
Journal of Computer Science 5 (7): 493-500, 2009
ISSN 1549-3636
© 2009 Science Publications

493

Multi Microkernel Operating Systems for Multi-Core Processors

Rami Matarneh

Department of Management Information Systems,
 Faculty of Administrative and Financial Sciences,

Al-Isra Private University, Amman, P.O. 11622, Jordan

Abstract: Problem statement: In the midst of the huge development in processors industry as a
response to the increasing demand for high-speed processors manufacturers were able to achieve the
goal of producing the required processors, but this industry disappointed hopes, because it faced
problems not amenable to solution, such as complexity, hard management and large consumption of
energy. These problems forced the manufacturers to stop the focus on increasing the speed of
processors and go toward parallel processing to increase performance. This eventually produced multi-
core processors with high-performance, if used properly. Unfortunately, until now, these processors
did not use as it should be used; because of lack support of operating system and software applications.
Approach: The approach based on the assumption that single-kernel operating system was not enough
to manage multi-core processors to rethink the construction of multi-kernel operating system. One of
these kernels serves as the master kernel and the others serve as slave kernels. Results: Theoretically,
the proposed model showed that it can do much better than the existing models; because it supported
single-threaded processing and multi-threaded processing at the same time, in addition, it can make
better use of multi-core processors because it divided the load almost equally between the cores and
the kernels which will lead to a significant improvement in the performance of the operating system.
Conclusion: Software industry needed to get out of the classical framework to be able to keep pace
with hardware development, this objective was achieved by re-thinking building operating systems and
software in a new innovative methodologies and methods, where the current theories of operating
systems were no longer capable of achieving the aspirations of future.

Key words: Microkernel, multi-microkernel, multi-core processors, inter-process communication

INTRODUCTION

 During the past decades there have been significant
developments for the operating systems, began with
simple structure and end with large and complex
structure, although the design and implementation of
operating system, not solvable, but some approaches
have proven successfully[1].
 As the kernel is the fundamental part of an operating
system which implements a set of hardware abstractions
that provide a clean interface to the underlying hardware,
all developments focused on its design which is vary in
three broad categories: Monolithic kernels, Microkernel
and Exokernels[2,3]. Monolithic kernels are a mixture of
everything the OS needed: Inter-process Communication
(IPC), file systems, memory management, without much
of an organization (Fig. 1). Newer monolithic kernels
have a modular design, in which kernel runs in kernel
mode and the processes run in user mode on top of the
kernel. Such design offers adding and removal of
services at run-time.

Fig. 1: Structure of monolithic kernel

 Microkernel design usually provides only minimal
services by putting a lot of operating system services
such as file systems, device drivers (Fig. 2), user
interface and protocol stacks in separate processes
running on top of the microkernel and can be started or
stopped at runtime to makes the kernel smaller and
flexible.

J. Computer Sci., 5 (7): 493-500, 2009

494

Fig. 2: Structure of Microkernel

Fig. 3: Structure of Exokernel

 Exokernel accompanied by library operating
systems, which provide application developers with the
conventional functionalities of a complete operating
system (Fig. 3). This approach lets user programs
override the standard code exported by the system and
the kernel and leads to very fast operation but weak
safety.

Microkernel design challenge: The big idea of
microkernel is that the kernel can be split up into
independent parts called servers, which communicate
with each other and applications through Inter-Process
Communication (IPC) via message passing. This
architecture is actually a client-server; processes
(clients) can call operating system services by sending
requests through IPC to server processes[4].
 But it seems that the reality is slightly different,
where the developers of microkernels have not agreed
on what services the microkernel should provide, every
developer has its own perspective. These different
perspectives led to have different versions of
microkernels. For example Windows NT allows device
drivers to run in kernel mode for reasons of efficiency,

while Mach and Chorus microkernels keep the device
drivers outside the kernel[5,6].
 Such change in Windows NT led to replace
message passing by system call, which means a
fundamental change in microkernel architecture,
because of this Windows NT considered not a true
microkernel.
 The main goal of a microkernel system is to keep it
small as possible by following the pure microkernel
doctrine which holds that all nonessential services
should run in the processor's non-privileged mode[7]. To
achieve this goal we must determine which services
should be contained within the kernel that cannot be
placed elsewhere, or that its presence outside the kernel
would be costly.
 In general the following represent essential but not
definitive list of services that should be contained
within the microkernel:

• Short-term scheduling
• Low-level memory management
• Inter-process communication via message passing
• Low level Input/Output
• Low level network support

Microkernel bottlenecks: Highly effective
communications between processes is inevitable and
the problem of microkernels performance revolves
around the extra work to copy data between servers and
application programs and the necessary inter-process
communication between processes results in extra
context switch operations[8].
 QNX microkenel performs all inter-process
communication by direct copying to reducing
complexity and code size which may cause some extra
copying costs, in contrary L4 microkernel improves
performance by using registers mechanism if the
amount of data being passed is small. Anyway, to avoid
the mentioned problems different techniques were used
by different microkernels-based operating systems. One
of the most popular techniques known as co-location,
which based on allowing the operating system to
optionally run specific programs inside the kernel in
particular servers. Although this technique leads to
some complexity in the kernel's scheduler however, it
significantly reduces the number of context switches
because inter-process communication overhead is
reduced to normal system call[9].
 Microkernel performance in general, is often poor
due to switching between kernel and user mode,
switching between address spaces and context
switching between threads[10] in addition to complicate

J. Computer Sci., 5 (7): 493-500, 2009

495

implementation that is why most operating systems are
using monolithic kernel.

Modern microprocessors architecture: As a result of
the growing demand for more high-speed processors,
CPU manufacturers began the competition by
increasing parallelism at the instruction level to get
more performance out of additional transistors on a
chip.
 This technique eventually led to complex and hard
to manage processors, in addition these processors
consume large amount of power emitted in the form of
high temperature and the problem is become worse the
greater the speed of the processor[11]. To resolve this
problem, it was necessary to reduce the speed of
processors and combine multiple cores on the same
chip[12,13].
 Multi-core processors came to solve the
deficiencies of single core processors, by decreasing
power consumption while increasing bandwidth. In a
multi-core configuration, an integrated circuit contains
two or more complete computer processors, Fig. 4
represents a generic diagram of multi-core processor.
Usually, these identical processors are manufactured so
they reside side-by-side on the same die. Each of the
physical processor cores has its own resources
architectural state, registers and execution units.
Processor technology trend follows Moore’s Law,
which states that the number of transistors per a certain
area on the chip will double approximately every 18
months[13-15], which is mean that the number of
processor cores in one integrated circuit chip will
continue to increase and this is also confirmed by
processor manufacturers[15]. Multi-core technology
requires the development of operating system that
capable of dealing with such processors.

Operating systems and software challenge with
modern microprocessors architecture: Despite the
significant progress in building high-speed processors,
new high-speed hardware is not reflected at the same
rate on the operating system performance[16] and always
bottlenecks were found which prevented using the
computer resources to their fullest capacity.
 Multi-core processors are built to support
parallelism, so, to make use of such processors,
operating system must support multithreading and the
software must have Simultaneous Multithreading
Technology (SMT)[17] written into the application
software, otherwise the software will only recognize
and run through a single core which leads to
significantly decrease the efficiency[18,19].

Fig. 4: Generic diagram of multi-core processor

 Coding for simultaneous multithreading
technology it's not trivial at all[20] because of some
issues such as interleaving shared data can slow
performance and create errors, in addition, it is not easy
to write correct multithreaded programs and if we
assumed that we were able to write such program we
still facing another serious problem is how to parallelize
the threads in the program[21]. This problem can be
described as follows: If we have a program with two
threads one handle heavy computations while the other
perform simple computation, such case would not lead
to significant speed in execution because the huge part
assigned to single core while the other cores will almost
sit idle, which will result in application bottleneck[22].
So, getting significant increase in performance needs
optimal conditions[23-25], which may be difficult to
achieve in most cases.
 There is another problem lies in that most
programs do not support multithreading feature, this
means re-designing and re-write these programs which
will require time, effort and knowledge which is
probably still is not available to many programmers. All
of this does not mean reaching a final solution, because
the operating systems that support dual-cores do not
support the Quad-core and which support Quad-core do
not support the Octa-core.
 This will lead to rebuild the operating system in
case of emergence of new processors that contain more
number of cores and this fully applied to the software
applications[26,27].

MATERIALS AND METHODS

Architecture of proposed model: The proposed model
is oriented to multi-core processors and consists of
kernels equal to the number of processor cores. The
model assumes that kernels divided into two categories:

• One master microkernel and
• Many slave microkernels

J. Computer Sci., 5 (7): 493-500, 2009

496

 The master kernel invoked first and it is
responsible for creating all aspects of the system, after
that, it creates slave-microkernels and assigns each one
of them to one and distinct of the processor cores. That
is if we have a processor with N cores the master
microkernel assigns itself to Core 0 and create N-1
microkernels corresponding to processor’s cores.
Figure 5 shows the relationship between microkernels
and processor cores.
 Master microkernel responsible for the
management of the system, that is, it is the only one
capable of dealing with all resources of system and
directly communicates with servers and in addition it
guarantees the communication between salve
microkernels with each other and with servers (Fig. 6),
while the job of slave microkernels is limited to the
execution of user’s programs and it can manage and
directly access its processor core and its caches(L1 and
L2), the other system’s resources it can access only
through master microkernel.
 The proposed model assumes that each processor’s
core support hyper threading technology[28,29] and has
large enough L1 and L2 caches. The first characteristic
will enable user programs that support multithreading
to make use of hyper threading technology resulting in
good responsiveness and performance, but if user
program doesn’t support multithreading it will run as a
single threaded process on single core, while the other
cores simultaneously executing other user programs,

Fig. 5: Relationship between master-slave microkernels

Fig. 6: Model structure and communication between

master-slave microkernels and servers

here we can notice the deference between this model
and other models when running single threaded process
on multi-core processor, the process will be assigned to
one core and the other cores will set idle.
 The second characteristic will give us the ability to
load master, slave microkernels and nearly all user
programs completely into their caches to reduce the
need for the main memory RAM, which will
significantly increase and enhance the performance[30]

and one can imagine the difference between cache
speed and RAM speed.
 Getting cache with large size is an achievable
target; because caches chips tend to get larger with each
new generation of processors as transistors become
smaller which means there will be more area on the die
for additional cache[14,15,31].

Description of the proposed model mechanism: We
can describe model’s mechanism through the following
different cases; assume we have a processor with four
cores:

Case 1: Four processes arrived, respectively, to the
master microkernel P1, P2, P3 and P4. After the
completion of P3, arrived P5.
 In this case, master microkernel organizer find idle
cores and maintains information about each process
such as its ID and on which kernel-core running for
future use when necessary, then respectively assigns
processes to the cores. Accordingly, it will assign P1 to
core1, P2 to core2, P3 to core4, since there are no more
idle cores and all cores nearly with the same load it
starts counting from the beginning and assign P4 to
core1. After a specific time P3 finished execution,
immediately arrived P5, in this case master microkernel
will assign it to core4; because it is the only idle core at
the current time.

Case 2: P1 needs to communicate with P4: In this
case, as both P1 and P4 are running in the same
microkernel, this means that slave microkernel1 will
establish the communication link between the two
processes without interference from master microkernel

Case 3: P1 needs to communicate with P2: P1 and P4
are running in different microkernel, in this case, slave
microkernel1 sends a request to master microkernel that
it needs to communicate with process P2 as follows:

Link (P1@microkernel1, P4@masterkernel)

 As each process has a unique ID the master
microkernel directly locate where P4 is now running

J. Computer Sci., 5 (7): 493-500, 2009

497

and send request to its microkernel, after that master
microkernel establish the communicating link and
works as intermediate between the two slave
microkernels.

Case 4: P1 needs file systems service: In this case:

• P1 sends the request to the master microkernel send

(P1@microkernel1, File system service)
• Master microkernel sends the request to file system

service
• File system service performs the request and return

the result to the master microkernel
• Master microkernel sends back the result to send

(P1@microkernel1, result)
• In this model, the master microkernel is

responsible for all of the following:
• Assigning processes to one of idle or low-load

kernels
• memory management
• Inter-process communication between slave

microkernels
• Input/output management
• Network support

RESULTS

 To evaluate the proposed model in term of
performance, let’s assume a group of scheduled
processes as in Table 1 and a multi-core processor with
4 cores.
 For simplicity we will use simple round robin
algorithm with quantum time (Q) 20 and it should be
mentioned here that the selection of the algorithm does
not play an important role, because the evaluation
focuses on the throughput of the system in term of its
organization and inter-process communication not on
the algorithm itself.
 For the purpose of performing some calculation to
compare multi microkernel model with classical single-
kernel model, assume the following variables:

Lost time for each core LSTi: this time considered
when corei idle while other cores busy with a specific
process.

Total lost time is TLT: which is representing the
ration of idle states to the busy states during all rounds.

Table 1: Group of scheduled processes
Process Burst time Type
P1 40 Multithreaded
P2 60 Not multithreaded
P3 38 Not multithreaded

 Mathematically we can represent LSTi, in the
following form:

n i

i i
1 1

LST Q=∑∑ (1)

Where:

i

0, if the core busy
Q

Q, if the core idle

=

 (2)

n = The number of rounds
i = The number of cores

 And therefore the value of the total lost time TLT
will be:

number of idle states
TLT

number of all states
= (3)

 By applying the algorithm with appropriate
parameters for a single-kernel operating systems we
will get the result as shown in Fig. 7.
 Using formula 1 and 2, to get the value for TLi and
TLT:

1LST 0 0 0 0 0 0 0 0= + + + + + + =

2LST 0 20 20 0 20 18 20 100= + + + + + + =

3LST 0 20 20 0 20 18 20 100= + + + + + + =

10
TLT 0.48

21
= =

 The obtained results show that core1 is busy all the
time while core2 and core3 busy only one third of the
time, which means bad distribution of loads between
cores, leading to loss of time due to poor exploitation of
microprocessor’s cores. Figure 8 represents utilization
ratio for each core.
 Now we will use the same data for the proposed
model (multi microkernel model), this will give us the
results shown in Fig. 9.

Fig. 7: Lost time for single-kernel operating systems

J. Computer Sci., 5 (7): 493-500, 2009

498

Fig. 8: Utilization ratio for each core in single-kernel

operating systems

Fig. 9: Lost time for multi microkernel operating

systems

Fig. 10: Utilization ratio for each core in multikernel

operating systems

1LST 0 0 20 20= + + =

2LST 0 0 0 0= + + =

3LST 0 0 22 22= + + =

2
TLT 0.22

9
= =

 The obtained results show that core1 is busy all the
time while core2 and core3 busy almost two-thirds of
the time, which means that the new proposed model is
better in term of distribution of loads between cores,
leading to minimize loss of time due to good
exploitation of microprocessor’s cores. Figure 10
represents utilization ratio for each core.

 In addition TLT for single-microkernel is almost
twice the time of multi microkernel:

TLTsingle-microkernel = 0.48
TLTmulti microkernel =0.22

 This means that we can save twice or may be more
than twice the time using the new proposed model,
leading to high performance due to good utilization of
microprocessor cores.

DISCUSSION

 The proposed model based on multikernel approach
shows through the obtained results that the performance
of multi-microkernel-based operating system is much
better than single-microkernel-based operating system.
 By making the master microkernel only
responsible for the fundamental services in the system
running on a separate core with large caches this will
lead to eliminate all classical problems related to
microkernel-based operating systems such as
bottleneck, switching between user and kernel mode.
On the other hand, assigning the task of executing user
programs to the slave microkernels, by dividing the
total number of process as subsets between the slave
microkernels this will enhance the performance,
increase the throughput and decrease turnaround time,
waiting time and response time of the system.
 Creating a number of slave microkernels
depending on the number of processor cores make the
operating system independent of the microprocessor
architecture which gives it the ability to behave
dynamically, which is mean that the operating system
can deal with processors with any number of cores
without the need for rebuilding it.

CONCLUSION

 In this study, new model for operating system
presented to solve the bottlenecks problem and
operating systems and software challenge with modern
microprocessors architecture of classical single-
microkernel-based operating system, the proposed
model shows high performance compared with the
classical model, because of its dynamic nature and
independency of microprocessor architecture, in
addition to its ability to adapt with both multithreaded
and single threaded process.

REFERENCES

1. Silberschatz, A., P. Baer Galvin and G. Gagne,

2004. Operating System Concepts. 7th Edn. John
Wiley and Sons, Hoboken, New Jersey, ISBN: 10:
0471694665, pp: 944.

J. Computer Sci., 5 (7): 493-500, 2009

499

2. Heiser, G., K. Elphinstone, G. Klein, I. Kuz and
M.S. Petters, 2007. Towards trustworthy
computing systems: Taking microkernels to the
next level. Operat. Syst. Rev., 41: 3-11.

http://portal.acm.org/citation.cfm?id=1278901.127
8904

3. Jochen, L., 1995. On µ-kernel construction.
Proceeding of 15th ACM Symposium on Operating
System Principles, (SOSP’95), pp: 237-250.

http://www.citeulike.org/user/rahul/article/364430
4. Brett, D. Fleisch, Mark Allan A. Co, 1999.

Workplace microkernel and OS: A case study.
Software: Pract. Exp., 28: 569-591.
http://www3.interscience.wiley.com/journal/1798/a
bstract?CRETRY=1&SRETRY=0

5. Andrew S. Tanenbaum, 1995. Distributed
Operating Systems. Prentice Hall, ISBN:
0132199084, pp: 648.

6. Mark E. Russinovich and David A. Solomon, 2003.
Microsoft Windows Internals. 4th Edn., Microsoft
Press, ISBN: 0-7356-1917-4, pp: 976.

7. Andrew, S., 2001. Modern Operating Systems, 2/E,
Tanenbaum. Prentice Hall, ISBN: 13:
9780130313584, pp: 976.

8. Hidaka, S., K. Kodama, Y. Ji and K. Maruyama,
2002. A file server optimization using
scatter/gather IPC on L4 based multi-server
operating system. Proceedings of the 6th World
Multi Conference on Systemics, Cybernetics and
Informatics, (SCI’02), Tokyo, pp: 184-189.
http://research.nii.ac.jp/H2O/SCI-2002.pdf

9. Rajkumar , R., 1999. Operating Systems and
Services. Springer, ISBN: 0792385489, pp: 204.

10. Härtig, H., M. Hohmuth, J. Liedtke, J. Wolter and
S. Schönberg, 1997. The performance of µ-kernel-
based systems. Operat. Syst. Rev., 31: 66-77.

http://direct.bl.uk/bld/PlaceOrder.do?UIN=038779
461&ETOC=RN&from=searchengine

11. Peng, L. et al., 2007. Memory performance and
scalability of intel's and AMD's dual-core
processors: A case study. Proceeding of the IEEE
International Conference on Performance,
Computing and Communications, Apr. 11-13,
IEEE Xplore Press, New Orleans, LA., pp: 55-64.
DOI: 10.1109/PCCC.2007.358879

12. Knight, W., 2005. Two heads are better than one.
IEEE. Rev., 51: 32-35.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1540008

13. Geer, D., 2005. Chip makers turn to multi-core
processors. Computer, 38: 1-13. DOI:
10.1109/MC.2005.160

14. Gordon Moore, E., 1965. Cramming more
components onto integrated circuits. Electronics,
38: 114-117.

 http://www.citeulike.org/user/sjanusz/article/814762
15. Access My Library, 2005. Intel, Innovation more

important than ever in platform era.
http://www.accessmylibrary.com/coms2/summary_
0286-18980112_ITM

16. Muneer, H. and K. Rashid, 2006. SPE architecture
for concurrent execution OS kernel and user code.
Inform. Technol. J., 5: 192-197.

http://scialert.net/asci/ascidetail.php?doi=itj.2006.1
92.197&kw=

 17. Eggers, S.J., J.S. Emer, H.M. Levy, J.L. Lo, R.L. Stamm
and D.M. Tullsen, 1997. Simultaneous
multithreading: A platform for next-generation
processors. IEEE Micro, 17: 12-19. DOI:

10.1109/40.621209
18. Ron Kalla, Balaram Sinharoy and J.M. Tendler,

2004. IBM power5 chip: A dual-core multithreaded
processor. IEEE Micro, 24: 40-47. DOI:
10.1109/MM.2004.1289290

19. Van Roy Peter, 2008. The challenges and
opportunities of multiple processors: Why multi-
core processors are easy and internet is hard.
Proceeding of the International Computer Music
Conference, (ICMC’08), Belgium, pp: 1-2.
http://www.info.ucl.ac.be/~pvr/vanroy-mc-panel.pdf

20. Artho, C. and A. Biere, 2001. Applying static
analysis to large-scale, multi-threaded java
programs. Proceeding of the 13th Australian
Software Engineering Conference, Aug. 27-28,
IEEE Computer Society Washington DC., USA.,
pp: 68-68.

 http://portal.acm.org/citation.cfm?id=872575
21. STAR Watch, 2005. Double the performance:

Dual-core CPU’s make their debut.
http://www.wnylc.net/pdf/star-
watch/MayJunel05.pdf

22. Visser, W., K. Havelund, G. Brat and S. Park,
2000. Model, checking programs. Proceeding of
the International Conference on Automated
Software Engineering, pp: 1-10.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.36.3362&rep=rep1&type=pdf

23. Akhter, S. and J. Roberts, 2006. Multi-Core
Programming: Increasing Performance through
Software Multithreading. 1st Edn., Intel Press,
ISBN: 13: 978-0976483243, pp: 360.

24. Stewart Taylor, 2007. Optimizing Applications for
Multi-Core Processors, Using the Intel® Integrated
Performance Primitives. 2nd Edn., Intel Press,
ISBN: 13: 978-1934053010, pp: 600.

J. Computer Sci., 5 (7): 493-500, 2009

500

25. Hughes, C. and T. Hughes, 2008. Professional
Multicore Programming: Design and
Implementation for C++ Developers. Wrox, ISBN:
13: 978-0470289624, pp: 648.

26. Tullsen, D.M., S.J. Eggers and H.M. Levy, 1995.
Simultaneous multithreading: Maximizing on-chip
parallelism. Proceedings of the 22nd Annual
International Symposium on Computer
Architecture, June 22-24, IEEE Xplore Press,
USA., pp: 392-403.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=524578

27. Tullsen, D.M., S.J. Eggers, J.S. Emer, H.M. Levy,
J.L. Lo and R.L. Stamm, 1996. Exploiting choice:
Instruction fetch and issue on an implementable
simultaneous multithreading processor. Comput.
Architect., 24: 191-202.
http://portal.acm.org/citation.cfm?id=232974.2329
93

28. Koufaty, D. and D.T. Marr, 2003. Hyperthreading
technology in the netburst microarchitecture, Micro
IEEE., 23: 56-65. DOI:
10.1109/MM.2003.1196115

29. Lin Chao, 2002. Hyper-threading technology.
http://www.buzzle.com/editorials/7-31-2004-
57330.asp

30. Geer, D., 2007. For programmers, multicore chips
mean multiple challenges. Computer, 40: 17-19.
http://portal.acm.org/citation.cfm?id=1301953

31. Alameldeen, A.R. and D.A. Wood, 2007.
Interactions between compression and prefetching
in chip multiprocessors. Proceedings of the 2007
IEEE 13th International Symposium on High
Performance Computer Architecture, Feb. 10-14,
IEEE Xplore Press, Scottsdale, AZ., pp: 228-239.
DOI: 10.1109/HPCA.2007.346200

