
Journal of Computer Science 5 (4): 242-249, 2009 
ISSN 1549-3636 
© 2009 Science Publications 

242 

 
Representation of Polygonal Surfaces as Displaced Subdivision Surfaces 

 
Muhammad Hussain 

Department of Computer Science, King Saud University, Saudi Arabia 
 

Abstract: Problem statement: Displaced subdivision representation possesses a number of attractive 
features for efficient and convenient processing tasks like editing, geometry compression, animation, 
scalability and adaptive rendering of polygonal models. In this representation, a detailed surface model 
was built as a scalar-valued displacement map over a smooth domain surface. The construction of the 
smooth domain surface from a polygonal model was a challenging task in the conversion process. 
Approach: For building the smooth domain surface, we proposed an efficient algorithm that was 
based on √3-subdivision scheme, memory efficient simplification and a linear time optimization 
technique. Results: At some fixed level of detail, the vertex and triangle complexity of the displaced 
surface generated by the proposed algorithm was far less and so it resulted in better compression ratios 
and transmission speed. Conclusion: The proposed algorithm created surfaces of better quality, 
computationally more efficient and occupied less memory as compared to the original algorithm by Lee. 
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INTRODUCTION 
 
 Recent advances in scanning technologies, 
CAD/CAD systems and computer vision techniques 
have made it possible to acquire 3D (three dimensional) 
information that is widely represented in the form of 
polygonal surfaces, which are, now-a-days, widespread 
in various application areas of Computer Graphics 
(CG). A polygonal surface is typically represented as a 
triangular mesh where geometry is encoded by three 
scalar values (x, y, z) per vertex and the connectivity of 
vertices is often irregular. As a result of recent 
developments in technology, the sizes of triangular 
meshes are growing rapidly. Sheer sizes and irregular 
connectivity of such meshes put a threat to 
manipulation, transmission, storage, animation, 
rendering and visualization of 3D information. 
Alternatively, a polygonal surface can be represented as 
a displaced subdivision surface, which consists of a 
control mesh and a set of scalar offsets that define the 
polygonal surface as a scalar displacement map over the 
smooth domain surface generated from the control 
mesh by subdivision. This surface representation offers 
a number of advantages over the mesh 
representation[15]. Expressing terrain data as a height 
field over a plane is a simple example of displaced 
surface. Generalization of this concept to arbitrary 
surfaces involves the challenging problem of defining 
efficiently the underlying smooth domain surface that 
locally closely fits the geometry of the given polygonal 
surface.  

 Lee et al.[13] define domain surface using Loop 
subdivision scheme[15]. They employ a very slow and 
memory consuming heuristic approach to simplify the 
mesh followed by a time consuming energy 
minimization technique to optimize the vertex positions 
so as to closely fit the original surface. An alternative 
technique was proposed by Hussain et al.[10] to define 
smooth domain surface, which exploits √3-subdivision 
technique[11], a memory efficient decimation approach 
and a linear time optimization method. Although it 
reduces significantly memory overhead and time 
complexity, the underlying simplification approach for 
creating raw control mesh overestimates the geometric 
error and the optimization technique for optimizing 
vertex positions results in creating small wiggles in the 
smooth domain surface, which causes scalar offsets of 
greater magnitudes and so the compression ratio is not 
so good. The proposed technique deals with this issue 
without noticeable increase in the complexity of the 
conversion process. The main differentiating features of 
the proposed algorithm are: 
 
• Reduced memory overhead 
• Computational efficiency  
• Better quality of generated surfaces and better 

compression ratio 
 
Related work: Semi-regular or subdivision 
connectivity meshes offer many advantages, like simple 
data structures and efficient processing for their 
manipulation, over the irregular setting where the 
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connectivity of the vertices of a polygonal model is not 
regular. Similar to the algorithms by Eck et al.[4], 
Krischnamurthy and Levoy[12] and Lee et al.[13], the 
proposed algorithm constructs a semi-regular mesh 
from an irregular connectivity input mesh. 
 The idea of representing a surface as a 
displacement function was first introduced by Cook[1]. 
Schroder et al.[17] used this idea to represent functions 
of sphere. Lee et al.[13] exploiting the idea of 
displacement map, developed displaced subdivision 
surface representation for polygonal surfaces, which are 
usually encoded by polygonal meshes and validated its 
usefulness for efficient manipulation, storage, editing 
and transmission of polygonal surfaces in various 
application areas. The conversion process proposed by 
Lee et al.[13,14] is not only computationally complex but 
also involves high memory overhead. They employ a 
time-consuming and memory extensive heuristic 
approach based on quadric error metrics[5] and half-
edge collapse for decimating the original polygonal 
surface to generate initial control mesh. Furthermore, 
their method for optimizing the vertex positions being 
based on sampling a dense set of points from the 
original mesh and minimizing their squared distances to 
the subdivision surface is also computationally very 
complex. 
 Similarly to Lee et al.[13,14] and Guskov et al.[7] 
presented an algorithm for representing a polygonal 
surface as a normal mesh by applying successively a 
hierarchy of displacement maps to the underlying 
control mesh as it is subdivided. Though their 
construction encodes most part of the geometry of a 
polygonal model as scalar offsets, however a small 
fraction of vertices needs vector displacements to 
prevent surface folding. 
 Hussain et al.[10] proposed a conversion method for 
transforming polygonal mesh representation into 
displaced subdivision surface; this method differs from 
the technique proposed by Lee et al.[13] in the 
construction of smooth domain surface. It exploits a 
simple and efficient heuristic based simplification 
method and linear time optimization approach to push 
the vertices of the raw control mesh. Though it 
drastically reduces computational and memory 
overhead, it creates small wiggles in the smooth domain 
surface and thus results in scalar offsets of larger 
magnitudes and so the compression ratio is not good. In 
this study, an alternative technique has been proposed, 
which overcomes this problem. 
 Won and Chang[19] presented an algorithm that 
directly reconstructs displaced subdivision surface from 
unorganized points. This method is fairly efficient but it 
is limited only to a small class of surfaces having 

simple topology. Also the representation of the surface 
as control mesh together with displacement map is not 
straight forward. 
 
Subdivision surfaces: A subdivision surface is 
generated by iteratively refining a coarse control mesh 
driven by a refinement operator. In each iteration, 
refinement operator not only refines the topology of the 
underlying mesh but also smoothes the geometry and as 
such it can be assumed to be composed of two types of 
operators: topological or split operator and geometry 
smoothing operator. Split operator performs refinement 
by introducing new vertices and thus new faces in the 
mesh. Smoothing operator smoothes the vertex 
positions by taking averages of neighboring vertex 
positions motivated by some smoothness criteria. The 
newly inserted vertices are called odd vertices, while 
the old vertices are referred to as even vertices. A 
subdivision scheme that relocates only the odd vertices 
is known as interpolating scheme, e.g., butterfly 
scheme[3], whereas the one that relocates not only odd 
vertices but even vertices as well is termed as 
approximating scheme. The Loop subdivision[15], 4-8 
subdivision[16] and √3-subdivision[11] are examples of 
approximating schemes that perform on triangle 
meshes; in this case the subdivision surface does not go 
through the control mesh but approximates it. 
 In Loop subdivision scheme, refinement is 
performed uniformly by a 1-4 split operator and so the 
number of faces increases by the factor of 4. Contrary 
to this, 4-8 subdivision and √3-subdivision schemes are 
based on 1-2 and 1-3 splits respectively and the faces 
grow in number by the factors of 2 and 3, respectively, 
i.e., the process of increasing the number of faces is 
slower than that in Loop scheme; it follows that 
employing 4-8 subdivision and √3-subdivision, one can 
have more levels of uniform resolution if a prescribed 
target face complexity of the generated mesh must not 
exceed a certain number. This reason leads us to exploit 
4-8 subdivision or √3-subdivision. Because for 4-8 
subdivision, the position mask of infinite position of a 
vertex is not straight forward, so we employ √3-
subdivision as a tool to define smooth domain surface 
for displaced subdivision representation and in the 
following paragraphs, we give an overview of this 
scheme, for detailed discussion and analysis of the 
scheme, please consult[11]. 
 For arbitrary control meshes, √3-subdivision yields 
the limit surface to be C2 almost everywhere except for 
the extraordinary vertices (valence ≠ 6) where the 
smoothness is at least C1. This scheme has stencils of 
minimum size and maximum symmetry[11].  
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 In √3-subdivision scheme, split operator divides 
each triangle at level l into three new triangles by 
inserting a new vertex at its center, introducing three 
new edges that connect the new vertex to each of its 
three vertices and re-balancing the valence of even 
vertices by flipping every old edge that connects two 
even vertices. In the following discussion, pl means the 
position of a vertex at level l. 
 Smoothing operator consists of two rules: one for 
odd vertices and one for even vertices. The smoothing 
rule for odd vertices is[11]: 
 

l 1 l l l
i j k

1
p (p p p )

3
+ = + +   (1) 

 
i.e., an odd vertex pl+1 is simply inserted at the center of 
the triangle ∆(pi

l, pj
l, pk

l) at level l. Let pl be an even 
vertex with valence n and p0

l, p1
l, p2

l, … , pn-1
l being its 

1-ring neighbors, its position pl+1at level l+1 is 
determined by the following rule[11]: 
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− πα = . The limit position of a 

vertex pl means the position that it attains as l→∞. The 
limit position of any vertex pl can be determined 
directly using the following limit position rule[11]: 
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 The position of a vertex pl can be 

determined at subdivision level m where m>l exploiting 
the following rule[11]: 
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where, m m
n n

2
( ) .
3

γ = − α  This rule is very useful and will 

be used in our conversion process to build the coarse 
control mesh for displaced subdivision representation. 
 With the help of the technique described in[18], the 
tangent masks for 3 -subdivision can be calculated to 
be 0 1 2 n 1(c ,  c ,  c ,  ,  c )−L  and n 1 0 1 n 2(c ,  c ,  c ,  ,  c )− −L , where 

ic cos(2 i / n)= π  

MATERIALS AND METHODS 
 
 Now, we elaborate the main techniques used by the 
proposed conversion process. 
 
Creating initial control mesh: The first step is to build 
initial control mesh 0M% ; it must be built with the goal 
that its normal space locally closely approximates the 
normal space of the given polygonal surface because it 
ensures that the resulting subdivision surface locally 
closely fits the given surface. For this purpose, we use a 
fast, simple, memory efficient and feature preserving 
error metric that automatically preserves locally the 
normal space of the original polygonal model[9] and a 
sequence of half-edge collapse transformations to 
simplify the triangle mesh. Here we give a brief 
description of the algorithm, for detailed account of the 
algorithm please consult[9]. The cost of an arbitrary 
half-edge collapse transformation ste :

v
vs→ vt: 

 

v es st

st t t ot
t T T

ˆCost(e ) ( n .n )
∈ −

= ∆ −∑
rv

 

 
Where: 
∆t = The area of the triangle t 

tn
r

, otn
)

 = The current normal (not unit normal) and the 

original unit normal to the triangle t 

svT  = The set of all triangles incident on vertex vs 

steT  = The set of triangles which share the edge est, 

(Fig. 1)  
 

 
 
Fig. 1: Edge collapse operation vs→vt eliminates the 

triangles 
steT  incident on est (shown in dark 

gray) and changes the orientation of the 
remaining triangles 

svT -
steT . Collapse of the 

edge est maps typically the triangle t = {vs, v1, 
v2} ∈ 

svT -Test onto the triangle t' = {vt , v1, v2}; 

for computing the distortion caused by t the 
deviation of the normal to t' (which is current 
normal to t) is calculated with respect to the 
original normal to t 
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 Half-edge collapse transformations are applied 
iteratively in a greedy manner until the error is below a 
threshold value; the greedy process is guided by the 
measure of geometric error described above. There is 
no need to employ any heuristic to ensure the local 
preservation of the normal space of the original model 
during the decimation process because the error metric 
described above automatically does this job, for more 
detail, please consult[9]. The normal at each vertex is 
approximated as the average of the normal vectors to 
the faces in 

svT . Original normal of each vertex is 

computed using the original polygonal model at a 
preprocessing stage and is stored for further processing. 
The normal vectors can also be computed using tangent 
masks for √3-subdivision scheme but we found that it 
does not make any difference. 
 
Optimization of the initial control mesh: Subdivision 
of the initial control mesh 0M% causes the generated 
subdivision surface to shrink because √3-subdivision is 
an approximating scheme, for detail consult[10]. The 
smooth subdivision surface locally closely fits the 
original surface only when it passes through the vertices 
of the initial control mesh because these vertices lie on 
the original surface. To force the subdivision surface to 
pass through these vertices, there is a need to readjust 
the positions of these vertices; this objective is 
accomplished by exploiting a kind of optimization 
technique; in the sequel we present the detail of this 
technique. 
 The optimization technique for readjusting the 
vertex positions of the initial control mesh is based on 
√3-subdivision rule described by Eq. 4. This rule, in 
particular, for m = 1, l = 0 and p0 = p can be expressed 
as: 
 

1 1 1
n np p (1 )p∞= γ + − γ   (5) 

 
 But according to the smoothing rule for even 
vertices specified by Eq. 2: 
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 From (5) and (6), we obtain the following equation: 
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where, p∞ is the  limit  position  of  the  vertex p  and pi 

(i = 1, 2, …, n) are 1-ring neighbors of p.  

 For each 0
ip M∈ % , there exists an equation similar 

to (7) and so we get a large sparse system of order r, 
where r is the number of vertices in the control mesh. 
Solving this system for pi′s, we get their positions 
which cause the subdivision surface to pass through 

ip 's∞ . The subdivision surface must interpolate the 

vertices of 0M%  so that it can locally closely fit the given 
polygonal surface because the vertices of 0M%  are on the 
polygonal surface as it has been created using half-edge 
collapses. So in the above mentioned system of linear 
equations, ip 's∞  are taken to be the vertices of 0M%  and 

the solution of the system yields their optimal positions 
pi′s. 
 The problem with this approach is that it results in 
excessive undulations in the smooth domain surface. To 
discourage such undulations and improve the quality of 
resulting smooth domain surface, we introduce 
additional degrees of freedom and then set these 
degrees of freedom by optimizing some energy 
functional subject to the linear constraints (8). We 
exploit the energy functional proposed in[8], which is 
defined as: 
 

2
e

e

E D
∈

=∑
E

  (8) 

 
Where: 
E = The set of all edges of the control mesh 
De = The difference between the normal vectors to the 

triangular faces incident on the edge e and can be 
expressed as:  
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Where: 
{p i, pj, pk, pl} = Vertices of the triangles incident on 

edge e 
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ijk∆  = The signed area of the triangle (I, j, k) 

le = The length of the edge e 
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Fig. 2: (Left) Stencil of edge e, V(e) = {pi, pj , pk, pl} is 

the set of vertices in the stencil. (Right) The sets 
of vertices V(i) and VF(i) in 1-ring 
neighborhood (dark shaded) and in flapped 1-
ring neighborhood (dark and light shaded 
without pi), respectively, of the vertex pi and 
E(i) is the set of bold edges 

 

 
 
Fig. 3: Error distribution showing the difference 

between the original model and the smooth 
domain surface created by proposed method 
(left) and the one (right) published in[10]. Left of 
the figure shows error ramp, error increases 
from zero (blue) to maximum (red) 

 
 The areas and the length are computed after 
applying hinge map on the stencil of the edge e (Fig. 2) 
taking e as hinge and rotating one of the triangular faces 
so that it lies in the plane of the other face. We choose 
this energy functional because it not only discourages 
excessive undulations in the smooth domain surface, 
but also smoothes and preserves locally the normal 
space of the control mesh and so it results in better 
compression ratio. 
 Now the problem of optimizing the vertex 
positions of 0M% is equivalent to the problem of 
optimizing the energy functional (8) subject to the 
linear constraints (7). Employing the method of 
Lagrange multipliers, this problem is equivalent to the 
solution of the following system of linear equations: 
 

 kn
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interpretation of E(i) and V(e) Fig. 2, VF(i) and V(i) are 
the sets of vertices in the flapped 1-ring neighborhood 
and 1-ring neighborhood of the vertex pi (Fig. 2) and 
(λ1, λ2, λ3, … , λr) is the vector of Lagrange multipliers, 
r being the number of vertices in 0M% . Eq. 9 and 10 are 
two rows of a large linear system of order 2r. Since the 
number of nonzero entries in each row is much smaller 
than r, so the system is a sparse linear system. In view 
of this, the problem of optimizing the vertex positions 
decomposes into the solutions of three independent 
sparse linear systems, one for each of x-, y- and z-
coordinates. We solve each of the system using 
biconjugate gradient method[20], which yields an 
acceptable solution in O(r) time. 
 
Polygonal surface as a displacement map: Optimized 
control mesh Mo is subdivided up to level k using 
refinement operators of √3-subdivision. Then, each 
vertex of the resulting surface Mk is pushed to its limit 
position using limit position rule of √3-subdivision to 
obtain the smooth surface Mk, which serves as a domain 
for representing the given polygonal surface model as a 
displacement map. The normal at each vertex is 
computed. The position of each vertex pi on Mk and its 
normal npi define the straight line p(t) = pi + tnpi; the 
length of the line segment between the vertex pi and pi' 
(the vertex where the line pierces the original surface) 
is the magnitude of the scalar offset, which is positive if 
intersection occurs in the direction of the outward 
normal otherwise it will be negative. This line may 
have multiple intersections or the original surface may 
be oriented in the wrong direction with respect to this 
line. If the directed line is intersected at more than one 
point, then we pick the one that is closest to the domain 
surface. In the second case we reject the intersection. 
To compute the intersections efficiently, we make use 
of OBB tree data structure[6]. 
 

RESULTS 
 
 Now, we describe the details of the algorithm that 
converts polygonal surface into the corresponding 
displaced subdivision surface representation (DSR). 
Following is the detail of the algorithm:  
 
Conversion_to_DSR() 
 Input: Polygonal surface model M (V,F) 
 Output: Displaced subdivision surface DSS = (M0, 

Dk), where M0 is the optimized control 
mesh and Dk offset values at subdivision 
level k 
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 0M% ← Create_Initial_Control_Mesh (M) 

 Mo ← Optimize_Initial_Control_Mesh (M, 0M% ) 
 Mk ← Subdivide_Optimized_Control_Mesh (Mo, k) 
 Dk ← Compute_Offset_Values (M, Mk) 
 
 The optimized control mesh M0 and the offset 
values Dk form the displaced subdivision surface 
representation (DSR): 
 

DSR = S∞SkM0 + Dk 
 
where, S∞ and Sk are matrix forms of limit position rule 
and refinement operators, respectively, of √3-
subdivision. 
 Figure 4 demonstrates the different stages of the 
algorithm and the output of the algorithm for Venus 
model. Figure 5 shows the conversion of horse model. 
 

 
 
Fig. 4: (Top row: left) Original Venus model M (# 

faces 268,686; size on disk 9.67 MB) and (Top 
row: Right) Displaced subdivision surface 
(#faces 64476, size on disk 460-24 KB for 
control mesh and 336 KB for displacement 
map). Bottom row demonstrates the four phases 
of the conversion process: (bottom row: Left) 
raw control mesh 0M%  (#faces 796), (bottom 
row: Middle left) optimized control mesh M0, 
(bottom row: Middle right) smooth domain 
surface Sk, k = 4 obtained by subdividing M0 
and (bottom row: right) displacement field that 
encodes the difference of M and Sk  

 

 
 
Fig. 5: Horse model (courtesy cyber-ware): (Left) 

Original T: 96966, (middle) smooth domain 
surface, Sk = 4, T: 64476, (right) displaced 
subdivision surface 

DISCUSSION 
 
 Our implementation of the proposed algorithm has 
been tested on many public domain polygonal surface 
models. Here, we discuss the performance of the 
algorithm using only two typical benchmark models. 
 
Compression ratio: The √3-subdivision technique 
increases the number of vertices by a factor of 2, 
whereas Loop subdivision increases this number by a 
factor of 3 after each subdivision step. Lee et al.[13] 
use Loop subdivision. So the size of the set of offset 
values- Dk-produced by the proposed method is less 
by 33% as compared to the one generated by the 
method of Lee et al.[13,14] Also, it is obvious from error 
distribution shown in Fig. 3 that most of the offset 
values are close to zero and the range of these values is 
small, so the proposed method results in higher 
compression ratios. 
 
Quality of the generated surfaces: For objective 
evaluation of the displaced subdivision surfaces 
generated by the proposed algorithm, we use mean 
square geometric error -L2- and compute it using well-
known IEI-CNR metro tool[2]. Column 5 of Table 1 
shows L2 as the percentage of the diagonal of the 
bounding box for various models. It is apparent that the 
surfaces generated by the proposed method compare 
well with the original polygonal surfaces. Because the 
implementation of the algorithm by Lee et al.[13] is not 
available in public domain, we cannot make 
comparison directly with it in terms of quality. 
Anyhow, according to the error statistics reported in[13] 
(Table 1), L2 error is 0.027 for Venus model with 
control mesh consisting of 748 faces and displaced 
subdivision surface having 191488 faces, whereas this 
error in our case is 0.011 (Table 1) in spite of the 
displaced subdivision surface being smaller in size. 
Though this is not exact comparison, it gives the idea 
that quality of the displaced subdivision surfaces 
generated by the proposed method is better. It is 
obvious from Fig. 3 that the proposed method 
performs better even than the one proposed in[10] in 
terms of the quality. 
 
Table 1: Sizes of the original model, corresponding Displaced Mesh 

(DM) and control mesh (CM) are given as the number of 
triangle faces 

 Size of M Size of Sk Size of M0   
Model (# faces) (# faces) (# faces) L2 (%) 
Horse  96966  64476  796  0.032 
Rabbit  134074  64476  796  0.015 
Venus  268686  64476  796  0.011 
Ball joint  274120  85536  1056  0.015 
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Table 2: Execution times (sec) 
Process  Horse  Rabbit  Venus  Ball joint  
Simplification  16.58  23.20  49.83  51.10  
Optimization  0.41  0.45  0.55 1.02  
Sampling  14.05  14.88  27.89  28.28  
Total (sec)  31.05  38.53  78.27 80.40 

 
Table 3: Execution times (min) taken from[13] 
Process  Armadillo  Venus  Bunny  Dinosaur  
Size (#F)  210,944  100,000  69,451  342,138  
Simplification  61  28  19  115  
Optimization  25  11  11  43  
Sampling  2  2  1  5  
Total (min) 88 41 31 163 

 
Time complexity: For creating initial control mesh, the 
method proposed by Lee et al.[13] involves computing 
the parameterization of the original polygonal surface 
using MAPS[14] during the simplification process and a 
large number of comparisons to ensure that the normal 
space of the original polygonal surface is locally 
preserved. And they optimize the initial control mesh 
by solving a nonlinear optimization problem. In 
comparison, our approach doesn’t involve any 
constraint to insure local preservation of normal space 
while simplification and our optimization technique is 
based on the linear problem of solving three sparse 
linear systems. This analysis shows that the running 
time of the proposed algorithm is far more less than that 
by Lee et al.[13]. The empirical results shown in Table 2 
and 3 demonstrate this fact. The execution times of 
Table 2 have been reported on a 550 MHz pentium III 
machine. The execution times of the original displaced 
subdivision surface scheme, shown in Table 3 (taken 
from[13]), also have been obtained on 550 MHz pentium 
III PC. Although in our experiments, we have used 
different models and a machine that might have 
different architecture, even then we can have an overall 
idea about the running efficiency. 
 
Space complexity: Apart from the memory required 
for the optimization process, the method proposed in[13] 
for building initial control mesh needs 64 r bytes 
(assuming that floats are used), where r is the number 
of vertices in M, for simplification and parameterization 
procedures in addition to necessary space requirements 
for storing the geometry and connectivity of M. The 
proposed technique requires only 24 r bytes, so it 
significantly cuts off the memory overhead. Note that 
the quadric error metric needs 40 bytes of memory per 
vertex and the parameterization requires 4 bytes per 
vertex and 8 bytes per vertex are needed for 
management of priority queue. The error metric which 
we  employed  consumes  only 4 bytes per vertex and 
12 bytes are utilized to store the original normal at each 

vertex; the simplification approach adapted in this 
proposal stores original normal for the calculation of 
error metric whereas it is stored by the method in[10] for 
heuristic used for locally preserving the normal space. 
Note that the memory requirements of the proposed 
scheme are almost the same as those of the method 
proposed in[10]. 
 

CONCLUSION 
 
 An efficient technique has been presented for 
building smooth domain surface for displaced 
subdivision surface representation, which is not only 
fast and memory efficient but also generates displaced 
surfaces of better quality and results in higher 
compression ratio. As our main contribution is an 
efficient method for the construction of smooth domain 
surface, so the displaced subdivision surfaces generated 
by the proposed method offer all those benefits as have 
been demonstrated by Lee et al.[13], i.e., compression, 
editing, animation and scalability. The only limitation 
of this algorithm is that at the moment it is applicable 
only to closed polygonal surface models. 
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