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Abstract: Problem statement: During the last thirty years many public-key cryptographic protocols 
based on either the complexity of integer factorization of large semiprimes or the Discrete Logarithm 
Problem (DLP) have been developed. Approach: Although several factorization algorithms with sub-
exponential complexity have been discovered, the recent RSA Factoring Challenge demonstrated that 
it was still necessary to use several thousand computers working in a coordinated effort for several 
months to factor an integer n that was a product of two primes. Results: In this research it was 
demonstrated how to find integer factors of n using an algorithm for a constrained DLP. Several 
numerical examples illustrate details of the algorithms.  One of these algorithms has O(3 n ) 
complexity and, if the search is balanced, it has complexity O(n1/3log1/α n), where alpha>1. 
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INTRODUCTION 
 

 Attempts to find efficient algorithms for integer 
factorization of a semiprime n = pq have a long history. 
Pierre Fermat[9], Leonhard Euler[8] and other great 
mathematicians of the past suggested various 
algorithms. Unfortunately, the complexities of their 
algorithms do not allow for efficient factoring of 
semiprimes with hundreds decimal digits. During the 
last twenty five years various factorization algorithms 
were discovered[6,7,10,11,13,16,20-22]. Several of these 
algorithms have a sub-exponential complexity[7,11,13]. 
Yet, the recent RSA Factoring Challenge[12] showed 
that it required the coordinated efforts of many 
researchers, using several thousand computers for many 
months, to factor a single semiprime. The study[1] 
presented a non-deterministic polynomial-time 
algorithm which shows that for factoring n it is 
sufficient to compute discrete logarithms modulo n. The 
research[4] shows that a xedni-calculus attack on the 
DLP for elliptic curves[14] can also be used to factor 
integers. A deterministic algorithm for factoring of 
semiprimes is provided in this research.  
 

MATERIALS AND METHODS 
 
Reduction of factorization to constrained DLP: Now 
we define the integer factorization problem and propose 
the discrete logarithm problem as a method of its 
solution. 

Factorization: Suppose p and q are unknown distinct 
primes and 
 
n = pq (1) 
 
 If the product n is known, the problem is to 
determine the primes p and q. 
 
Definition of constrained DLP: Let g, h, n, E and T be 
known integers that satisfy the equation 
 
gx mod n = h (2) 
 
where E<x<T<n is an unknown integer. In this case the 
problem is how to find maxx, if x exists. 
 
Multiplicative inverse modulo n:  If g and n are co- 
prime, then there exists a unique integer 0<b<n such 
that  
 
gbmodn = 1 (3) 
 
The algorithm: Let’s assume that there exists an 
algorithm A which efficiently solves the Eq. 2. 
 
Step 1: Using the Extended Euclid Algorithm[5] or the 
algorithm[15], proposed by the author of this study, find 
the multiplicative inverse b of g modulo n (3) 
 
Step 2: Using the algorithm A, solve the DLP[23-28]: 
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gvmodn = b (4) 
 
where b satisfies (3) 
 
Step 3: Let h:=n- (5) 
 
Step 4: Solve the quadratic equation: 
 
z2 - hz + n = 0  (6) 
 
then 
 

1 2
: ; := =p z q z   (7) 

 
Modular Multiplicative Inverse (MMI): The 
algorithm for the MMI consists of two stages: Down-
stage and Up-stage. 
 
Step 5: count:=0; T:=n; B:=b 
 
Step 6: {Down-stage}: count:=count+1 (8) 
 

( ): mod ; : /H T B F T H B= = −  (9) 

 
store all values of F in a stack; 
 
Step 7:  If H=0, then the MMI inverse does not exist;  
{as a result, F=gcd(n, b)};  
 
while H>1, re-assign T:=B; B:=H; (10) 
 
repeat Step 6 
 
countess:=count;  (11) 
 
Initialize T:=0; B:=1  (12) 
 
Step 8:{ Up-stage}: count:=count-1 (13) 
 
pop up F from the stack; 
 
H: =BF+T  (14) 
 
Step 9: while count>1, re-assign T:=B; B:=H; 
 
repeat Step 8; 
 
if count=0 and countess is odd, 
 
then MMI:=H else MMI:=n-H   (15) 
 
Algorithm validation: Let:  

( ) ( ) ( ): 1 1B n p qϕ= = − −  (16) 

 
 Euler’s theorem[3]  implies that: 
 
b = gn-p-qmodn (17) 
 
Indeed: 
 

( )( ) ( )1 1 mod 1− −− −= = =p qn p qbg g g pqg  (18) 

 
Therefore, v = n-p-q. 
 Thus, Eq. 7 can be re-written as: 
 

( )2 0z p q z pq− + + =              (19) 

 
 Finally, Viète’s theorem[17] implies the validity of 
(8). 
 
Remark 1: (17) implies that the solution of equation 
(4) always exists. 
  Q.E.D. 
Let’s illustrate the algorithm. 
 

RESULTS AND DISCUSSION 
 
Numeric illustration: Let n = 97965643. Select an 
integer g = 22. 
 The  multiplicative  inverse  of  g modulo n equals 
b = 40076854, (Table1). 
 Verification shows that b = 40076854 is indeed the 
multiplicative inverse of g = 22:  
 

namely, 22 40076854 mod 97965643 1× =  
 
 Applying algorithm A to solve the DLP: 
 

22v mod 97965643 = 40076854 
 
 We determine that v = 97945847 and h = n-v = 
19796. 
 Solving the quadratic equation: 
 

2 2 19796 97965643 0zz hz n z− + = − + =  
 
 We determine that: 
  

z1,2 = 9898±69 
 
Table 1: Computation of MMI of g = 22 modulo n  
T = 97965643 B = 22 H = 17 5 2 1 
Stack F = 4452983 1 3 2 ** 
b=40076854 9 7 2 1 0 
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Therefore: 
 
p: = z1= 9967, q: = z2 = 9829 
 
 Direct verification: indeed:  
 
pq = 97965643 
 
Dealing with multiplicity of DLP solutions: If n is a 
prime and g is a generator (primitive root), then the 
DLP (2) has a unique solution and as a result, there is a 
unique multiplicative inverse in (3). However, if n is a 
composite, then the following identity holds for every g 
that is relatively prime with n = pq: 
 

mod 1Lg pq =  (20) 

 
Where: 
 

( )( ) ( ): 1 1 / gcd 1, 1L p q p q= − − − −  (21) 

 
 Therefore, there exists more then one solution to 
Eq. 4. Indeed, if: 
  

1 modLb g pq−=   (22) 

 
then for every  integer m that satisfies the inequality: 
 

( )1 1 1mL n pq nϕ≤ − ≤ − < =  (23) 

 
also holds: 
  

1 modmLb g pq−=  (24) 

 
 For instance, there are several solutions of the DLP 
in the numerical example provided above. One of them 
is v=18017. To avoid ambiguity it is essential to find on 
[E, T] the largest integer v that satisfies Eq. 4. 
  
Proposition1: Let: 
 

( ) ( )min ,  :;M p q B nϕ≤ =  (25) 
 
and 
 

 ( )2

: 1T n= − 
 

 (26) 

 
 Then for every n = pq the following inequalities 
hold: 

( 1) /n M M M B T n− − ≤ ≤ <  (27) 

 

and, if  3M n= , then: 
 

( ) ( ) ( )2 23 3: 1/4 1/2 1 1= − − − ≤ ≤ −    +    E n n n nϕ   (28) 

 
Example 2: Let n = 868575847. 
 Let’s select g = 2. 
 Then its multiplicative inverse b modulo n equals 
b = 434287924. 
 There are sixteen solutions that satisfy the 
equation: 
  

mod 434287924vg n =  

 
 Here are listed three of them: v = 54280434, 
108560869,…,868486959 (largest one smaller than n). 
To avoid values of v smaller than E the search for v 
must be strictly on the interval [E, T].    
 The maximal solution satisfies the inequalities (27) 
with the upper bound on ϕ(n) <T = 868516904. 

 On the other hand, if 3=  
 M n = 954, then from the 

inequalities (28) ϕ(n) 867664550.  
 Therefore, from the algorithm we find that   
v=868486959<n; h=n-v=88888 and from the equation: 
 

2 88888 868575847 0z z− + =  
 
We derive: 
 
z1,2 = 44444±33267, 
i.e., p: = z1= 77711, q: = z2 = 11177. 
 
Algorithm (4)-(15) revisited: Step2 of the Algorithm 
(4)-(15) can be modified. From Euler’s identity it 
follows that: 
 

( )1 modp q ng g pq+ −=  (29) 

 
 Therefore, modify (4) as follows: 
using the algorithm A, solve the DLP: 
 

( )1 modv ng g n−=  (30) 

 
and then solve the equation: 
 

2 0z vz n− + =  (31) 
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Finally,
1 2
 and p z q z= = . 

 In order to decide which of two algorithms is better 
we need to compare the time complexity T(g) to 

compute 1ng −  in (30) and the time complexity T(b) to 

compute the multiplicative inverse b in (4). 
 Computer experiments demonstrate that the 
average number of required steps for computation of 
the multiplicative inverse b is much smaller than the 
corresponding average number of steps (3logn)/2 

required for exponentiation 1ng − . 

 

General purpose O( 3 n ) factoring algorithm: Let us 
demonstrate the algorithm. 
 
Example 3: Let n = 1003939. 
 
Step 1: Verify that n is not divisible by primes smaller 

than or equal to 3 89M n= =   , otherwise n is 

factorized after at most M/logM  trials;  
 
Step2: Compute the upper bound T and lower bound E 

on ( )nϕ : ( )2

1 1001836T n= − = 
 

; 

3 2 3 993811E n n n= − − = 
 

; 

 
Step 3: Select an integer g<M  that is relatively prime 
with n; {all integers smaller than M are co-prime with 
n};  let g=2; 
 
Step4: Using the algorithm (8)-(15), find the 
multiplicative inverse b of g; {b=501970}; 
 
Step 5:  Solve the DLP: 
 

gvmodn = b; (4), where [ ],v E T∈  

 
Remark 2:  The DLP problem (4) may be solved using 
any known algorithm for the DLP, including Pollard’s 
rho-algorithm[10]. 
 
Solution of DLP via baby-step giant-step algorithm: 
Step 6:  Let v:=E+Sy+z; where : 90= − =  S T E  and 

0 z S≤ ≤ ; 0 1y S≤ ≤ −  are unknown integers.  
 
Remark 3: If the Baby-Step Giant-Step (BSGS) 

algorithm is used[16], then the values modE zg n+  are 

pre-computed and stored {these are baby steps) for z 

from 0 to S and ( ) modS y
g b n−  are computed for y 

from 0 to S-1 {these are giant steps}. 
 
Step 7:  Solve the problem 

( ) ( )mod ;++ =SyE z
g b n

( ) 90993811
{2 mod1003939 501970;

++ =yz
 

as a result, we find   y=73 and z=74}; 
 
Step 8: Compute v= E+Sy+z=1000455;  
 
Remark 4: Another solution of the DLP v=500227 is 
excluded by the condition that v>E; 
 
Step 9: Compute h:=n-v=3484, (5); 
 

Step 10:  Solve the equation 2 0z hz n− + = (6): 
 

1 2
: 3167; : 317p z q z= == =  

 
Indeed, n=pq=1003939. 
 
Complexity of algorithm: Both variables y and z {see 
Step6.2} are changing on the interval [0, S], where 
 

( ) ( )
( ) ( )

2
3 2 3

3 2 3 3 3 3

: 1

2 11

= − ≥ − − − − =

+ = − =Θ

  

 − +  

S T E n n n n

n n n n n nο

 (32) 

 
 In addition, M/logM divisions/trials are used in 
Step 1.  Therefore, the algorithm described in Steps 1-
10 has time-space complexity: 
 

( ) ( ) ( )3 3 3/ logΟ + Θ = Οn n n n  (33) 

 
CONCLUSION 

 
 It is essential to stress that a seemingly simple 
algorithm for integer factorization (Step 1-8} is based 
on the strong assumption that we know a 
computationally efficient algorithm A for solution of 
the DLP. The discussed algorithms based on this 
assumption imply that the complexity of the integer 
factorization problem cannot be higher than the 
complexity of the DLP. It is important to emphasize 
that we are comparing the information-based 
complexities of problems, not the algorithms used to 
solve them. A specific algorithm is a method that after a 
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finite number of well-defined and executable steps 
provably delivers a solution to a class of problems. 
Unless it is an optimal algorithm[18,19], it is plausible 
that its computational complexity can be later reduced. 
In contrast, the information-based complexity of a 
specific problem is an intrinsic characteristic of the 
problem itself. Presently, there are no strict proofs 
demonstrating that integer factorization and/or the DL 
problem is intrinsically complex. We can only plausibly 
assume that they are not computationally “simple” 
problems. The proposed Algorithm (4)-(15) implies that 
the integer factorization problem has either the same 
complexity as the DLP or is less complex than the DLP. 
The algorithm described in the Step 1-10 has a 
computational complexity O(3 n ). Furthermore, if the 
search is balanced, it has complexity: 
  
O(n1/3log1/α n) (34) 
 
where alpha>1 is an integer. 
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