
Journal of Computer Science 5 (5): 398-404, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Ousmane Thiare, Department of Computer Science Gaston Berger University,
 UFR/SAT BP. 234 Saint-Louis Senegal

398

Distributed Mutual Exclusion Based on Causal Ordering

Mohamed Naimi and Ousmane Thiare

Department of Computer Science, University of Cergy-Pontoise,
2, Avenue Adolphe Chauvin 95000 Cergy-Pontoise France

Abstract: Problem statement: Causality among events, more formally the causal ordering relation, is
a powerful tool for analyzing and drawing inferences about distributed systems. The knowledge of the
causal ordering relation between processes helps designers and the system itself solve a variety of
problems in distributed systems. In distributed algorithms design, such knowledge helped ensure
fairness and liveness in distributed algorithms, maintained consistent in distributed databases and
helped design deadlock-detection algorithm. It also helped to build a checkpoint in failure recovery and
detect data inconsistencies in replicated distributed databases. Approach: In this study, we implemented
the causal ordering in Suzuki-Kasami’s token based algorithm in distributed systems. Suzuki-Kasami’s
token based algorithm in distributed algorithm that realized mutual exclusion among n processes. Two
files sequence numbers were used one to compute the number of requests sent and the other to compute
the number of entering in critical section. Results: The causal ordering was guaranteed between requests.
If a process Pi requested the critical section before a process Pj, then the process Pi will enter its critical
section before the process Pj. Conclusion: The algorithm presented here, assumes that if a request req
was sent before a request req’s, then the request req will be satisfied before req’s.

Key words: Causal ordering, distributed mutual exclusion, consistent distributed database

INTRODUCTION

 The mutual exclusion problem states that only a
single process can be allowed access in its Critical
Section (CS). Hence, the mutual exclusion problem
plays an important role in the design of computer
systems. Several distributed algorithms are proposed to
solve this problem in distributed systems and based on
asynchronous messages passing and without global
clock. Distributed mutual exclusion can be divided into
two groups: Permission-based algorithms and token-
based algorithms.
 In the first class Permission-Based
Algorithms[2,8,10,16,19,20], where all involved processes
vote to select one which receives the permission to
access the CS. Lamport[8] was the first to design a fully
distributed permission based mutual exclusion
algorithm using logical timestamps. In his algorithm,
each request se is the entire distributed system. Then, if
n is the number of processes in the distributed system,
the algorithm requires (n-1) request, (n-1) reply and (n-
1) releases. The algorithm requires 3(n-1) messages per
critical section execution. Ricart and Agrawala[18] have
reduced the number of messages in Lamport’s
algorithm to 2(n-1). Carvalho and Roucairol’s
algorithm[2] has further improved the number of

messages in Ricart and Agrawala’s algorithm by
avoiding some unnecessary request and reply messages.
They have shown that the number of messages
exchanged in their algorithm is between 0 and 2(n-1).
In[10], Maekawa uses the quorum principle to solve the
distributed mutual exclusion and reduces the number of
messages from O(n) to O(√n).
 In the second class, token-based
algorithms[1,3,4,13-16,21-24], in which only one process
holding a special message called the token, may enter
the critical section. The dynamical spanning tree is
presented in[22,23] to ensure the mutual exclusion. The
reversal path permits to reduce the number of messages
to log(n)[6,7,9,12], where n is the number of processes in
the network. The performance metrics of the mutual
exclusion algorithms are: The average number of
messages necessary per critical section invocation, the
response time, the fault tolerance. The mutual exclusion
algorithm should be starvation-free and fairness.

MATERIALS AND METHODS

Definition of Causality: Causal ordering of events in a
distributed system is based on the well-known
“happened before” relation noted →[8]. The “happened

J. Computer Sci., 5 (5):398-404, 2009

399

before” relation → defined by Lamport is defined by
the following three rules:

• If a and b are events in the same process and a

comes before b, then a → b
• If a is the sending of a message by one process and

b is the receipt of the same message by another
process, then a → b

• If a → b and b → c, then a → c

 Note that → is ir-reflexive, asymmetric and
transitive, i.e., it is a strict partial order. The → relation
is also referred to as the causality relation in[8].
 Lamport describes a mechanism for total ordering
of events in a distributed system. It is based on logical
clocks and requires each site to have at least one
message from every other site in the system. Causal
ordering is a weaker ordering than total ordering.
Causal ordering of the events a and b means that every
recipient of both a and b receive message a before
message b. Since there is no global clock in distributed
systems, information is added to the messages to
indicate the knowledge of other messages in the system
that were sent before it. A message is said to depend
upon other messages in the system that were sent before
it and a message cannot be delivered until all messages
that it depends upon have been delivered. The transitive
closure of this relation denotes the “transitive
dependencies” or “dependency chain”. A convenient
way to visualize distributed computations is with time
diagram. Figure 1 shows an example for a system
comprising three processes. A directed line symbolizes
the progress of each process.
 On Fig. 1, the causal ordering is not guaranteed.
Message m1 is sent before message m2, but the process
P3 receives the message m2 before m1:

e11 → e21 → e22 → e32 → e33

 From e11 → e21 → e22, we deduce that e33 → e22.
The events e22 → e31 → e32 → e23 and e32 → e12 → e13.
From e22 → e31 → e32, we deduce that e13 → e12.

Fig. 1: The causal ordering is not guaranteed

 On Fig. 2, a request is sent to P1 to all other at e11.
This request is received and stored by P2 (e21) and
received by P3 (e33). When process P2 requests the
critical section, it sends all waiting requests stored in its
fifo queue (the request of P1 is placed before the request
of P2). Process P3 holds the token and receives a request
from P2 (e31). The process P3 sends the token to process
P1 and not to process P2.

Logical time approaches: In the literature, two types
of causal ordering protocols were found: Logical clock
based and physical clock based. By far, the majority of
work on causal ordering protocols has been done in the
logical clock domain. In fact, only one protocol based
on physical clocks was uncovered. Therefore, this study
surveys the logical clock mechanisms. In order to
describe the protocols, a definition for logical clock
must be given.
 As defined by Lamport in[8], a clock is away of
assigning a number to an event where the number is the
time at which the event occurred. Since the clock has
no relation to physical time, it is called a logical clock
Hi. Counters can implement logical clocks with no
actual timing mechanism. A logical clock is correct if it
observes the following clock condition: if an event a
occurs before another event b, then a should happen at
an earlier time than b. In other words for any event a
and b: If a → b then H(a) < H(b).
 To guarantee that the system of clocks satisfies the
clock condition, the following implementation rules are
followed:

• Each process Pi increments Hi between any two

successive events
• if event a is the sending of a message m by

process Pi, then the message m contains a
timestamp Tm = Hi(a)

• Upon receiving a message m, process Pj sets
Hj as max(Tm, Hj)

Vectors timestamps: The causal history approach can
be improved by observing that for each processor, the
causal history is sufficiently characterized by the
largest index among its members, i.e., its cardinality.

Fig. 2: Mutual exclusion without causal ordering

J. Computer Sci., 5 (5):398-404, 2009

400

Thus, the causal history can be uniquely represented by
an n-dimensional vector V of integers. A definition for
vector time is given in[11]. The vector time Vi of a
process Pi is maintained according to the following
rules:

• V i[k] ← 0, for k = 1,…, n processes
• On each internal event e, process Pi increments Vi

as follows: Vi[i] ← Vi[i]+1
• On sending message m, Pi updates Vi as in the

second point and attaches the new vector to m
• On receiving a message m with attached vector

time V, Pi increments Vi as in the second point.
Next Pi updates its current Vi as follows: Vi[k] ←
max (Vi, V)

 Since there is a correspondence between vector
time and causal history, we can determine causal
relationships between events by analyzing the vector
timestamps of the event in question.

Fidge-Mattern protocol: The protocol refers two
protocols by Fidge[5] and Mattern[11] that are similar.
This protocol uses a vector of logical clocks to
implement causal ordering[17]. In this algorithm, every
process maintains a natural number to represent their
local clocks. Each process initializes its local clock to 0
and increments it at least once before performing each
event. When processes send and receive messages, they
pass on whatever local clock information they have to
each other. Hence, each process maintains its own local
clock information and also whatever local clock
information of the other processes it can obtain from
received messages. The logical time is defined by a
vector of length n, where n is the number of sites in the
system. The logical time vector is noted Vi, which
represents the logical time on site process Pi and V for
the timestamp of message m. The logical time of a site
evolves in the following way:

• When a local event occurs at process Pi, the ith entry

to the vector Vi is incremented by one: Vi[i] ←
V i[i]+1

• When a site Si receives a message m, timestamp V,
the rules states:
• For j=i, Vi[j] ←V i[i]+1
• For j≠i, V i[j] ← max(Vi[j], V[j])

 As stated in the discussion on vector clocks, the
major drawback of this protocol is the size of the time
vectors. If the number of processors is large, the
amount of timestamp data that has to be attached to
each message is unacceptable.

Suzuki-Kasami’s algorithm: The algorithm is
presented in[21]. A process holding the token is allowed
to enter into the critical section. A single process has the
privilege and a node requesting critical section
broadcasts a request message to all the other nodes. A
process sends the privilege if the toke is idle with the site.
The site having token can continuously enter critical
section until it sends the token to some other site. The
request message has the format request (j, hj), which
means site j is requesting its critical section. Each node
maintains an array RN of size N for recording latest
sequence number receives from each of the other nodes.
The TOKEN message has the format TOKEN (LN),
where LN is an array of size N where LN[j] is the latest
critical section executed by a node j. if RN[j] = LN[j]+1,
it means that a node j has sent a request for its new
sequence of critical section and the node having the
privilege adds this to the queue and if token is idle, the
node sends the TOKEN (LN) to the node requesting
critical section. The number of messages per critical
section entry is (N-1) REQUEST messages plus one
TOKEN message so N messages in all or 0 if the node
having the token wants to enter critical section.

• When done with the critical section, process Pi sets

LN i[i] = RNi[i]
• For every process Pj it appends Pj in waiting queue

if RNi[j] = LN i[j]+1
• If the waiting queue is not empty, it extracts the

process at the head of the waiting queue and sends
the token to that process

Suzuki-Kasami’s algorithm based on causal
ordering:
Concurrent requests: Let Ri and Rj are two vectors of
two processes Pi and Pj respectively.

Definition: For any two time vectors Ri and Rj:

Ri ≤ Rj iff R i ≤ Rj and it exists k such as Ri[k] < Rj[k]
Ri < Rj iff R i ≤ Rj and it exists k such as Ri[k] < Rj[k]
Ri || Rj iff ¬ (Ri < Rj) and ¬ (Rj < Ri)

Principle: To implement the causal ordering, we use,
for every process Pi the vector timestamp Ri where
Ri[k] is the last request time sent by process Pk and
received by Pi. The new requests received by process Pi
are stored in a waiting local queue Qi.
 When a process Pi holding the token, requests the
critical section, it enters its critical section without
sending the message. In another way, it increases Ri[i]
by one, appends (i, Ri[i]) to Qi, sends the request “REQ
(Qi)” to all other processes, sets Qi to empty and waits
for the token.

J. Computer Sci., 5 (5):398-404, 2009

401

Fig. 3: Mutual exclusion with causal ordering

 When a process Pj receives a request “REQ (Q)”
from another process, Pi removes from all queues Qi
and Q the obsolete request and appends Q to Qi to
obtain by merging a queue Qi. A process Pi holding the
idle token, sends it to the head of its waiting local queue
Qi and sets Qi to empty.

Approach:
Example: In Fig. 3 we consider a distributed system
{P1, P2, P3, P4}, the process P3 holds the token. We
consider the following scenario:

T0: The process P3 requests the critical section and

enters its critical section, without sending the
request message.

T1: Process P1 requests the critical section, it increases
its logical time Ri[i] by one, appends (1, R1[1]) to
its waiting queue Q1, sends “REQ (Q1)” to others
processes, sets Q1 to empty and waits for the token.

T2: Process P2 receives the request “REQ (Q)” from P1.
The process P2 deletes from Q2 and Q the obsolete
request, afterwards, it appends Q to Q2.

T3: Process P4 receives the request “REQ (Q)” from P1.
The process P4 deletes from Q4 and Q the obsolete
request, afterwards, it appends Q to Q4.

 R1=(1,0,0,0), R2=(1,1,0,0), R4=(1,0,0,1), R1< R2
and R1< R4 but we have R2 || R4.

T4: Process P4 requests the critical section, it increases
its logical time R4[4] by one, appends (4, V4[4]) to
its waiting queue Q4, sends “REQ (Q4)” to others
processes, sets Q4 to empty and waits for the token.

T5: Process P2 requests the critical section, it increases
its logical time R2[2] by one, appends (2, V2[2]) to
its waiting queue Q2, sends “REQ (Q2)” to others
processes, sets Q2 to empty and waits for the token.

T6: Process P3 receives the request from P2. Process P3
holds the token, but it uses it. The process P3

deletes from Q the obsolete requests; afterwards, it
appends Q to Q4. Q4= {(1, 1), (2, 2)}.

T7: Process P1 receives the request from P4. The
process P1 deletes from Q the obsolete requests;
afterwards, it appends Q to Q1. Q1= {(4, 2)}.

T8: The process P3 releases the critical section, sends
the token message “TOKEN (Q4)” to the head of
Q4 and sets Q4 to empty.

T9: Process P1 receives the request from P2. The
process P1 deletes from Q the obsolete requests;
afterwards, it appends Q to Q1. Q1= {(4, 2), (2, 2)}.

T10: Process P1 receives the token message “TOKEN
(Q)” from P3. The process P1 deletes from Q1 the
obsolete requests, afterwards, it append P1 to Q.

 Q1= {(4, 2), (2, 2)}. When the process P1 releases
its critical section, it sends the token to the process
P4.

Definition: A request with timestamp (i, h) is said
obsolete if for all k, we have (h≤ Rk[i]) or (h≤ T[i]),
where Rk[i] and T[i] are the vector timestamps of
requesting and entering the critical section by process
Pi.

Local variable at process P:

Ri: Vector of timestamps where Ri[i] denotes the

last timestamp of requesting critical section by
process Pi.

T: Vector of timestamps where T[i] denotes the
last timestamp critical section execution by
process Pi.

Qi: Waiting Fifo queue of (j, hj) where j is the
process Pj and hj is the timestamp request.

HT i: Boolean true if process Pi holds the token, false
otherwise. Initially one process holds the token.

InCSi: Boolean true if process Pi is in the critical
section and false otherwise.

Nexti: Pointer denotes the next process to which, the
token will be sent.

Messages of the algorithm: We consider two kinds of
messages exchanged between processes:

REQ (Q): This message is sent to all others process to
obtain the token.

TOKEN (Q, T): This message to denote the
permission to enter the critical section.

Algorithm: We define the concatenation operator “*”
as follows: the operator “*” merges the waiting
received Q and local Qi and we denote it by “Q*Qi”.
We consider the two following cases:

J. Computer Sci., 5 (5):398-404, 2009

402

• When a process Pi receives waiting queue Q
attached to token message, it deletes from Qi all
obsolete messages. For all (k, h) є Q such than (k,
h’) є Qi, remove (k, h) from Qi

• When a process Pi receives waiting queue Q
attached to request message, it deletes from Q and
Qi all obsolete messages

Rule1: Pi requests the critical section

 If (HT i=False) Then
 Ri[i] ← Ri[i] +1
 Qi ← Qi*(i, R i[i])
 For all k Send REQ (Qi) To Pk
 Qi ← []
 EndIf

Rule2: Pi receives REQ (Q)

 Qi ← Qi*Q
 For all k є Qi Ri[k] ← max (Ri[k], R[k])
 Ri[i] ← max (Ri[k])

Rule3: Pi receives TOKEN (Q, T)

 HTi ← True
 For all k Ri[k] ← max (Ri[k], T[k])
 Qi ← Qi*Q
 InCSi ← True

Rule4: Pi releases the critical section

 InCSi ← False
 T[i] ← Ri[i]
 Nexti ← Head (Qi)
 If (Nexti ≠ Nil) Then
 HTi ← False
 Qi ← Remove (Head (Qi))
 Send TOKEN (Qi, T) To Nexti
 Nexti ← Nil
 Qi ← []
 EndIf

 RESULTS

Correctness and proof of the algorithm:
Theorem: The algorithm based on causal ordering
ensures the mutual exclusion.

Proof: To show that the algorithm achieves mutual
exclusion, we have to show two or more processes can
never be executing critical section simultaneously.
Initially, only the process holding the token can enter in

its critical section. When a process Pi releases its
critical section, it sends the token to only one requesting
process at the head in the waiting queue Qi.

Lemma: For all i, j є [1... n], Ri[i] ≤ T[i] +1 is an
invariant.

Proof: Initially the property is true. We suppose the
contrary, Ri[i] > T[i]+1→ Ri[i] - T[i] > 1, that implies
than the process Pi has sent several requests before the
token. This is impossible because every process cannot
send a new request until it receives the token.

Lemma: For all i є 0 ≤ |Qi| ≤ n is invariant.

Proof: Initially the property is true. We suppose the
contrary, |Qi| > n. That is the file Qi contains two
couples at least (k, h) є Qi and (k, h’) є Qi. Therefore,
they must have h ≤ h’ or h’ ≤ h, by examining
algorithm, this is impossible.
 Let Q be a waiting queue of process holding the
token.

Lemma: All requests in waiting queue Q respect the
causal ordering.

Proof: When a process Pj receives a request REQ (Q)
message from another process Pi, it deletes from Q all
obsolete requests and appends Q to Qj. When the
process requests the critical section, it increases its
vector timestamp by one, appends its request at the end
of waiting queue Qi, sends the request REQ (Qi) to all
other processes.
 The processes holding the token will receive either
the request REQ (Q) from Pj or a request “REQ (Qi)”
from Pi. In both cases, the process Pj will receive the
token before process Pi.

Theorem: If process Pi requests the critical section
before process Pj, then process Pi enters its critical
section before Pj.

Proof: The causal ordering between two requests is not
guaranteed, if for any two requests req (i, hi) → req (j,
hj), the process Pj receives the token before process Pi.
We examine two cases: in the first case, the process Pj
receives the request req (Q) from process Pi, this
request is put in the waiting queue Qj. After Pj requests
the critical section, puts its request at the end of Qj after
the request req (i, hi) and we have hi < hj. In the second
case, we assume that there is a process Pk such as it
receives the requests req (Qi, hi) and req (Qj, hj) from Pi
and Pj respectively. The process Pk concatenates the

J. Computer Sci., 5 (5):398-404, 2009

403

two files into its local waiting queue Qk which contains
the request of Pi before that of Pj.

DISCUSSION

 The new algorithm for distributed mutual exclusion
can be used in several applications which require the
causal ordering. Other algorithms can be transformed,
according to the same principle.

CONCLUSION

 In this study, we have presented a Distributed
Mutual Exclusion algorithm based on causal ordering.
The causal ordering is guaranteed between requests. If a
process Pi requests the critical section before a process
Pj, then the process Pi will enter its critical section
before the process Pj. The number of messages
necessary to satisfy each request is 0 when a process
holds the token and n in the other case.

REFERENCES

1. Bernabeu, Auban, J. and M. Ahamad, 1989.

Applying a path-compression technique to obtain
an efficient distributed mutual exclusion algorithm.
Lecture Notes Comput. Sci., 392: 33-44. DOI:

10.1007/3-540-51687-5
2. Carvalho, O. and G. Roucairol, 1983. On mutual

exclusion in computer networks. CACM., 26: 146-147.
3. Chang, Y.I., 1996. A Dynamic request based

algorithm for mutual exclusion in distributed
systems. Operat. Syst. Rev., 30: 52-62.
http://cat.inist.fr/?aModele=afficheN&cpsidt=3062
377

4. Chang, Y.I., M. Singhal and T. Liu, 1991. A
dynamic token-based distributed mutual exclusion
algorithm. Proceeding of the 10th International
Conference on Computers and Communications,
Mar. 27-30, IEEE Xplore Press, Scottsdale,
Arizona, USA., pp: 240-246. DOI:
10.1109/PCCC.1991.113817

5. Fidge, C., 1991. Logical time in distributed
computing systems. Computer, 24: 28-33. DOI:
10.1109/2.84874

6. Ginat, D, Sleatord, D and R.E. Tarjan, 2003. A
tight amortized bound for path reversal. Inform.
Process. Lett., 31: 3-5.
http://portal.acm.org/citation.cfm?id=63829

7. Giorgetti, A., 2003. An asymptotic study for path
reversal Theor. Comput. Sci., 299: 585-602.
http://portal.acm.org/citation.cfm?id=782770

8. Lamport, L., 1978. Time, clock and the ordering of
events in distributed system. Commun. ACM.,
21: 558-565.

 http://portal.acm.org/citation.cfm?id=359563
9. Lavault, C., 1992. Analysis of an efficient

distributed algorithm for mutual exclusion:
Average-case analysis of path reversal. Proceedings
of the 2nd Joint International Conference on Vector
and Parallel Processing, Sept. 1-4, Springer-
Verlag,London, UK., pp: 133-144.
http://portal.acm.org/citation.cfm?id=703065

10. Maekawa, M., 1985. A √n algorithm for mutual
exclusion in decentralized systems. ACM. Trans.
Comput. Syst., 3: 145-159.
http://portal.acm.org/citation.cfm?id=214445

11. Mattern, F., 1989. Virtual time and global states on
distributed systems. Proceeding of the International
Conference on Parallel and Distributed Computing,
(ICPDC’89), North-Holland, pp: 215-226.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.47.7435

12. Naimi, M., M. Trehel and A. Arnold, 1996. A
log(n) distributed mutual exclusion algorithm based
on path reversal. J. Parall. Distribut. Comput., 34: 1-13.

http://cat.inist.fr/?aModele=afficheN&cpsidt=3076
194

13. Naimi, M. and M. Trehel, 1987. How to detect a
failure and regenerate the token in the log(n)
distributed mutual exclusion? Lecture Notes
Comput. Sci., 312: 155-166.
http://portal.acm.org/citation.cfm?id=674994

14. Neilson, M.L. and M. Mizuno, 1991. A dag based
algorithm for distributed mutual exclusion.
Proceeding of the 11th IEEE International
Conference on Distributed Computer Systems,
May 20-24, IEEE Xplore Press, Dallas, pp: 354-360.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=148689

15. Perez, J., 2004. Extending distributed mutual
exclusion algorithms to support multithreading.
PhD Thesis, Universidad Catolica de Chili.
http://ing.utalca.cl/~jperez/papers/perez_issads05.pdf

16. Raynal, M. and M. Singhal, 1996. Logical time:
Capturing causality in distributed systems.
Computer, 29: 49-56. DOI: 10.1109/2.485846

17. Raynal, M., 1991. A simple taxonomy of
distributed mutual exclusion algorithms. ACM
Operat. Syst. Rev., 25: 47-50.
http://portal.acm.org/citation.cfm?id=122123

18. Ricart, G. and A.K. Agrawala, 1981. An optimal
algorithm for mutual exclusion in computer
networks. Commun. ACM., 24: 9-17.
http://portal.acm.org/citation.cfm?id=358537

J. Computer Sci., 5 (5):398-404, 2009

404

19. Saxena, P.C and J. Rai, 2005. A survey of
permission-based distributed mutual exclusion
algorithms. Comput. Stand. Interfaces, 24: 159-181.

 http://portal.acm.org/citation.cfm?id=780794
20. Singhal, M., 1993. A taxonomy of distributed

mutual exclusion. Journal of Parallel and
Distributed Computing, 18: 94-101.

 http://portal.acm.org/citation.cfm?id=167558
21. Suzuki, I. and Kasami, T. 1982. An optimality

theory for mutual exclusion algorithms in computer
networks. Proceedings of the 3rd Conference on
distributed Computing Systems, Oct. 1982, Miami,
pp: 365-370.

22. Trehel, M. and Naimi, M. 1987. Un algorithme
distribue d’exclusion mutuelle en log(n). TSI., 6:
141-150.

23. Trehel, M and Naimi, M. 1987. A distributed
algorithm for mutual exclusion based on data
structures and fault tolerance. Proceeding of the 6th
Annual International Phoenix Conference on
Computer Communications, Scottsdale, Arizona,
USA., pp: 35-39.

24. Van De Snepsheut, J.L.A., 1987. Fair mutual
exclusion on a graph of processes. Distribut.
Comput., 2: 113-115.
http://www.springerlink.com/content/r73257l1r254
6213/

