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Abstract: Problem statement:Causality among events, more formally the causdéring relation, is

a powerful tool for analyzing and drawing inferem@bout distributed systems. The knowledge of the
causal ordering relation between processes helpigradgs and the system itself solve a variety of
problems in distributed systems. In distributedodthms design, such knowledge helped ensure
fairness and liveness in distributed algorithmsjntagned consistent in distributed databases and
helped design deadlock-detection algorithm. It &ksiped to build a checkpoint in failure recoveng a
detect data inconsistencies in replicated distethutatabaseépproach: In this study, we implemented
the causal ordering in Suzuki-Kasami’s token badgdrithm in distributed systems. Suzuki-Kasami's
token based algorithm in distributed algorithm tresilized mutual exclusion among n processes. Two
files sequence numbers were used one to computaithber of requests sent and the other to compute
the number of entering in critical sectidtesults: The causal ordering was guaranteed between request
If a process Prequested the critical section before a procgsthéh the process Rill enter its critical
section before the process €onclusion: The algorithm presented here, assumes that ifaest req
was sent before a request req’s, then the reqeestill be satisfied before req’s.
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INTRODUCTION messages in Ricart and Agrawala’s algorithm by

avoiding some unnecessary request and reply message

The mutual exclusion problem states that only arhey have shown that the number of messages
single process can be allowed access in its Qritic@xchanged in their algorithm is between 0 and 3(n-1
Section (CS). Hence, the mutual exclusion problemnli® Maekawa uses the quorum principle to solve the

plays an important role in the design of computergistributed mutual exclusion and reduces the nurober
systems. Several distributed algorithms are praptse messages from O(n) to OX).

solve this problem in distributed systems and based In  the second class, token-based
asynchronous messages passing and without globg|gorithm&-3413162124 iy which only one process

clock. Distributed mutual exclusion can be dividetb holding a special me,ssage called the token, magr ent

two groups: Permission-based algorithms and tokenge critical section. The dynamical spanning tree i

based algorithms. . presented ##*! to ensure the mutual exclusion. The

Al olrri]thm étzhfm,l&lg',gat whe(ifs;ll in;?\;ggss'?&gssseeg reversal path permits to .reduce the number of ngessa
9 : P to log(nf®"*? where n is the number of processes in

vote to select one which receives the permission t e network. The performance metrics of the mutual
access the CS. LampBrwas the first to design a fully . - e p
exclusion algorithms are: The average number of

distributed permission based mutual exclusion - L2 X
algorithm using logical timestamps. In his algarith MESSages necessary per critical section invocatien,

each request se is the entire distributed systérenTif ~ '€SPonse time, the fault tolerance. The mutualusioh

n is the number of processes in the distributedesys algorithm should be starvation-free and fairness.

the algorithm requires (n-1) request, (n-1) repiy én-

1) releases. The algorithm requires 3(n-1) messpeges MATERIALS AND METHODS

critical section execution. Ricart and Agraw&lahave

reduced the number of messages in Lamport'$efinition of Causality: Causal ordering of events in a
algorithm to 2(n-1). Carvalho and Roucairol's distributed system is based on the well-known
algorithnt? has further improved the number of “happened before” relation noted®. The “happened
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before” relation— defined by Lamport is defined by On Fig. 2, a request is sent tptB all other at g.
the following three rules: This request is received and stored by (&;) and
received by P (es3). When process Prequests the

« If a and b are events in the same process and gitical section, it sends all waiting requestsetbin its
comes before b, then-a b fifo queue (the request of 5 placed before the request

« Ifais the sending of a message by one process ard P2). Process $holds the token and receives a request
b is the receipt of the same message by anothdfom P»(€s1). The process#sends the token to process
process, then & b P; and not to process,P

* Ifa—bandb-c thena-c Logical time approaches:In the literature, two types

of causal ordering protocols were found: Logicalckl
¢ tive. ie it rict partial order. The relati based and physical clock based. By far, the mgjofit
i;aglzlol\:z%el.r?é, dl tcl)saas ?hrtlaccgfsrallﬂtyorrelzrti dﬂ.inre ation WOI.’k on causal ord_ering protocols has been dortkdn
) ) . logical clock domain. In fact, only one protocolskd

Lamport describes a mechanism for total orderingyy physical clocks was uncovered. Therefore, thigys
of events in a distributed system. It is basedamichl  gyrveys the logical clock mechanisms. In order to
clocks and requires each site to have at least ongescribe the protocols, a definition for logicabak
message from every other site in the system. Causahust be given.
ordering is a weaker ordering than total ordering.  As defined by Lamport Ifl, a clock is away of
Causal ordering of the events a and b means tleay ev assigning a number to an event where the numhbeis
recipient of both a and b receive message a beforgme at which the event occurred. Since the cloak h
message b. Since there is no global clock in disted  no relation to physical time, it is called a lodicéock
systems, information is added to the messages tdi- Counters can implement logical clocks with no
indicate the knowledge of other messages in thesys actual timing mecha_nlsm. A logical _c_lock is corrdat
that were sent before it. A message is said to rtépe observes the following clock condition: if an event
upon other messages in the system that were skmebe oceurs .befqre another event b, then a should happen
it and a message cannot be delivered until all an earlier time than b. In other words for any éwen

) . o and b: If a—> b then H(a) < H(b).
that it depends upon haye been delivered. T*,!e'“‘@“? To guarantee that the system of clocks satisfies t
closure of this relation denotes the “transitive

, ) "~ clock condition, the following implementation rulas
dependencies” or “dependency chain”. A convenienty|iowed:

way to visualize distributed computations is wittme
diagram. Figure 1 shows an example for a systemm Each process;RAncrements Hbetween any two

Note that — is ir-reflexive, asymmetric and

comprising three processes. A directed line syrabsli successive events

the progress of each process. + if event a is the sending of a message m by
On Fig. 1, the causal ordering is not guaranteed. process R then the message m contains a

Message mis sent before message,rut the process timestamp T,= Hi(a)

P; receives the message before m: * Upon receiving a message m, processees

H; as max(T, H;)
€11 €1—> Ep— 63— 633 . )
Vectors timestamps:The causal history approach can
From g; — &1 — &, we deduce that;g— e. be improved by observing that for each process$war, t
The events £ — &, — 63, — &3 and @, — €, — 63 causal history is sufficiently characterized by the

From e,— e;;,— &3, we deduce thatg— e;.. largest index among its members, i.e., its ceality.
P, e i en /-ev:_; - Py €11 r— Ffl-' — 3 -
m\ e m?_—/t'-—‘ By, R f--7
’ R . Bip TEam=" a3 \
P gl e — P, = e = E e >
) &1 S ] A YR e Y
m; m; % ‘11}: Rs ‘___«\‘
P: = = - ‘e‘,_ - & €31 €3 ::3
. - - W (ritical section —-—
Fig. 1: The causal ordering is not guaranteed Fig. 2: Mutual exclusion without causal ordering
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Thus, the causal history can be uniquely repreddmje  Suzuki-Kasami’'s algorithm: The algorithm is
an n-dimensional vector V of integers. A definitiftot ~ presented . A process holding the token is allowed
vector time is given . The vector time Vof a  to enter into the critical section. A single prazéss the
process Pis maintained according to the following privilege and a node requesting critical section

rules: broadcasts a request message to all the other.nades
process sends the privilege if the toke is idldnlie site.

* Vjk] <0, fork=1,..., n processes The site having token can continuously enter eitic
+ On each internal event e, processnerements V  section until it sends the token to some other Jite
as follows: \[i] < Vi[i]+1 request message has the format request))(j,which

* On sending message m, tpdates Vas in the means site j is requesting its critical sectionctEaode
second point and attaches the new vector to m maintains an array RN of size N for recording lates
e« On receiving a message m with attached vectosequence number receives from each of the othersnod
time V, R increments Yas in the second point. The TOKEN message has the format TOKEN (LN),
Next P updates its current;\as follows: \[k] <  where LN is an array of size N where LN[j] is tlaelst
max (V;, V) critical section executed by a node j. if RN[j] &[j]+1,
it means that a node j has sent a request foreitg¢ n
Since there is a correspondence between vect@equence of critical section and the node havirg th
time and causal history, we can determine causgivilege adds this to the queue and if token is, ithe
relationships between events by analyzing the vectonode sends the TOKEN (LN) to the node requesting
timestamps of the event in question. critical section. The number of messages per atitic
section entry is (N-1) REQUEST messages plus one
Fidge-Mattern protocol: The protocol refers two TOKEN message so N messages in all or O if the node

protocols by Fidg& and Matterft"! that are similar. having the token wants to enter critical section.
This protocol uses a vector of logical clocks to

implement causal orderifi§. In this algorithm, every « When done with the critical section, processdls
process maintains a natural number to represeint the  LN;[i] = RN[i]
local clocks. Each process initializes its localokito O« For every process; R appends Fin waiting queue

and increments it at least once before performenxhe if RN[j] = LN [j]+1

event. When processes send and receive messages, th  |f the waiting queue is not empty, it extracts the
pass on whatever local clock information they have process at the head of the waiting queue and sends
each other. Hence, each process maintains its ovet | the token to that process

clock information and also whatever local clock

information of the other processes it can obtaomfr Suzuki-Kasami's algorithm based on causal
received messages. The logical time is defined by ardering:

vector of length n, where n is the number of sitethe ~ Concurrent requests:Let R and R are two vectors of
system. The logical time vector is noted, Which  two processes;nd Rrespectively.

represents the logical time on site procesarid Vfor o )

the timestamp of message m. The logical time dfea s Definition: For any two time vectors;@nd R

evolves in the following way: R <R iff R, <R and it exists k such as[R < R[K]
R < Riff Rj< R and it exists k such as[K < Rj[K]
R || Riff = (Ri <R)and = (R<R)

* When a local event occurs at procesghe ith entry
to the vector Y is incremented by one: ]

Vili]+1 ) ] ) Principle: To implement the causal ordering, we use,
* When a site Sreceives a message m, timestamp Vfor every process ;Pthe vector timestamp ; Rvhere
the rules states: R[K] is the last request time sent by procegsaRd
* For j=i, Vi[i] «-Vi[i]+1 received by P The new requests received by process P
* For j#A, Vi[i] < max(Vi[j], V[i]) are stored in a waiting local queue Q

When a process; Polding the token, requests the
As stated in the discussion on vector clocks, theritical section, it enters its critical section taut
major drawback of this protocol is the size of tt,ee  sending the message. In another way, it increagds R
vectors. If the number of processors is large, théy one, appends (i,i[f) to Q; sends the request “REQ
amount of timestamp data that has to be attached {@)” to all other processes, sets Q@ empty and waits
each message is unacceptable. for the token.
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deletes from Q the obsolete requests; afterwatrds, i
aomnm S appends Q to Q.= {(1, 1), (2, 2)}.

Py e — : —— T+ Process P receives the request from, PThe
\“ : ‘ //T : process P deletes from Q the obsolete requests;
P, . = afterwards, it appends Q ta Q.= {(4, 2)}.
i AT Tg The process Preleases the critical section, sends
. s i the token message “TOKEN D to the head of

Q, and sets Qto empty.

To: Process P receives the request from,.PThe
process P deletes from Q the obsolete requests;
afterwards, it appends Q to.@.= {(4, 2), (2, 2)}.

Ti0 Process Preceives the token message “TOKEN
(Q)” from Ps. The process ;Pdeletes from Qthe
obsolete requests, afterwards, it appentb ).

Q= {(4, 2), (2, 2)}. When the process Releases
its critical section, it sends the token to thegess
P,.

P, \ Le ‘/

o
Token message| ,

= ==-=0Dbsolete message !

I Critical section

Fig. 3: Mutual exclusion with causal ordering

When a process; Peceives a request “REQ (Q)”
from another process,; Pemoves from all queues; Q
and Q the obsolete request and appends Q;tt Q
obtain by merging a queue.@ process Pholding the
idle token, sends it to the head of its waitingaloqueue
Q and sets (Xo empty.

Definition: A request with timestamp (i, h) is said
obsolete if for all k, we have €hR(i]) or (h< TIi]),
where R[i] and T[i] are the vector timestamps of
requesting and entering the critical section bycpss
P.

Approach:

Example: In Fig. 3 we consider a distributed system
{P,, P, P;, P4}, the process Pholds the token. We R:
consider the following scenario: "

Local variable at process P:

Vector of timestamps where;[R denotes the
last timestamp of requesting critical section by

) . . process P
To: The process _frequests_ the qntlcal section and T: Vector of timestamps where T[i] denotes the
enters its critical section, without sending the . " . :
request message last timestamp critical section execution by
g ge. process P

T,. Process Prequests the critical section, it increases
its logical time Hi] by one, appends (1,:R]) to
its waiting queue @ sends “REQ (" to others
processes, sets, @ empty and waits for the token.

T, Process Preceives the request “REQ (Q)” from. P
The process Pdeletes from @and Q the obsolete
request, afterwards, it appends Q t0 Q

T3 Process Preceives the request “REQ (Q)” from. P
The process Pdeletes from Qand Q the obsolete
request, afterwards, it appends Q tp Q
R;=(1,0,0,0), R=(1,1,0,0), B=(1,0,0,1), < R,
and R< R, but we have R|| R.

T4 Process Prequests the critical section, it increasesReQ (Q): This message is sent to all others process to

its logical time R[4] by one, appends (4,4M]) t0  gptain the token.
its waiting queue @ sends “REQ (Q)" to others

processes, sets,@ empty and waits for the token. TOKEN (Q, T): This message to denote the
Ts: Process Prequests the critical section, it increasespermission to enter the critical section.

its logical time R[2] by one, appends (2,,/2]) to

its waiting queue @ sends “REQ ()" to others  Algorithm: We define the concatenation operator “*”

processes, sets,@® empty and waits for the token. as follows: the operator “*” merges the waiting
Te: Process Preceives the request from.RProcess P received Q and local @and we denote it by “Q*Q

holds the token, but it uses it. The process PWe consider the two following cases:

401

Qi Waiting Fifo queue of (j, jopwhere j is the
process Pand his the timestamp request.

HT;: Boolean true if process Rolds the token, false
otherwise. Initially one process holds the token.

INCS;: Boolean true if process;Rs in the critical
section and false otherwise.

Next: Pointer denotes the next process to which, the
token will be sent.

Messages of the algorithmWe consider two kinds of
messages exchanged between processes:
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When a process ;Preceives waiting queue Q
attached to token message, it deletes fromalQ
obsolete messages. For all (k,eh) such than (k,
h’) e Q;, remove (k, h) from Q

When a process ;Preceives waiting queue Q

its critical section. When a process Rleases its
critical section, it sends the token to only onguessting
process at the head in the waiting queye Q

Lemma: For all i, je [1... n], R[] < T[i] +1 is an

attached to request message, it deletes from Q ari@variant.

Q all obsolete messages
Rule;: P; requests the critical section

If (HT;=False) Then
R[] « R[] +1
Q < Q*(i, Ri[i])
For all k Send REQ (®To R
Q«I[l]
EndIf

Rule,: P; receives REQ (Q)

Q — Q*Q
For all ke O R[K] < max (R[], R[K])
Ri[i] « max (R[K])

Rules: P; receives TOKEN (Q, T)

HT; « True

For all k R[K] « max (R[K], T[K])
Q< Q*Q

INCS « True

Rule,: P; releases the critical section

INCS « False

T[i] « Ri[i]

Next «— Head (Q

If (Next # Nil) Then
HT, < False
Q <— Remove(Head (Q)
SendTOKEN (Q, T) To Next
Next «— Nil
Q[]

Endlf

RESULTS
Correctness and proof of the algorithm;
Theorem: The algorithm based on causal ordering

ensures the mutual exclusion.

Proof: To show that the algorithm achieves mutual

Proof: Initially the property is true. We suppose the
contrary, Hi] > T[i]+1 — Ry[i] - T[i] > 1, that implies
than the process; Ras sent several requests before the
token. This is impossible because every processatan
send a new request until it receives the token.

Lemma: For all ie 0<|Q| < n is invariant.

Proof: Initially the property is true. We suppose the
contrary, |Q)] > n. That is the file Qcontains two
couples at least (k, B Q and (k, h")e Q. Therefore,
they must have k< h’ or h’ < h, by examining
algorithm, this is impossible.

Let Q be a waiting queue of process holding the
token.

Lemma: All requests in waiting queue Q respect the
causal ordering.

Proof: When a process; Peceives a request REQ (Q)
message from another processitdeletes from Q all
obsolete requests and appends Q to \@hen the
process requests the critical section, it incredtes
vector timestamp by one, appends its request atritle
of waiting queue Q sends the request REQ; @ all
other processes.

The processes holding the token will receive eithe
the request REQ (Q) from, Br a request “REQ ({2
from R. In both cases, the processwill receive the
token before process.P

Theorem: If process Prequests the critical section
before process jPthen process jPenters its critical
section before P

Proof: The causal ordering between two requests is not
guaranteed, if for any two requests req {i,—h req (j,

h), the process;Receives the token before process P
We examine two cases: in the first case, the psoBes
receives the request req (Q) from process tRs
request is put in the waiting queug @fter B requests
the critical section, puts its request at the en@;@fter

the request req (i,)hand we have;ix h. In the second

exclusion, we have to show two or more processes ca&ase, we assume that there is a procgssuéh as it

never be executing critical section simultaneously!

Initially, only the process holding the token canteg in
402

receives the requests req;,(@) and req (Q h) from R
and R respectively. The process, Boncatenates the
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two files into its local waiting queue,@vhich contains 8.
the request of iefore that of P

DISCUSSION

9.

The new algorithm for distributed mutual exclusion

can be used in several applications which requiee t
causal ordering. Other algorithms can be transfdrme
according to the same principle.

CONCLUSION

10.

In this study, we have presented a Distributed

Mutual Exclusion algorithm based on causal ordering
The causal ordering is guaranteed between requiats.
process Prequests the critical section before a proces41.
P, then the process; Rvill enter its critical section
before the process .PThe number of messages
necessary to satisfy each request is 0 when a ggoce
holds the token and n in the other case.
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