LIX/RR/00/04, LIX.
http://www.math.uniaugsburg.de/~enge/vorabdruc
ke/subexp.ps.gz

27. Müller, V., A. Stein and C. Thiel, 1999. Computing
discrete logarithms in real quadratic congruence
function fields of large genus. Math. Comput.,
68: 807-822.

 http://portal.acm.org/citation.cfm?id=312069
28. Zuccherato, R., 1998. The equivalence between

elliptic curve and quadratic function field discrete
logarithms in characteristic 2. Lecture Notes
Comput. Sci., 1423: 621-638.
http://portal.acm.org/citation.cfm?id=749880

