
Journal of Computer Science 5 (4): 283-289, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Ahmad M. Sarhan, Department of Computer Engineering, University of Jordan, P.O. Box 17966,
Amman-11195, Jordan

283

 Real-Time Connect 4 Game Using Artificial Intelligence

1Ahmad M. Sarhan, 2Adnan Shaout and 2Michele Shock

1Department of Computer Engineering,
University of Jordan, P.O. Box 17966, Amman-11195, Jordan

2Department of Electrical and Computer Engineering,
University of Michigan-Dearborn, USA

Abstract: Problem statement: The study presented a design that converted connect 4 game into a
real-time game by incorporating time restraints. Approach: The design used Artificial Intelligence
(AI) in implementing the connect 4 game. The AI for this game was based on influence mapping.
Results: A waterfall-based AI software was developed for a Connect 4 game. Conclusion: A real time
connect 4 game was successfully designed and implanted with GUI using C++ programming language.

Key words: Real-time system, connect 4 game, search techniques, AI techniques, influence mapping

INTRODUCTION

 Connect 4 was first published by Milton[1]. The
waterfall model was used in the creation of the
software[2]. The concept of the Connect 4 game is to
get, before your opponent, four chips in a row, arranged
either diagonally, vertically, or horizontally.
 There are many ways to solve the Connect 4 game.
There are several levels of AI difficulty as in[3]. They
are the random, defensive and aggressive AI. Random,
as the name implies, randomly picks a play and is the
easiest to beat. Defensive AI makes blocking a win a
priority, while aggressive AI makes winning a priority.
Both are harder to beat than the random AI.
 Solution algorithms for AI are numerous and can
be complex. Some that were considered are minimax,
minimax with alpha-beta pruning, A* and influence
maps. Minimax is a recursive tree that uses
backtracking to find the optimal move and is the
hardest to beat[3-5]. The opponents are referred to as
MIN and MAX. MIN tries to minimize MAX’s score
and MAX tries to maximize his score[6]. The algorithm
then uses this rule and looks several moves ahead for
the best move possible. Minimax may be the best way
of getting the optimal move, but it requires a lot of
processing, so pruning methods are used[5]. The pruning
method that was considered is the alpha-beta method.
Since minimax looks at all possible plays including
ones that can be ignored, alpha-beta pruning is used to
improve the efficiency of the minimax algorithm[6]. It
scores the possible plays and if it is at a MAX node, it
only looks down the branches that have a score greater

than or equal to that of the MAX node. Furthermore, if
it’s a MIN node, it looks for a score that is less than or
equal to the MIN node[6]. Even with these pruning
methods found in[4-6], this type of AI is too complex.
The A* algorithm was also looked at. A* is a best first
search that combines the path cost from the start to the
current and the estimated cost from the current to the
end of the cheapest path[7]. The A* algorithm may not
be a fit for this real time game because the A*
algorithm may not meet the game deadline.
 The game has been solved by Allen, using a brute-
force approach[9]. Using a knowledge-based approach,
the game has also been solved by Uiterwijk et al.[10] and
by Allis in his Master's thesis[11].
 In[11], Allis wrote a program called VICTOR. In
combination with conspiracy-number search, search
tables and depth-first search, VICTOR was able to
show that White can win on the standard 7�6 board. It
was also shown that, by using a database of
approximately half a million positions, VICTOR can
play real time against opponents on the 7�6 board,
always winning with White.
 VICTOR is very similar to Velena, which was
designed by Bertoletti and was based on eight
mathematical rules[12]. Velena is a Shannon-C type
expert system written to play Connect 4. Allis also
showed that the game is a first player win. Velena is
always able to win if she plays first[10].
 A neural-network approach to the game was
designed by Schneider et al.[13]. The system employed
the multilayer perceptron architecture which learns
through the supervised backpropagation algorithm. The

J. Computer Sci., 5 (4): 283-289, 2009

284

required knowledge for training was obtained from
saved games.
 This game was implemented as a real-time game
by Shaout and Shock[14]. The program was written in C
using LabWindows/CVI by National Instruments. It
was written for a windows environment. It was a
2 player game and had a 5 sec timer for play. The plays
were made on an interactive GUI. The current player
was displayed on the top of the GUI. Once the current
player makes a play, the chip is placed in that column
within 1 sec. When the chip is in place, the timer is
reset. When the timer expires, the current player loses
his/her turn. In[14], the computer player was not
implemented, however.

MATERIALS AND METHODS

 The algorithm used in this study is based on using
heuristics with influence mapping that is seen in[8]. This
was chosen because it is the method that fits in with the
original code for the game. It is a greedy algorithm and
may not return the optimal move, but it meets the
requirements of the system without too much overhead.
In[8], there are influence maps and heuristics of Tic-Tac-
Toe and Pente, a larger scale Tic-Tac-Toe. These
methods look at and evaluate the entire board, whereas
in Connect 4, only the top available spot in each
column needs to be looked at. The algorithm used in
this study uses the basics from[8], transforms them into
use for Connect 4 and integrates the aggressive,
defensive and random AI from[5].
 The layout is a grid of six rows by seven
columns[1]. This layout is shown in Fig. 1 and the
original design flow is shown in Fig. 2. When it is the
player’s turn to play, he will click on one of the boxes

Fig. 1: Board layout

above the circle LEDs to select the column for chip
placement. The chip will then be placed at the bottom
of the chosen column. After each play, the program
checks for a winner or a tie.
 The program starts with the screen shown in
Fig. 3. This screen gives the player (s) a choice of one
player, two players, or to quit the game.
 Fig. 4 shows the flow of start and difficulty
screens. The program allows the players to choose to
have a timer or not to have one.

Fig. 2: Original software design flow chart

Fig. 3: Start screen

J. Computer Sci., 5 (4): 283-289, 2009

285

Fig. 4: Software flow of start and difficulty screens

Fig. 5: Two player difficulty screen

 Figure 5 shows the difficulty choice screen and
Fig. 6 and 7 show the flow of the Easy and Hard modes,
respectively. The easy level has no timer and allows for
a more leisurely game. In this mode, the timer is
invisible and disabled. The program will wait until the
current player makes a move or selects quit. After a
play is made, it checks if that player has won or caused
a tie
 The hard level, on the other hand, initiates the
timer and makes it visible to the players. It plays the
same as the two player easy mode except for the lost
turn when the timer expires.
 The one-player game has three levels to
choose from. The difficulty screen for the one-player
option is shown in Fig. 8. It allows the player to
choose from an easy, medium and hard levels. The
Easy mode has an AI that is easier to beat. The
Medium mode includes the AI from the easy level and
is modified, as shown in Fig. 9, making it harder to beat.

Fig. 6: Software flow for two player easy mode

Fig. 7: Software flow for two player hard mode

J. Computer Sci., 5 (4): 283-289, 2009

286

Fig. 8: One player difficulty screen

Fig. 9: Software flow for the one player easy/medium

mode

The Hard level has the same AI as in the Medium level,
in addition to a timer to step-up the skill level needed to
beat the computer, as shown in Fig. 10.
 All of the difficulty levels have the same algorithm
to score the possible moves. There are only seven
possible moves, the bottom spot available for each
column.
 The score is stored in a double array and it keeps
track of both the computer player’s score and the
human player’s score for each available move.

Fig. 10: Software flow for one player hard mode

 It starts by looking at the horizontal direction for
the move it is scoring. It examines the space to the left
of the move (as long as the spot is on the board, it does
not check spots that are off the board) and sees if the
player it is scoring has a chip there. If that player has a
chip there, the count is increased. It continues to count
until either the space is not occupied for the player
being scored or it reaches the end of the board. It then
looks to the right and does the same thing.
 For example, while scoring the computer player,
the move it is examining has a chip to the left that is the
computer's and a chip to the right that is the human
player's. It sees the chip on the left and increases the
count to 1. It then looks another space to the left and
sees it empty and stops looking left. It then looks right
and sees that the other player has a chip there, so it
stops looking to the right. The score for this move is 1.
Scoring is then done in the vertical direction. Each
possible move looks down until it hits the other players
chip or the bottom of the board. If the score for this
column is higher than the score for the horizontal
direction, the horizontal score is replaced with the
vertical score.
 The moves are then scored in the left and right
diagonal directions. The scoring algorithm checks down
and up the diagonal for the number of chips in a row that
are connected to that move until they hit the other
player's chip, an empty space, or the end of the board.

J. Computer Sci., 5 (4): 283-289, 2009

287

 The AI for the easy level starts with an aggressive
move. It takes the scores for the computer and checks if
there is a score of 3 or more, which would be a win the
game. If there is a score of 3, it picks that column. If
there is no move, it makes a defensive move by looking
at the score of the player to see if they have a score of 3
or more. If neither the computer nor the player has a
score of 3 or more, a random column is selected.
 The medium level is built off the easy level. Like
the easy level, it first looks for the computer or the
player to have a score of 3 or more. If a move is not
found yet, the AI will make another aggressive move by
looking to see if the computer has a score of 2
anywhere. This will allow the computer to get closer to
a win and force the player to block instead of working
toward a win. If that move does not exist, it will then
play another defensive move by blocking the 2 in a row
that the player has. Finally, if neither player has 2 in a
row, a random column is chosen. Fig. 9 shows the
software flow for the easy and the medium levels.
 Picking the hard level gives you the same AI that
the medium level has. What makes it harder is that a 5
sec timer is added. The player has 5 sec to make a play
after the computer plays. This requires quick thinking
in order to beat the computer.
 A delay was added for the computer player so that
the move could be seen easily by the human player.
Fig. 10 shows the software flow for the hard level.

RESULTS

 The improvements in this version of the game over
the older version[14] include the following new
additions:

� Timer: In this version, the timer is made an option

whereas in the old program, the timer was always
activated

� Computer player AI: There is now a choice
between one and two players, whereas the old
version was just a two-player game

 Implementing these changes required the addition
of two new screens and updating the start screen. The
start screen now has two buttons that start the game
(Fig. 3), instead of one. Figure 5 and 8 are new screens
added to implement the difficulty levels and the timer.

DISCUSSION

 The game was implemented using C++ running on
Windows platform. A brief description of the functions
used to compose the program is shown in Table 1.

Table 1: Description of the Main Functions
Function name Operation
Initialize variable () Initialize global variables that are constant
Pick best play () AI for computer player. Allows for the program
 to pick column for different difficulty levels
Horiz score () Used only with the computer player, scores the
 computer and player in the horizontal direction
 to find the best move
 Vert score () Used only with the computer player, scores the
 computer and player in vertical direction to
 the best move
Left diag score () Used only with the computer player, scores the
 computer and player in left diagonal direction
 to find the best move
Right diag score () Used only with the computer player, scores the
 computer and player in right diagonal direction
 to find the best move
Change player () Switches the current player
Is horiz win () Returns 1 if there is 4 in a row in the horizontal
 direction
Is vert win () Returns 1 if there is 4 in a row in the vertical
 direction
Is leftdia gwin () Returns 1 if there is 4 in a row in a left slant
 direction
Is right dia gwin() Returns 1 if there is 4 in a row in a right slant
 direction
Is winner () Returns a 1 if there is a winner. Also,
 suspends the timer if there is a winner
Load board () Places a 1 for player 1 and 2 for player
 2 in the spot chosen by the current player
Start program () Called when a player chooses to start the game with
 2 players from the initial start-up panel
Start computer Called when a player chooses to start the game
program with 1 player
Play again Called when the player chooses to play the game
 again, after there is a tie or a winner.
Quit game Called when player chooses to quit the game
 again after there is a tie or a winner
Timer expired Called when the timer clicks every second and then
 will change the display to decrement the time shown
Quit call back Called when the quit button is pressed and ends the
 game
Hard setting () Called when the hard setting is chosen in the
 1 player mode
Medium setting() Called when the medium setting is chosen in the
 1 player mode
Easy setting () Called when the easy setting is chosen in the
 1 player mode
Hard2 player () Called when the hard setting is chosen in the
 2 player mode
Easy2 player () Called when the easy setting is chosen in the
 2 player mode
Column1() Called when player selects the first column and
 depending on what row is currently available, it
 stores the selection in the board
Column2() Called when player selects the second column and
 depending on what row is currently available, it
 stores the selection in the board
Column3() Called when player selects the third column and
 depending on what row is currently available, it
 stores the selection in the board
Column4() Called when player selects the fourth column and
 depending on what row is currently available, it
 stores the selection in the board
Column5() Called when player selects the fifth column and
 depending on what row is currently available, it
 stores the selection in the board
Column6() Called when player selects the sixth column and
 depending on what row is currently available, it
 stores the selection in the board
Column7() Called when player selects the seventh column and
 depending on what row is currently available, it
 stores the selection in the board

J. Computer Sci., 5 (4): 283-289, 2009

288

Fig. 11: Simplified main functions calls

The interactions of the Main functions are shown in
Fig. 11. The complete C++ Code of this
implementation can be requested from the researchers.
 The test procedures consist of testing the game in
all the modes, as follows:

Select the 2 player mode:

• Select easy mode and play the game. Make sure

that there are no bugs and that it flows as if you
were playing with a live board and chips

• Select the hard mode and make sure that it flows
like the easy mode except for the timer. Make sure
that when the timer expires that the current player
changes. Make sure that when the current player
makes a move that the next player is made current
and the timer resets

Select the 1 player mode:

• Select the easy mode, play the game and see where

the computer chooses to play. It should try to win
or block three in a row, but randomly pick any
other play. Run with the debugger and make sure
that it never gets to part of the AI that is not
intended for it

• Select the medium mode, play the game and see
where the computer chooses to play. It should try

to win or block three in a row, create three in a row
or block 2 in a row, then choose randomly. Run
with the debugger and make sure that it never gets
to part of the AI that is not intended for it

• Select the hard mode and run the same test as the
medium mode and add in a test for the timer. Make
sure that when the timer expires that the current
player changes. Make sure that when the current
player makes a move that the next player is made
current and the timer resets.

 For this game system, there were several black box
testers. Their feedback consisted of:

• Add a delay to computer player, it is hard to keep

track of where the computer plays when it is right
after the player makes a play. After the delay was
added, it was noted that the delay might be too long

• When the game is over and the splash screen asks
to play again. If the player chooses to play again,
the game should either re-start the game at the
same level, or go back to the screen were it asks for
the difficulty level, but it should not go back to the
main screen were it has to choose the number of
players

 There was also a white box tester. This tester gave
the following feedback:

• The game first recognizes that player 1 won and

then it continued playing even when the player has
won. This resulted in two messages, one that says
that the computer won and the other one says that
player 1 won

 These items were then investigated, corrected as
needed and retested. The testers found no further bugs
that needed to be resolved.

CONCLUSION

 AI for Connect 4 game was integrated into a real-
time version using the waterfall software development
model. The game was updated to include the choice of
one or two players. If two players were chosen, there
was a choice of having a timer. If one player was
chosen, there was the choice of easy AI, medium AI or
hard AI. The only level in the one player mode that has
a timer is the hard level. Testing verified that the
requirements were met. Minor details were overlooked
and they were found and fixed during testing.

J. Computer Sci., 5 (4): 283-289, 2009

289

REFERENCES

1. Milton Bradley, 1974. Connect Four (also known

as Plot Four, Find Four, Four in a Row and Four in
a line), Wikipedia;
http://en.wikipedia.org/wiki/Connect_Four

2. Wikipedia, 2009. Waterfall Model.
http://en.wikipedia.org/wiki/Waterfall_model

3. Adams, R., E. Ibsen and C. Zhang, 2003. A
Connect Four Playing AI Agent: Algorithm and
Creation Process.
http://www.ccs.neu.edu/home/eclip5e/classes/csu5
20/SmartConnectFour-Final_Paper-v1.0.doc

4. Pomakis, K., 2005. Connect-4 Algorithm;
http://www.pomakis.com/c4/connect_generic/c4.txt

5. Labib, B., 2003. Connect4 using Alpha-Beta
Search algorithm.

 http://www.codeproject.com/KB/mobile/Connect4
AB.aspx

6. Padhy, N.P., 2005. State Space Search:
Implementation and Applications. In: Artificial
Intelligence and Intelligent Systems. Oxford
University Press, New York, pp: 161-171.

7. Russell, S.J. and P. Norvig, 1995. Informed Search
Methods. In: Artificial Intelligence: A Modern
Approach. Upper Saddle River, Prentice-Hall, New
Jersey, pp: 96-98.

8. Matthews, J., 2000. A* for the Masses.
http://www.generation5.org/content/2000/astar.asp

9. Allen , J., 1989, A Note on the Computer Solution

of Connect-Four. In: Heuristic Programming in
Artificial Intelligence: The First Computer
Olympiad, Levy, D.N.L. and D.F. Beal (Eds.). Ellis
Horwood, Chichester, ISBN: 13: 978-0470216590,
pp. 134-135.

10. Uiterwijk, J.W.H.M., L.V. Allis and H.J. Van Den
Herik, 1989. A Knowledge-Based Approach to
Connect-Four. The Game is Solved!. In: Heuristic
Programming in Artificial Intelligence: The First
Computer Olympiad, Levy, D.N.L. and D.F. Beal
(Eds.). Ellis Horwood, Chichester, ISBN: 13: 978-
0470216590, pp: 113-133.

11. Allis, V., 1989. A Knowledge-based Approach of
Connect-Four, The Game is Solved: White Wins.
MS. Thesis, Vrije University, Amsterdam, The
Netherlands.

12. Velena, B.G., 1997. A Shannon C-type program
which plays connect four perfectly.
http://www.ce.unipr.it/~gbe/velena.html

13. Schneider, M.O. and J.L. Garcia Rosa, 2002.
Neural connect 4-A connectionist approach to the
game. Proceedings of the 7th Brazilian Symposium
on Neural Networks, Brazil.

14. Shaout, A., 2007. Real-time connect 4 game. http://www-
ersonal.engin.umd.umich.edu/~shaout/connect4.pdf

