
Journal of Computer Science 5 (4): 242-249, 2009
ISSN 1549-3636
© 2009 Science Publications

242

Representation of Polygonal Surfaces as Displaced Subdivision Surfaces

Muhammad Hussain

Department of Computer Science, King Saud University, Saudi Arabia

Abstract: Problem statement: Displaced subdivision representation possesses a number of attractive
features for efficient and convenient processing tasks like editing, geometry compression, animation,
scalability and adaptive rendering of polygonal models. In this representation, a detailed surface model
was built as a scalar-valued displacement map over a smooth domain surface. The construction of the
smooth domain surface from a polygonal model was a challenging task in the conversion process.
Approach: For building the smooth domain surface, we proposed an efficient algorithm that was
based on √3-subdivision scheme, memory efficient simplification and a linear time optimization
technique. Results: At some fixed level of detail, the vertex and triangle complexity of the displaced
surface generated by the proposed algorithm was far less and so it resulted in better compression ratios
and transmission speed. Conclusion: The proposed algorithm created surfaces of better quality,
computationally more efficient and occupied less memory as compared to the original algorithm by Lee.

Key words: Polygonal models, subdivision surfaces, displacement map, geometry compression

INTRODUCTION

 Recent advances in scanning technologies,
CAD/CAD systems and computer vision techniques
have made it possible to acquire 3D (three dimensional)
information that is widely represented in the form of
polygonal surfaces, which are, now-a-days, widespread
in various application areas of Computer Graphics
(CG). A polygonal surface is typically represented as a
triangular mesh where geometry is encoded by three
scalar values (x, y, z) per vertex and the connectivity of
vertices is often irregular. As a result of recent
developments in technology, the sizes of triangular
meshes are growing rapidly. Sheer sizes and irregular
connectivity of such meshes put a threat to
manipulation, transmission, storage, animation,
rendering and visualization of 3D information.
Alternatively, a polygonal surface can be represented as
a displaced subdivision surface, which consists of a
control mesh and a set of scalar offsets that define the
polygonal surface as a scalar displacement map over the
smooth domain surface generated from the control
mesh by subdivision. This surface representation offers
a number of advantages over the mesh
representation[15]. Expressing terrain data as a height
field over a plane is a simple example of displaced
surface. Generalization of this concept to arbitrary
surfaces involves the challenging problem of defining
efficiently the underlying smooth domain surface that
locally closely fits the geometry of the given polygonal
surface.

 Lee et al.[13] define domain surface using Loop
subdivision scheme[15]. They employ a very slow and
memory consuming heuristic approach to simplify the
mesh followed by a time consuming energy
minimization technique to optimize the vertex positions
so as to closely fit the original surface. An alternative
technique was proposed by Hussain et al.[10] to define
smooth domain surface, which exploits √3-subdivision
technique[11], a memory efficient decimation approach
and a linear time optimization method. Although it
reduces significantly memory overhead and time
complexity, the underlying simplification approach for
creating raw control mesh overestimates the geometric
error and the optimization technique for optimizing
vertex positions results in creating small wiggles in the
smooth domain surface, which causes scalar offsets of
greater magnitudes and so the compression ratio is not
so good. The proposed technique deals with this issue
without noticeable increase in the complexity of the
conversion process. The main differentiating features of
the proposed algorithm are:

• Reduced memory overhead
• Computational efficiency
• Better quality of generated surfaces and better

compression ratio

Related work: Semi-regular or subdivision
connectivity meshes offer many advantages, like simple
data structures and efficient processing for their
manipulation, over the irregular setting where the

J. Computer Sci., 5 (4): 242-249, 2009

243

connectivity of the vertices of a polygonal model is not
regular. Similar to the algorithms by Eck et al.[4],
Krischnamurthy and Levoy[12] and Lee et al.[13], the
proposed algorithm constructs a semi-regular mesh
from an irregular connectivity input mesh.
 The idea of representing a surface as a
displacement function was first introduced by Cook[1].
Schroder et al.[17] used this idea to represent functions
of sphere. Lee et al.[13] exploiting the idea of
displacement map, developed displaced subdivision
surface representation for polygonal surfaces, which are
usually encoded by polygonal meshes and validated its
usefulness for efficient manipulation, storage, editing
and transmission of polygonal surfaces in various
application areas. The conversion process proposed by
Lee et al.[13,14] is not only computationally complex but
also involves high memory overhead. They employ a
time-consuming and memory extensive heuristic
approach based on quadric error metrics[5] and half-
edge collapse for decimating the original polygonal
surface to generate initial control mesh. Furthermore,
their method for optimizing the vertex positions being
based on sampling a dense set of points from the
original mesh and minimizing their squared distances to
the subdivision surface is also computationally very
complex.
 Similarly to Lee et al.[13,14] and Guskov et al.[7]
presented an algorithm for representing a polygonal
surface as a normal mesh by applying successively a
hierarchy of displacement maps to the underlying
control mesh as it is subdivided. Though their
construction encodes most part of the geometry of a
polygonal model as scalar offsets, however a small
fraction of vertices needs vector displacements to
prevent surface folding.
 Hussain et al.[10] proposed a conversion method for
transforming polygonal mesh representation into
displaced subdivision surface; this method differs from
the technique proposed by Lee et al.[13] in the
construction of smooth domain surface. It exploits a
simple and efficient heuristic based simplification
method and linear time optimization approach to push
the vertices of the raw control mesh. Though it
drastically reduces computational and memory
overhead, it creates small wiggles in the smooth domain
surface and thus results in scalar offsets of larger
magnitudes and so the compression ratio is not good. In
this study, an alternative technique has been proposed,
which overcomes this problem.
 Won and Chang[19] presented an algorithm that
directly reconstructs displaced subdivision surface from
unorganized points. This method is fairly efficient but it
is limited only to a small class of surfaces having

simple topology. Also the representation of the surface
as control mesh together with displacement map is not
straight forward.

Subdivision surfaces: A subdivision surface is
generated by iteratively refining a coarse control mesh
driven by a refinement operator. In each iteration,
refinement operator not only refines the topology of the
underlying mesh but also smoothes the geometry and as
such it can be assumed to be composed of two types of
operators: topological or split operator and geometry
smoothing operator. Split operator performs refinement
by introducing new vertices and thus new faces in the
mesh. Smoothing operator smoothes the vertex
positions by taking averages of neighboring vertex
positions motivated by some smoothness criteria. The
newly inserted vertices are called odd vertices, while
the old vertices are referred to as even vertices. A
subdivision scheme that relocates only the odd vertices
is known as interpolating scheme, e.g., butterfly
scheme[3], whereas the one that relocates not only odd
vertices but even vertices as well is termed as
approximating scheme. The Loop subdivision[15], 4-8
subdivision[16] and √3-subdivision[11] are examples of
approximating schemes that perform on triangle
meshes; in this case the subdivision surface does not go
through the control mesh but approximates it.
 In Loop subdivision scheme, refinement is
performed uniformly by a 1-4 split operator and so the
number of faces increases by the factor of 4. Contrary
to this, 4-8 subdivision and √3-subdivision schemes are
based on 1-2 and 1-3 splits respectively and the faces
grow in number by the factors of 2 and 3, respectively,
i.e., the process of increasing the number of faces is
slower than that in Loop scheme; it follows that
employing 4-8 subdivision and √3-subdivision, one can
have more levels of uniform resolution if a prescribed
target face complexity of the generated mesh must not
exceed a certain number. This reason leads us to exploit
4-8 subdivision or √3-subdivision. Because for 4-8
subdivision, the position mask of infinite position of a
vertex is not straight forward, so we employ √3-
subdivision as a tool to define smooth domain surface
for displaced subdivision representation and in the
following paragraphs, we give an overview of this
scheme, for detailed discussion and analysis of the
scheme, please consult[11].
 For arbitrary control meshes, √3-subdivision yields
the limit surface to be C2 almost everywhere except for
the extraordinary vertices (valence ≠ 6) where the
smoothness is at least C1. This scheme has stencils of
minimum size and maximum symmetry[11].

J. Computer Sci., 5 (4): 242-249, 2009

244

 In √3-subdivision scheme, split operator divides
each triangle at level l into three new triangles by
inserting a new vertex at its center, introducing three
new edges that connect the new vertex to each of its
three vertices and re-balancing the valence of even
vertices by flipping every old edge that connects two
even vertices. In the following discussion, pl means the
position of a vertex at level l.
 Smoothing operator consists of two rules: one for
odd vertices and one for even vertices. The smoothing
rule for odd vertices is[11]:

l 1 l l l
i j k

1
p (p p p)

3
+ = + + (1)

i.e., an odd vertex pl+1 is simply inserted at the center of
the triangle ∆(pi

l, pj
l, pk

l) at level l. Let pl be an even
vertex with valence n and p0

l, p1
l, p2

l, … , pn-1
l being its

1-ring neighbors, its position pl+1at level l+1 is
determined by the following rule[11]:

n 1
l 1 l ln

n i
i 0

p (1)p p
n

−
+

=

α= − α + ∑ (2)

where, n

4 2cos(2 / n)

9

− πα = . The limit position of a

vertex pl means the position that it attains as l→∞. The
limit position of any vertex pl can be determined
directly using the following limit position rule[11]:

n 1
l ln

n i
i 0

p (1)p p
n

−
∞

=

β= − β + ∑ (3)

where,
3

.
1 3

αβ =
+ α

 The position of a vertex pl can be

determined at subdivision level m where m>l exploiting
the following rule[11]:

m m l m
n np p (1)p∞= γ + − γ (4)

where, m m
n n

2
() .
3

γ = − α This rule is very useful and will

be used in our conversion process to build the coarse
control mesh for displaced subdivision representation.
 With the help of the technique described in[18], the
tangent masks for 3 -subdivision can be calculated to
be 0 1 2 n 1(c , c , c , , c)−L and n 1 0 1 n 2(c , c , c , , c)− −L , where

ic cos(2 i / n)= π

MATERIALS AND METHODS

 Now, we elaborate the main techniques used by the
proposed conversion process.

Creating initial control mesh: The first step is to build
initial control mesh 0M% ; it must be built with the goal
that its normal space locally closely approximates the
normal space of the given polygonal surface because it
ensures that the resulting subdivision surface locally
closely fits the given surface. For this purpose, we use a
fast, simple, memory efficient and feature preserving
error metric that automatically preserves locally the
normal space of the original polygonal model[9] and a
sequence of half-edge collapse transformations to
simplify the triangle mesh. Here we give a brief
description of the algorithm, for detailed account of the
algorithm please consult[9]. The cost of an arbitrary
half-edge collapse transformation ste :

v
vs→ vt:

v es st

st t t ot
t T T

ˆCost(e) (n .n)
∈ −

= ∆ −∑
rv

Where:
∆t = The area of the triangle t

tn
r

, otn
)

 = The current normal (not unit normal) and the

original unit normal to the triangle t

svT = The set of all triangles incident on vertex vs

steT = The set of triangles which share the edge est,

(Fig. 1)

Fig. 1: Edge collapse operation vs→vt eliminates the

triangles
steT incident on est (shown in dark

gray) and changes the orientation of the
remaining triangles

svT -
steT . Collapse of the

edge est maps typically the triangle t = {vs, v1,
v2} ∈

svT -Test onto the triangle t' = {vt , v1, v2};

for computing the distortion caused by t the
deviation of the normal to t' (which is current
normal to t) is calculated with respect to the
original normal to t

J. Computer Sci., 5 (4): 242-249, 2009

245

 Half-edge collapse transformations are applied
iteratively in a greedy manner until the error is below a
threshold value; the greedy process is guided by the
measure of geometric error described above. There is
no need to employ any heuristic to ensure the local
preservation of the normal space of the original model
during the decimation process because the error metric
described above automatically does this job, for more
detail, please consult[9]. The normal at each vertex is
approximated as the average of the normal vectors to
the faces in

svT . Original normal of each vertex is

computed using the original polygonal model at a
preprocessing stage and is stored for further processing.
The normal vectors can also be computed using tangent
masks for √3-subdivision scheme but we found that it
does not make any difference.

Optimization of the initial control mesh: Subdivision
of the initial control mesh 0M% causes the generated
subdivision surface to shrink because √3-subdivision is
an approximating scheme, for detail consult[10]. The
smooth subdivision surface locally closely fits the
original surface only when it passes through the vertices
of the initial control mesh because these vertices lie on
the original surface. To force the subdivision surface to
pass through these vertices, there is a need to readjust
the positions of these vertices; this objective is
accomplished by exploiting a kind of optimization
technique; in the sequel we present the detail of this
technique.
 The optimization technique for readjusting the
vertex positions of the initial control mesh is based on
√3-subdivision rule described by Eq. 4. This rule, in
particular, for m = 1, l = 0 and p0 = p can be expressed
as:

1 1 1
n np p (1)p∞= γ + − γ (5)

 But according to the smoothing rule for even
vertices specified by Eq. 2:

n 1
1 n

n i
i 0

p (1)p p
n

−

=

α= − α + ∑ (6)

 From (5) and (6), we obtain the following equation:

n 1
n

i n
i 0

1
p p (1)p

3 n

−
∞

=

α+ = − γ∑ (7)

where, p∞ is the limit position of the vertex p and pi

(i = 1, 2, …, n) are 1-ring neighbors of p.

 For each 0
ip M∈ % , there exists an equation similar

to (7) and so we get a large sparse system of order r,
where r is the number of vertices in the control mesh.
Solving this system for pi′s, we get their positions
which cause the subdivision surface to pass through

ip 's∞ . The subdivision surface must interpolate the

vertices of 0M% so that it can locally closely fit the given
polygonal surface because the vertices of 0M% are on the
polygonal surface as it has been created using half-edge
collapses. So in the above mentioned system of linear
equations, ip 's∞ are taken to be the vertices of 0M% and

the solution of the system yields their optimal positions
pi′s.
 The problem with this approach is that it results in
excessive undulations in the smooth domain surface. To
discourage such undulations and improve the quality of
resulting smooth domain surface, we introduce
additional degrees of freedom and then set these
degrees of freedom by optimizing some energy
functional subject to the linear constraints (8). We
exploit the energy functional proposed in[8], which is
defined as:

2
e

e

E D
∈

=∑
E

 (8)

Where:
E = The set of all edges of the control mesh
De = The difference between the normal vectors to the

triangular faces incident on the edge e and can be
expressed as:

i
i j k l

e e e j e k e lD p p p p= ω + ω + ω + ω

Where:
{p i, pj, pk, pl} = Vertices of the triangles incident on

edge e
i
eω = e

kji

l

∆

j
eω = e

lij

l

∆

k
eω = e jlk

kji lij

l ∆
−

∆ ∆

l
eω = e ikl

kji lij

l ∆−
∆ ∆

ijk∆ = The signed area of the triangle (I, j, k)

le = The length of the edge e

J. Computer Sci., 5 (4): 242-249, 2009

246

Fig. 2: (Left) Stencil of edge e, V(e) = {pi, pj , pk, pl} is

the set of vertices in the stencil. (Right) The sets
of vertices V(i) and VF(i) in 1-ring
neighborhood (dark shaded) and in flapped 1-
ring neighborhood (dark and light shaded
without pi), respectively, of the vertex pi and
E(i) is the set of bold edges

Fig. 3: Error distribution showing the difference

between the original model and the smooth
domain surface created by proposed method
(left) and the one (right) published in[10]. Left of
the figure shows error ramp, error increases
from zero (blue) to maximum (red)

 The areas and the length are computed after
applying hinge map on the stencil of the edge e (Fig. 2)
taking e as hinge and rotating one of the triangular faces
so that it lies in the plane of the other face. We choose
this energy functional because it not only discourages
excessive undulations in the smooth domain surface,
but also smoothes and preserves locally the normal
space of the control mesh and so it results in better
compression ratio.
 Now the problem of optimizing the vertex
positions of 0M% is equivalent to the problem of
optimizing the energy functional (8) subject to the
linear constraints (7). Employing the method of
Lagrange multipliers, this problem is equivalent to the
solution of the following system of linear equations:

 kn
i i ij j k i

j VF(i) k V(i) k

1
p p 0

n 3∈ ∈

α
η + δ + λ + λ =∑ ∑ (9)

i

i

n
i l n i

l V(i)i

1
p p (1)p 0

3 n
∞

∈

α
+ − − γ =∑ (10)

where, i 2
i e

e E(i)

()
∈

η = ω∑ , i j
ij e e

{e E(i) j V(e)}∈ ∈

δ = ω ω∑ , for the

interpretation of E(i) and V(e) Fig. 2, VF(i) and V(i) are
the sets of vertices in the flapped 1-ring neighborhood
and 1-ring neighborhood of the vertex pi (Fig. 2) and
(λ1, λ2, λ3, … , λr) is the vector of Lagrange multipliers,
r being the number of vertices in 0M% . Eq. 9 and 10 are
two rows of a large linear system of order 2r. Since the
number of nonzero entries in each row is much smaller
than r, so the system is a sparse linear system. In view
of this, the problem of optimizing the vertex positions
decomposes into the solutions of three independent
sparse linear systems, one for each of x-, y- and z-
coordinates. We solve each of the system using
biconjugate gradient method[20], which yields an
acceptable solution in O(r) time.

Polygonal surface as a displacement map: Optimized
control mesh Mo is subdivided up to level k using
refinement operators of √3-subdivision. Then, each
vertex of the resulting surface Mk is pushed to its limit
position using limit position rule of √3-subdivision to
obtain the smooth surface Mk, which serves as a domain
for representing the given polygonal surface model as a
displacement map. The normal at each vertex is
computed. The position of each vertex pi on Mk and its
normal npi define the straight line p(t) = pi + tnpi; the
length of the line segment between the vertex pi and pi'
(the vertex where the line pierces the original surface)
is the magnitude of the scalar offset, which is positive if
intersection occurs in the direction of the outward
normal otherwise it will be negative. This line may
have multiple intersections or the original surface may
be oriented in the wrong direction with respect to this
line. If the directed line is intersected at more than one
point, then we pick the one that is closest to the domain
surface. In the second case we reject the intersection.
To compute the intersections efficiently, we make use
of OBB tree data structure[6].

RESULTS

 Now, we describe the details of the algorithm that
converts polygonal surface into the corresponding
displaced subdivision surface representation (DSR).
Following is the detail of the algorithm:

Conversion_to_DSR()
 Input: Polygonal surface model M (V,F)
 Output: Displaced subdivision surface DSS = (M0,

Dk), where M0 is the optimized control
mesh and Dk offset values at subdivision
level k

J. Computer Sci., 5 (4): 242-249, 2009

247

 0M% ← Create_Initial_Control_Mesh (M)

 Mo ← Optimize_Initial_Control_Mesh (M, 0M%)
 Mk ← Subdivide_Optimized_Control_Mesh (Mo, k)
 Dk ← Compute_Offset_Values (M, Mk)

 The optimized control mesh M0 and the offset
values Dk form the displaced subdivision surface
representation (DSR):

DSR = S∞SkM0 + Dk

where, S∞ and Sk are matrix forms of limit position rule
and refinement operators, respectively, of √3-
subdivision.
 Figure 4 demonstrates the different stages of the
algorithm and the output of the algorithm for Venus
model. Figure 5 shows the conversion of horse model.

Fig. 4: (Top row: left) Original Venus model M (#

faces 268,686; size on disk 9.67 MB) and (Top
row: Right) Displaced subdivision surface
(#faces 64476, size on disk 460-24 KB for
control mesh and 336 KB for displacement
map). Bottom row demonstrates the four phases
of the conversion process: (bottom row: Left)
raw control mesh 0M% (#faces 796), (bottom
row: Middle left) optimized control mesh M0,
(bottom row: Middle right) smooth domain
surface Sk, k = 4 obtained by subdividing M0
and (bottom row: right) displacement field that
encodes the difference of M and Sk

Fig. 5: Horse model (courtesy cyber-ware): (Left)

Original T: 96966, (middle) smooth domain
surface, Sk = 4, T: 64476, (right) displaced
subdivision surface

DISCUSSION

 Our implementation of the proposed algorithm has
been tested on many public domain polygonal surface
models. Here, we discuss the performance of the
algorithm using only two typical benchmark models.

Compression ratio: The √3-subdivision technique
increases the number of vertices by a factor of 2,
whereas Loop subdivision increases this number by a
factor of 3 after each subdivision step. Lee et al.[13]
use Loop subdivision. So the size of the set of offset
values- Dk-produced by the proposed method is less
by 33% as compared to the one generated by the
method of Lee et al.[13,14] Also, it is obvious from error
distribution shown in Fig. 3 that most of the offset
values are close to zero and the range of these values is
small, so the proposed method results in higher
compression ratios.

Quality of the generated surfaces: For objective
evaluation of the displaced subdivision surfaces
generated by the proposed algorithm, we use mean
square geometric error -L2- and compute it using well-
known IEI-CNR metro tool[2]. Column 5 of Table 1
shows L2 as the percentage of the diagonal of the
bounding box for various models. It is apparent that the
surfaces generated by the proposed method compare
well with the original polygonal surfaces. Because the
implementation of the algorithm by Lee et al.[13] is not
available in public domain, we cannot make
comparison directly with it in terms of quality.
Anyhow, according to the error statistics reported in[13]
(Table 1), L2 error is 0.027 for Venus model with
control mesh consisting of 748 faces and displaced
subdivision surface having 191488 faces, whereas this
error in our case is 0.011 (Table 1) in spite of the
displaced subdivision surface being smaller in size.
Though this is not exact comparison, it gives the idea
that quality of the displaced subdivision surfaces
generated by the proposed method is better. It is
obvious from Fig. 3 that the proposed method
performs better even than the one proposed in[10] in
terms of the quality.

Table 1: Sizes of the original model, corresponding Displaced Mesh

(DM) and control mesh (CM) are given as the number of
triangle faces

 Size of M Size of Sk Size of M0
Model (# faces) (# faces) (# faces) L2 (%)
Horse 96966 64476 796 0.032
Rabbit 134074 64476 796 0.015
Venus 268686 64476 796 0.011
Ball joint 274120 85536 1056 0.015

J. Computer Sci., 5 (4): 242-249, 2009

248

Table 2: Execution times (sec)
Process Horse Rabbit Venus Ball joint
Simplification 16.58 23.20 49.83 51.10
Optimization 0.41 0.45 0.55 1.02
Sampling 14.05 14.88 27.89 28.28
Total (sec) 31.05 38.53 78.27 80.40

Table 3: Execution times (min) taken from[13]
Process Armadillo Venus Bunny Dinosaur
Size (#F) 210,944 100,000 69,451 342,138
Simplification 61 28 19 115
Optimization 25 11 11 43
Sampling 2 2 1 5
Total (min) 88 41 31 163

Time complexity: For creating initial control mesh, the
method proposed by Lee et al.[13] involves computing
the parameterization of the original polygonal surface
using MAPS[14] during the simplification process and a
large number of comparisons to ensure that the normal
space of the original polygonal surface is locally
preserved. And they optimize the initial control mesh
by solving a nonlinear optimization problem. In
comparison, our approach doesn’t involve any
constraint to insure local preservation of normal space
while simplification and our optimization technique is
based on the linear problem of solving three sparse
linear systems. This analysis shows that the running
time of the proposed algorithm is far more less than that
by Lee et al.[13]. The empirical results shown in Table 2
and 3 demonstrate this fact. The execution times of
Table 2 have been reported on a 550 MHz pentium III
machine. The execution times of the original displaced
subdivision surface scheme, shown in Table 3 (taken
from[13]), also have been obtained on 550 MHz pentium
III PC. Although in our experiments, we have used
different models and a machine that might have
different architecture, even then we can have an overall
idea about the running efficiency.

Space complexity: Apart from the memory required
for the optimization process, the method proposed in[13]
for building initial control mesh needs 64 r bytes
(assuming that floats are used), where r is the number
of vertices in M, for simplification and parameterization
procedures in addition to necessary space requirements
for storing the geometry and connectivity of M. The
proposed technique requires only 24 r bytes, so it
significantly cuts off the memory overhead. Note that
the quadric error metric needs 40 bytes of memory per
vertex and the parameterization requires 4 bytes per
vertex and 8 bytes per vertex are needed for
management of priority queue. The error metric which
we employed consumes only 4 bytes per vertex and
12 bytes are utilized to store the original normal at each

vertex; the simplification approach adapted in this
proposal stores original normal for the calculation of
error metric whereas it is stored by the method in[10] for
heuristic used for locally preserving the normal space.
Note that the memory requirements of the proposed
scheme are almost the same as those of the method
proposed in[10].

CONCLUSION

 An efficient technique has been presented for
building smooth domain surface for displaced
subdivision surface representation, which is not only
fast and memory efficient but also generates displaced
surfaces of better quality and results in higher
compression ratio. As our main contribution is an
efficient method for the construction of smooth domain
surface, so the displaced subdivision surfaces generated
by the proposed method offer all those benefits as have
been demonstrated by Lee et al.[13], i.e., compression,
editing, animation and scalability. The only limitation
of this algorithm is that at the moment it is applicable
only to closed polygonal surface models.

REFERENCES

1. Cook, R., 1984. Shade trees. ACM. SIGGRAPH.

Comput. Graph., 18: 223-231.

http://portal.acm.org/citation.cfm?id=964965.808602
2. Cignoni, P., C. Rocchini and R. Scopigno, 1998.

Metro: Measuring error on simplified surfaces.
Comput. Graph. Forum, 17: 167-174. DOI:

10.1111/1467-8659.00236
3. Dyn, N., D. Levin and J.A. Gregory, 1990. A

butterfly subdivision scheme for surface
interpolation with tension control. ACM. Trans.
Graph., 9: 160-169.

http://portal.acm.org/citation.cfm?id=78956.78958
4. Eck , M., T. DeRose, T. Duchamp, H. Hoppe,

M. Lounsbery and W. Stuetzle, 1995.
Multiresolution analysis of arbitrary meshes.
Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques,
(ACCGIT’ 95), ACM Press, New York, USA.,
pp: 173-182.

 http://portal.acm.org/citation.cfm?id=218440
5. Garland, M. and P. Heckbert, 1997. Surface

simplification using quadric error metrics.
Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques,
(ACCGIT’ 95), ACM Press/Addison-Wesley
Publishing Co., New York, USA., pp: 209-216.
http://portal.acm.org/citation.cfm?id=258849

J. Computer Sci., 5 (4): 242-249, 2009

249

6. Gottschalk, S., M. Lin and D. Manocha, 1996.
OBB-tree: A hierarchical structure for rapid
interference detection. Proceedings of the 23rd
Annual Conference on Computer Graphics and
Interactive Techniques, (ACCGIT’ 96), ACM
Press, New York, USA., pp: 171-180.

http://portal.acm.org/citation.cfm?id=237244
7. Guskov, I., K. Vidimce, W. Sweldens and P. Schroder,

2000. Normal meshes. Proceedings of the 27th
Annual Conference on Computer Graphics and
Interactive Techniques, (ACCGIT’ 00), ACM
Press/Addison-Wesley Publishing Co., New York,
USA., pp: 95-102.
http://portal.acm.org/citation.cfm?id=344831

8. Guskov, I., W. Sweldens and P. Schroeder, 1999.
Multiresolution signal processing for meshes.
Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques,
(ACCGIT’ 99), ACM Press/Addison-Wesley
Publishing Co., New York, USA., pp: 325-334.

http://portal.acm.org/citation.cfm?id=311577
9. Hussain, M. and Y. Okada, 2005. LOD modeling

of polygonal models. Mach. Graph. Vision,
14: 325-343.

 http://portal.acm.org/citation.cfm?id=1140437
10. Hussain, M., Y. Okada and K. Niijima, 2006. An

efficient method for converting polygonal models
into displaced subdivision representation. IEICE
Trans. Fundament. Elect. Commun. Comput. Sci.,
E89-A: 807-816.

 http://portal.acm.org/citation.cfm?id=1184600
11. Kobbelt, L., 2000. √3−Subdivision. Proceedings of

the 26th Annual Conference on Computer Graphics
and Interactive Techniques, Aug. 2000, ACM
Press/Addison-Wesley Publishing Co., New York,
USA., pp: 103-112.
http://portal.acm.org/citation.cfm?id=344835

12. Krishnamurthy, V. and M. Levoy, 1996. Fitting
smooth surfaces to dense polygon meshes.
Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques,
Aug. 1996, ACM Press, New York, USA., pp: 313-324.

http://portal.acm.org/citation.cfm?id=237270
13. Lee, A., H. Moreton and H. Hoppe, 2000.

Displaced subdivision surfaces. Proceedings of the
27th Annual Conference on Computer Graphics
and Interactive Techniques, Aug. 2000, ACM
Press/Addison-Wesley Publishing Co., New York,
USA., pp: 85-94.
http://portal.acm.org/citation.cfm?id=344829

14. Lee, A., W. Sweldens, P. Schroder, L. Cowsar and
D. Dobkin, 1998. MAPS: Multiresolution adaptive
parameterization of surfaces. Proceedings of the
25th Annual Conference on Computer Graphics
and Interactive Techniques, (ACCGIT’ 98), ACM
Press, New York, USA., pp: 95-104.

http://portal.acm.org/citation.cfm?id=280814.280828
15. Loop, C., 1987. Smooth subdivision surfaces based

on triangles. Master’s thesis, University of Utah,
Department of Mathematics.

http://research.microsoft.com/apps/pubs/default.asp
x?id=68540

16. Velho, L. and D. Zorin, 2001. 4-8 subdivision.
Comput. Aided Geometr. Des., 18: 397-427.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1004012

17. Schroder, P. and W. Sweldens, 1995. Spherical
wavelets: efficiently representing functions on the
sphere. Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive
Techniques, (ACCGIT’ 95), ACM Press, New
York, USA., pp: 161-172.

http://portal.acm.org/citation.cfm?id=218439
18. Stam, J., Exact evaluation of Catmull-Clark

subdivision surfaces at arbitrary parameter values.
Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques,
July 1998, ACM Press, New York, USA., pp: 395-
404. http://portal.acm.org/citation.cfm?id=280945

19. Won, K. J. and C.H. Kim, 2001. Direct
reconstruction of displaced subdivision surface
from unorganized points. Proceedings of 9th Pacific
Graphics, Oct. 16-18, Tokyo, Japan, pp: 160-168.

 http://portal.acm.org/citation.cfm?id=883419
20. William, H., A. Saul, T. William and P. Brian,

2002. Numerical Recipes in C++, the Art of
Scientific Computing. 2nd Edn., Cambridge
University Press, Cambridge, ISBN: 10:
0521750334, pp: 1002.

