
Journal of Computer Science 5 (7): 487-492, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: G. Maria Kalavathy, Sathyabama University, Chennai, Tamil Nadu, India
487

Parallel Performance Monitoring Service for Dynamically

Composed Media Web Services

1G. Maria Kalavathy and 2P. Seethalakshmi
1Sathyabama University, Chennai, Tamil Nadu, India

2Anna University Trichy, Tamil Nadu, India

Abstract: Problem statement: As distributed real-time multimedia services are accessed by users from
different locations, the run-time performance must be managed and monitored to get a clear view of how
media web services perform within their operational environments and to perform control actions to
modify and adjust the their behavior. Otherwise it will provide negative effects on the reputation of
service provider. Therefore the main objective of this study was to design and implement a media web
service composed dynamically and to monitor the Dynamically Composed Media Web Services
(DCMWS) through Parallel Performance Monitoring Service (PPMS). The PPMS is a web service that
executed in parallel with media web service using multi threading technology. Approach: The PPMS
monitors the run-time performance of Dynamically Composed Media Web Services (DCMWS) which
were represented as BPEL (Business Process Execution Language) processes. The run-time
performance of the media web services such as timeouts, external errors, percentage of successful
completion of individual media web services and the occurrence of fault were monitored and using this
result the corrective actions were taken by service providers. Results: The effectiveness of PPMS had
been evaluated for media-on-demand composite web service and its results showed an improvement on
the performance of run time monitoring of media web services. Conclusion: To facilitate management
decisions and media web service behavior modifications, service providers need to monitor the run-
time performance of DCMWS. In this context, the approach outlined in this study was most
appropriate, convenient and efficient. The proposed PPMS herein played a crucial role in monitoring
run-time performance of DCMWS.

Key words: Dynamic service composition, media-on-demand, multi threading, PPMS

INTRODUCTION

 Emerging advances in distributed media services,
such as video conferencing, media-on-demand and
ubiquitous multimedia streaming, demands a scalable,
robust and adaptive media service infrastructure. The
media service composition concepts are main
approaches to advance construction of large scale
distributed media services in a scalable, easy-
programmable and efficient manner[16]. Since the media
service compositions are done dynamically the name
for the composed service is Dynamically Composed
Media Web Service (DCMWS). The DCMWS and its
monitoring at run time are necessary to provide
adaptive media web services. The dynamic service
composition to media service allows the media services
to be composed dynamically from components of
distributed web services according to the requirements
from different users. The components of distributed
media services were developed and hosted in

heterogeneous environments. This Composite Media
web service provides streaming of real-time media that
allows the user to choose the media services according
to their choice in a user friendly way that provides the
flexibility in choosing the kinds of information they
would like to receive. One of the challenges is, ensuring
the high performance of multiple media services that
are requested. The demanded services are to be readily
available to the end users; else it will create negative
effects on the reputation of service provider or result in
loss of business opportunities. Hence the runtime
performance of the web services is to be monitored and
is informed to the service provider to take corrective
action. The performance of the web services are
influenced by many factors such as network traffics,
host workloads and host running environments. It is
very important to monitor the run time performance of
dynamically composed media web services during the
process of their invocation in client side. There are few
reported researches on performance monitoring of

J. Computer Sci., 5 (7): 487-492, 2009

488

media web services especially video-on-demand
services after it is deployed.
 The DCMWS are designed and implemented as
BPEL processes and using multithreading technology
the Parallel Performance Monitoring Service (PPMS)
monitors the performance of each individual media web
services that are requested. The runtime performance
characteristics to be monitored are response time,
timeout, external errors, percentage of successful
completion of individual web services and the
occurrence of fault. The results of this run time
performance monitoring are used by service providers
to take corrective actions.
 The response time is calculated using software
wrapping technique at the server side. The timeout is
the interrupt signal that is generated when the client
does not get the response with in the specified time
limit. PPMS monitors the timeout and executes
exception handling procedure if the client does not get
the response with in the time limit.
 Calculating the percentage of successful
completion of media web service for example video-on-
demand service is useful to restart the service from the
point it was failed if any fault is occurred. The
calculation of percentage of successful completion is
done by polling technique. The monitor thread of
video-on-demand service polls the client at every
specified interval of time and if it responds, stores the
successful completion in terms of percentage to the log
file.

Related work: Performance is one of the most
important nonfunctional requirements of service based
media applications. Because service-based software
development for media applications is emerging new
technology, there have been no reported performance
assurance studies on media web service applications.
Most of the performance assurance testing is performed
before the deployment of the web services.
 Compile-time analysis techniques to perform the
white-box testing of exception handlers in Java web
services are analyzed by Fu et al.[3]. Huang et al.[5] were
designed a software tool to assess web application
security which is based on software testing techniques
such as dynamic analysis, black-box testing, fault
injection and behavior monitoring. Offutt and Xu[12]
proposed an approach to test web services based on
data perturbation and interaction perturbation, which
uses two types of communication mechanism such
as RPC communication and data communication.
Liu et al.[9] proposed a web test model, which considers
each web application component as an object and
generates test cases based on data flow between those

objects. Gorton and Liu[4] designed a middleware
infrastructure, the transaction and directory services
and the load balancing to compare the performance of
six different J2EE-based distributed applications.
Avritzer et al.[8] compared the performance of different
Object Request Broker (ORB) implementations that are
related to the CORBA Component model. Liu et al.[10]
evaluated the suitability of light-weight test cases on
distributed applications.
 McGregor and Schiefer[2] described a framework
which uses process definition information to define web
service to the solution manager service. They also
introduced the concept of the Event Processing
Container providing a robust, scalable and high-
performance event processing environment able to
handle a large number of process events in near real-
time. Baresi et al.[11] proposed an approach to monitor
timeouts, runtime errors and violations of functional
contracts of service compositions defined by BPEL
processes using assertions. Liguo Yu[7] proposed
software wrapping technique that is used at client side.
The clients interacts with the service through the
wrapper which customize the messages exchanged
between client and service and monitors the
performance of the service by calculating the response
time only. But here the response time is calculated
using software wrapping technique from the service
provider point of view to take immediate action if the
performance is poor. Mahbub et al.[6] described the
framework to monitor behavioral properties and
assumptions at run time using event calculus. William
N. Robinson[15] proposed REQMON monitoring system
that raises only an alert by sending a failure message to
the global monitor. It can’t recover web service from
the point at which the failure occurs. Koschel and
Astrova[1] designed a configurable event monitoring
web service which is useful in the context of Event
Driven Architectures (EDA) and Complex Event
Processing (CEP). Ezenwoye and Sadjadi[13,14]
presented an approach to transparently adapting BPEL
processes to tolerate runtime and unexpected faults and
to improve the performance of overly loaded web
services. They presented an approach in which when
one or more partner services do not provide satisfactory
service the request for service is redirected to one of
these static, dynamic and generic proxies, where the
failed or slow services are replaced by substitute
services[16]. But this approach is not used for recovering
the web service from the point at which the fault is
occurred.
 There is no reported research on performance
monitoring of media web services especially percentage
of successful completion of media web service. Hence

J. Computer Sci., 5 (7): 487-492, 2009

489

it has been chosen to design and implement DCMWS
and its run time performance has been monitored by
PPMS. It is very much useful in media web applications
to recover from the point at which the fault is occurred.

MATERIALS AND METHODS

Parallel Performance Monitoring Service: The
PPMS monitors the run time performance of DCMWS
using three mechanisms such as software wrapping in
server side, setting and monitoring time limits for
individual media web services and polling technique to
monitor web service compositions defined by BPEL.
These three mechanisms correspond to four classes of
performance characteristics such as response time,
timeouts, external errors and percentage of successful
completion of the media web service.
 For each media service requested, PPMS thread is
created that checks the performance in terms of
response time, timeout, external error and percentage of
successful completion. When such undesirable
condition is detected by the PPMS, it returns status such
as Service Unavailable Fault, Timeout fault and
execution fault during VoD services is delivered to
service providers for handling them.

Monitoring timeouts and response time: The timeout
is the interrupt signal that is generated when the client
does not get the response with in the specified time
limit. ActiveBPEL allows the designer to set the
timeout for scopes and all the operations in the scope
must finish their execution within the time limit set by
timeout. But PPMS set the time limit and exception
handling procedures for each and every individual web
services and monitors this time limit at runtime. The
time limit is chosen as 75 sec using the default value of
the parameter tcp_ip_abort_cinterval which is the
second threshold timer used during connection
establishment.
 The response time is the delay between a request
and the completion of an operation which is monitored
by software wrapping technique in the server side.
Software wrapping refers to a reengineering technique
that surrounds a software component or system with a
new software layer to hide the internal code and the
logic of the component or system and to supply modern
interfaces. The server receives the client request
through wrapper. Here the wrapper provides the
customization of messages exchanged between the
client and the service and to monitor the performance of
the service i.e., calculating response time.

Fig. 1: An example of wrapping media web services

 Figure 1 shows an example of a wrapper program
that monitors the response time of the video-on-demand
service. The client request for the video service
comprises of service name, cost, completion time and
quality (vod(s1,c,ct,q)) which is given to server through
wrapper. The wrapper program calculates the response
time, checks the timeout and records the results in the
performance report i.e., log file. In this approach
software wrapping is implemented at the service
provider side, because the PPMS which is used in this
approach is used to monitor the performance of the
media web service from the server point of view to take
the immediate action if the performance is poor.

Monitoring external errors: When the individual web
service in the dynamic composition fails because of an
unforeseen internal bug and external errors, the whole
composition i.e., process is failed. To recover from this
situation, PPMS defines faultHandler that can take care
of the failure of the invoked service using a catchall
clause. A part of sample code of PPMS to handle the
faults occurred in each individual web service in the
composition is shown below:

<faultHandlers>
<catchall>
<sequence>
 …logic to handle exceptions by communicating the
error to the service provider to take necessary steps and
terminating….
</sequence>
</catchall>
</faultHandlers>

Monitoring the percentage of successful completion:
When the Video-on-Demand (VoD) service is
requested, a thread is created for PPMS to monitor the
performance of media web service and synchronization
is achieved between them to exchange data.
Parallelizations of web services with communication

J. Computer Sci., 5 (7): 487-492, 2009

490

construct are provided by Multithreading technology
with synchronization. The parallelism with
communication construct is used to execute concurrent
web services and to synchronize or exchange certain
data between them during execution. The Fig. 2
explains the parallel execution of VoD web service and
PPMS with communication among the services. The
special processing element facilitates data sending and
retrieval and formalizes it as process related instances.
 Figure 2 shows the simultaneous operation of
PPMS and VoD web service. The information about the
status of the VoD service is monitored by PPMS at
different times using polling technique and stores the
status such as polling time, correctness of the service,
polling time interval in the polling table. The
correctness of the service is indicated by the flag
variable called response. The sample polling table is
shown in Table 1. At run time the percentage of
completion is calculated by the following equation
using the information given by PPMS:

n Pt
Percentageof successfulcompletion (P) *100

N

×= (1)

Where:
n = Number of polls
Pt = Polling time interval
N = Total time required

Table 1: Polling table
 Polling time (Pt) in sec Response
 Poll 1 120 YES
 Poll 2 120 YES
 Poll 3 120 NO

Fig. 2: Parallel execution of VoD Web service and

PPMS

 Let the polling time interval (pt) is 2 min and the
video clip can run for 10 min. Then PPMS polls for
5 times. If the third poll does not get the response,
then it is intimated immediately to take necessary
action. The action to be taken is out of scope of this
study and will be done in future using corrective
adaptation techniques.

RESULTS

 To evaluate the proposed PPMS, a series of
experiments on dynamically composed media web
services such VoD service executions were carried out.
In this experiment BPEL process was created for media
web services. This process includes the individual web
services such as authentication service, new user
service, Search service, SLA service, Selection service,
PPMS, VoD service, NoD (News-on-Demand) service
and MoD (Music-on-Demand) services. The Fig. 3 is
the BPMN (Business Process Modeling Notation)
diagram used to explain the composition of these web
services.
 The objective of this experiment was to measure
(a) Monitored response time for multiple clients (b)
Number of timeouts detected at run time (c) Percentage
of successful completion of VoD service and (d)
Number of exceptions raised due to external errors. The
performance parameter response time of the requested
media web service is the sum of the response time of
the individual services in the composition described in
the Fig. 3. The Response Time (RT) of the total
composition for the new user request is calculated using
software wrapping technique as below:

 6

i 3
RY rt1 rti rt7

=
= + +∑ (2)

where, rti is the response time of the ith web service.

Fig. 3: BPMN diagram for dynamic composition of

media web services

J. Computer Sci., 5 (7): 487-492, 2009

491

Fig. 4: Sample output of PPMS

 The sample output of log file which is created at
run time is shown in Fig. 4. The parameters that are
monitored and stored in this log file are client ID,
service name, wait interval, process ID, media file
name, response time and errors if occurred.
 The graph for dynamic requests is shown in Fig. 5
which describes the variation in response time based on
the number of simultaneous requests handled by the
service provider. As shown in the graph, the response
time increases almost linearly until about 10 concurrent
requests. After 10 requests, the performance in terms of
response time degrades considerably.
 The next performance parameter is the timeout
which is the interrupt signal that is generated when the
client does not get the response with in the specified
time limit. The network traffic conditions and server
workloads leads to timeout of the service that is it can
not respond with in the specified time interval. Active
BPEL allows the designer to set the timeout for scopes
and all the operations in the scope must finish their
execution within the time limit set by timeout. But
PPMS sets the time limit as 60 sec and exception
handling procedures for each and every individual web
services and monitors this time limit at runtime.
 The next performance parameter the percentage of
successful completion of the media service was found
using polling technique. The PPMS thread parallely
monitors the media web service by sending polling
message and checks the response. If the response is
received, it is entered in the polling table. Otherwise the
service provider checks the polling table and calculates
the percentage of successful completion of media
service using the Eq. 1.
 The external errors are monitored by PPMS using
passive testing and the corresponding exception
handler is invoked to give the information about
the external errors to the service providers. The
passive testing is the testing or observing the
interaction between a service provider and clients.

Fig. 5: No. of simultaneous requests Vs response time

Fig. 6: No. of simultaneous requests Vs failure rate

The external errors are simulated that is restart the client
or pause the operation in between. All these errors are
monitored and the Fig. 6 shows the failure rate of VoD
service due to external errors. It is measured as the ratio
of the number of failure requests over total number of
requests over a period of time.

DISCUSSION

 It was observed that the deigned PPMS monitor the
run-time performance of the DCMWS effectively. The
monitoring of percentage of successful completion of
media web service execution is very much necessary
for the media service providers to take necessary action
in case of fault occurrence. This will increase the profit
and reputation of their business. The findings of failure
rate and response time of number of simultaneous
requests will be very useful to perform control actions to
modify and adjust the behavior of media web services.

CONCLUSION

 The Dynamically Composed Media Web Services
(DCMWS) was designed and implemented and through
Parallel Performance Monitoring Service (PPMS) its
runtime performance was monitored. Software
performance assurance of web services has not been
thoroughly investigated because of it its dynamic binding
and independent service implementation. But the PPMS
provides three mechanisms such as software wrapping in
server side, setting and monitoring time limits for
individual media web services and polling technique to

J. Computer Sci., 5 (7): 487-492, 2009

492

monitor the successful completion of media web service
compositions defined by BPEL. These three mechanisms
were implemented to monitor the performance
characteristics such as response time, timeouts, external
errors and percentage of successful completion of the
media web service. These findings support the
importance of monitoring the dynamically composed
media web services and also show the improvements on
run-time performance monitoring of media web services.

REFERENCES

1. Koschel, A. and I. Astrova. 2008. Event

monitoring web services for heterogeneous
information systems. Proceedings of the World
Academy of Science Engineering and Technology,
Sept. 2008, pp: 50-52.
http://www.waset.org/pwaset/v33/v33-10.pdf

2. McGregor, C. and J. Schiefer, 2003. A framework
for analyzing and measuring business performance
with web services. Proceedings of the IEEE
International Conference on E-Commerce, June 24-
27, IEEE Xplore Press, USA., pp: 405-412.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1210277

3. Fu Ryder, C., B.G. Milanova and D. Wonnacott,
2004. Testing of java web services for robustness.
Proceedings of 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis,
July 11-14, ACM Press, Boston, Massachusetts,
USA., pp: 23-24.

 http://doi.acm.org/10.1145/1007512.1007516
4. Gorton, I. and A. Liu, 2002. Software component

quality assessment in practice: Successes and
practical impediments. Proceedings of the 24th
International Conference on Software Engineering,
May 19-25, ACM Press, Orlando, Florida, pp: 555-558.
http://doi.acm.org/10.1145/581339.581408

5. Huang, Y., S. Huang, T. Lin and C. Tsai, 2003.
Web application security assessment by fault
injection and behavior monitoring. Proceedings of
12th International World Wide Web Conference,
Budapest, May 20-24, ACM Press, Budapest,
Hungary, pp: 148-159. DOI: 10.1145/775152.775174

6. Mahbub, K. and G. Spanoudakis, 2005. Run-time
monitoring of requirements for systems composed
of web-services: Initial implementation and
evaluation experience. Proceedings of the IEEE
International Conference on Web Service, July 11-
15, IEEE Xplore Press, USA., pp: 257-265. DOI:
10.1109/ICWS.2005.100

7. Liguo Yu, 2007. Applying software wrapping on
performance monitoring of web services. J.
Comput. Sci., 6: 1-6.
http://www.dcc.ufla.br/infocomp/artigos/v6.3/art01.pdf

8. Lin, C., A. Avritzer, E. Weyuker and L. Sai-Lai,
2000. Issues in interoperability and performance
verification in a multi-ORB telecommunications
environment. Proceeding of the International
Conference on Dependable Systems and Networks,
June 25-28, IEEE Computer Society, Washington,
DC., USA., pp: 567-575.
http://portal.acm.org/citation.cfm?id=737949

9. Liu, C., D. Kung and P. Hsia, 2000. Structural
testing of web applications. Proceedings of 11th
International Symposium on Software Reliability
Engineering, Oct. 8-11, IEEE Xplore Press, San
Jose, CA., USA., pp: 84-96. DOI:
10.1109/ISSRE.2000.885863

10. Liu, Y., I. Gorton, A. Liu, N. Jiang and S. Chen,
2002. Designing a test suite for empirically-based
middleware performance prediction. Proceedings
of the 14th International Conference on Tools
Pacific: Objects for Internet, Mobile and
Embedded Applications, (ICTPOIMEA’02), ACM
Press, Sydney, Australia, pp: 123-130.
http://portal.acm.org/citation.cfm?id=564110

11. Baresi, L., C. Ghezzi and S, Guinea, 2004. Smart
monitors for composed services. Proceedings of the
2nd International Conference on Service Oriented
Computing, Nov. 15-19, ACM Press, New York,
USA., pp: 193-202. DOI: 10.1145/1035167.1035195

12. Offutt, J. and W. Xu, 2004. Generating test cases
for web services using data perturbation. ACM.
SIGSOFT. Software Eng. Note., 29: 1-10.
http://doi.acm.org/10.1145/1022494.1022529

13. Ezenwoye, O. and S.M. Sadjadi, 2008. Proxy-
based approach to enhancing the autonomic
behavior in composite services. J. Network., 3: 42-53.
http://www.bibsonomy.org/bibtex/2e42854cca027f
b15459f277c75044f10/dblp

14. Ezenwoye, O. and S.M. Sadjadi, 2006. Robust-
BPEL: Transparent autonomization in aggregate
web services using dynamic proxies. Technical
Report: FIU-SCIS-2006-06-01.

 http://www.cs.fiu.edu/~sadjadi/Publications/Techni
cal%20Report%20FIU-SCIS-2006-02-01-
RobustBPEL-DynamicProxies.pdf

15. William, N., Robinson. 2003. Monitoring web
service requirements, Proceedings of the 11th IEEE
International Requirements Engineering Conference,
Sept. 8-12, IEEE Xplore Press, USA., pp: 65-74.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1232738

16. Balke, W.T. and K. Nahrstedt, 2004. Multimedia
service composition: A brave new topic.
Proceedings of ACM Multimedia Conference, Oct
10-15.New York, USA., pp: 1-2.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.67.6927&rep=rep1&type=pdf

