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Abstract: Problem statement: Ant Colony System (ACS) is the most popular algorithm used to find 
a shortest path solution in Traveling Salesman Problem (TSP). Several ACS versions have been 
proposed which aim to achieve an optimum solution by adjusting pheromone levels. However, it still 
has a room on an improvement. This research aims to improve the algorithm by embedding individual 
Malaysian House Red Ant behavior into ACS. Approach: Modeling individual ants’ ability 
reconstructing a path can provide a general idea on how such behavior can improve existing basic ACS 
ability in finding solution. This study presents a model of Dynamic Ant Colony System with Three 
Level Update (DACS3) which developed by embedding such behavior into ACS. The three level 
phases of pheromone updates are: local construction, local reinforcement and global reinforcement. 
The performance of DACS3 is measured by its shortest distance and time taken to reach the solution 
against several ant colony optimization algorithms (ACO) on TSP ranging from 14 to 100 cities by 
running the algorithm in c language. Results: The result shows that DACS3 has reached the shortest 
distance benchmark for dataset 14, 30 and 57 and has 0.5% differences for data set 100. While, others 
ACO manage to reach for data set 14 and 30 only and reached about 2.5% differences for data set 100. 
For dataset 57, DACS has reached 4.6% differences whilst ACS has reached 2.5% differences. 
Conclusion: Embedding a simple behavior of a single ant into ACS influences an achievement to 
reach an optimal distance and also can perform considerably faster compare to other ACO’s 
algorithms.  
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INTRODUCTION 
 
 Today’s business environment is increasingly 
complex and dynamic, with substantial flexibility 
required in operations. This is especially true of the 
logistics and transportation industry, where the need to 
deliver on time and to fulfill changes in customer 
requests makes it important to find the shortest paths 
for a delivery route. People, as we know, have a 
reduced ability to see the overall problem, particularly 
when the problem is relatively complex in term of its 
size and constraints. However, this inability can be 
overcome with the help of certain advanced 
optimization methods, which can aid humans in 
expediting the process. 
 The Ant Colony System (ACS) is one the most 
successful algorithm used in combinatorial optimization 
problems such as the Traveling Salesman Problem 
(TSP), Vehicle Routing Problem (VRP), Job-Shop 

Scheduling Problem (JSP) and Quadratic Assignment 
Problem (QAP)[1,6]. The algorithm is inspired by the 
foraging behavior of a colony of ants, which 
communicate through chemical substances called 
pheromones, acting as a memory preservation 
mechanism and providing guidance for ants in 
searching for shortest paths[2].  
 The principle of cooperation is the backbone of 
these algorithms. However, observing the behavior of a 
single ant can add value to the principle. Manipulating 
pheromone substances is a simple addition that can help 
to find the best solution. Therefore, many versions of 
ACS algorithms have been produced to find the shortest 
path by using the principle of cooperation among the 
ants. This study looks at individual ants’ behavior in 
trying to reconnect paths previously laid by the colony 
when an obstacle is placed on such paths. Such 
blockages add another level of pheromone updates, 
which could contribute to faster optimum solutions.  
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 This study concentrates on an improvement of an 
ACS applied to the TSP domain, as first presented by 
Marco Dorigo[3]. The problem is to find the shortest 
tour of all the cities, where all cities are connected to 
each other and visiting each city only once. 
  

MATERIALS AND METHODS 
 

Ant behaviors: Nature is a good source of solutions to 
problems faced by humans. Ants provide a good 
example for the case of transporting goods or finding 
shortest paths. Ants are social insects which cooperate 
through group communication, laying down chemical 
substances called pheromones[4] to mark locations that 
have already been visited. The pheromones also serve 
as a reference for the return route back to their nest. 
These pheromones are then used by other ants as an 
indicator of the best path between the nest and food 
sources. The amount of pheromone laid determines 
whether the path is desirable to be taken by others; 
higher pheromone levels indicate more desirable routes. 
 Research on social insects began in the early 
twentieth century, when the South African scientist 
Eugene Marais (1872-1936) focused his attention on 
the behavior of termites, which he refers to as White 
Ants in his research. His research was then picked up 
by Konrad Lorenz (1903-1989) in his studies of 
imprinting and instinctive behavior of termites. 
Although both scientists are considered to be pioneers 
in the field of Ethology, the scientific studies of animal 
behavior, they were unaware of the actual mechanics of 
termite communication[5]. The answer to this question 
was discovered in the 1940s and 1950s when a French 
biologist named Pierre Paul Grasse investigated how 
termites communicate. He discovered that social insects 
react to significant stimuli that activate genetically 
encoded reactions called stigmergy, which describe as a 
type of indirect communication that workers stimulated 
by the performance they achieved[6]. The characteristics 
of stigmergy were also found in single and double 
bridge experiments on Argentine Ants, where they 
studied the pheromones laying and following behavior 
of ants[7].  
 Margo Dorigo et al.[11] applied the results of these 
experiments to artificial ants, basing his research on 
ethologist studies that found ants established shortest 
paths based on pheromone trails. He took it one step 
further to study the random movement of ants, which he 
referred to as autocatalytic behavior, where ants move at 
random, detect an existing trail, decide to follow and then 
re-enforce by laying down its own pheromones. 
Autocatalytic behavior is a process of positive and 
negative feedback, or pheromone reinforcement and 
evaporation, that causes very rapid convergence[3,8]. 
Figure 1 show the experimental setup of Marco Dorigo, 
where an obstacle was placed in the path of multiple ants. 

 
 

Fig. 1: Obstacle experiment 
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Fig. 2: Single ant obstacle experiment 
 
 The principle of cooperation among swarm insects 
is that communication among individuals contributes to 
the survival of the group as a whole[9]. We have 
conducted experiments to several colonies of Malaysian 
House Red Ants by using the experimental method of 
Marco Dorigo. An object or obstacle is placed on a 
single ant’s normal path to find out how it behaves[10]. 
Malaysian House Red Ant is a small size red ant 
species and because of its size, it walks pattern is very 
slow and can easily be observed. The experiment is 
conducted at a time when there are not many ants in the 
colony or the colony is inactive, normally late at night. 
It is very important to find a good trail set up by the 
early colony activities in order for an individual ant to 
walk with. Figure 2 shows ant behavior in constructing 
its paths.  
 An ant travels along its normal path, Point A � 
Point B, following the strategic rules set out by the 
pheromones. When we put an obstacle in its path, the 
ant begins to search for an alternative route. It begins 
by examining both edges of the obstacle several times. 
Once it chooses a shorter edge to continue along, it 
begins to set up the path by visiting the shorter edge 
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point d from point c and then tries to find a point e 
which returns to the existing trail. Once it does so, 
reinforces the newly constructed path by revisiting 
(c,d,e) several times. 
 Once the new alternative path has received enough 
reinforcement, the ant then continues its journey using 
the path that existed before the obstruction. However, 
after some distance, it returns to the point c, where it 
restarts its journey and continues to reinforce the 
remaining path several times. 
 From our observation, we can see that many of the 
individual ant experience a chaotic behavior[19] but few 
has a bit of an intelligent try to reconstruct the trail. 
Thus, by observing these few intelligent ants, we can 
conclude that to construct paths or a tour, there are 
three events involved: one event for path construction 
and two events for trail reinforcement. 
 
Ant Colony Optimization (ACO) metaheauristic 
background: 
Ant System (AS): AS was first introduced and applied 
to TSP by[3]. Initially, ants were placed on n cities, 
moving from city r to city s using probabilistic formula 
called random-proportional rules: 
 

k

ku j (e)

[ (r,s)].[ (r,s)]
if s J (r)

[ (r,u)].[ (r,u)]
S

0 otherwise

β
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∈

� τ η ∈� τ η�= �
�
��

�  (1) 

 
 The Euclidean distance formula (dij = ([xi-xj]

2+[yi-
yj]

2)1/2) is used to calculate the move distance between 
city r and city s. τ(r,s) is the trail intensity of edge (i,j) 
and the visibility η (r,s) = 1/dij is the inverse distance of 
move (r,s). � is a parameter which determines the 
relative importance of distance versus pheromone level 
(�>0). Jk(r) is the set of cities that remains to be visited 
by ant k when positioned at city r. After all ants have 
completed a tour, the pheromone level on all edges is 
updated using a local pheromone updating rule[6], as 
follows: 
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(1-p) is the pheromone decay parameter (0<p<1), 
representing the trail evaporation when the ant chooses 

a city and decide to move. Lk is the length of the tour 
performed by ant k and m is the number of ants. 
 
Ant Colony System (ACS): Luca Maria Gambardella 
and his colleague[11] have modified the AS algorithm, 
introducing the ACS to provide more balance and 
guidance in searching. Firstly, the state transition rules 
(pseudo-random proportional rules) combine Eq. 1 and 
3, providing a direct method to balance between 
exploring new edges and exploiting existing edges. 
Secondly, only edges that belong to the best ant tour are 
allowed to undergo pheromone updates through a 
global pheromone updating rule. Finally, the local 
pheromone updating rule is applied while ants are 
trying to construct a solution[12]: 
 

0
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 Each ant builds a tour by repeatedly applying the 
state transition rules. q is a random number uniformly 
distributed [0.1] and q0 is the parameter (0�q0�1) which 
determines the relative importance of exploitation 
versus exploration.  
 While constructing a tour, an ant will modify the 
pheromone level on the visited edges using the local 
pheromone updating rule Eq. 4. Lmn is the tour length 
produced by the nearest neighbor heuristic and n is the 
total number of cities[13]: 
 

0

0 mn

(r,s) (1 p). (r,s) p.

wher (1 / L .n)
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 (4) 

 
 After all ants have constructed a tour, only the 
globally best ant which produces the shortest tour from 
the beginning of the trial will be allowed to do 
pheromone updates using the global pheromone 
updating rule Eq. 5. Lgb is the length of the globally 
best tour from the beginning of the trial[14]: 
 

gb
k
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Max-Min Ant System (MMAS): Stutzle and Hoos[15] 
considered ACS when developing MMAS, but 
otherwise make improvements directly onto AS. 
MMAS is different in three ways. The first 
improvement is that only one ant would update the 
pheromone, which is the same as the model of ACS, but 
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it could choose whether to update one solution of the 
current iteration or follow the global best solution. 
Second, the pheromone strength was to be bounded to 
upper and lower limit[tmax, tmin] in order to avoid search 
stagnation. Lastly, the initial value for pheromone 
strength was initializing to tmax which was intended to 
provide a higher search exploration of solution at the 
beginning of the algorithm runs[16]: 
 

best
rs

best best
rs

(r,s) p. (r,s)

wher 1 / f (s )

τ = τ + ∆τ

∆τ =
 (6) 

 
 Equation 6 shows how MMAS performs the 
pheromone updates. sbest could be either the global 
solution from the beginning of the trail or the solution 
of the current iteration. However, MMAS prefers to use 
the iteration’s best solution, this is the most important 
element in the MMAS search. By making this choice, 
the solution elements that frequently occur would 
receive large pheromone reinforcements which result in 
considerably different solutions from iteration to 
iteration: 
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 One stabilizer mechanism that was introduced in 
MMAS is Pheromone Trails Smoothing (PTS). PTS, 
represented by Eq. 7, was used in MMAS to improve 
performance. When MMAS is close to convergence, 
this mechanism helps increases pheromone trails 
proportionally to the maximum pheromone trail limit. 
The advantage of the mechanism is that the information 
gathered during the run is not completely lost, but 
merely weakened. This mechanism is interesting when 
a long run is allowed. 
 
Dynamic Ant Colony System (DACS): Yi and 
Gong[17] have proposed an algorithm which is a direct 
improvement of AS, but considers the improvement 
made in ACS and MMAS by introducing dynamic 
decay parameter (1-p[τ(r,s)]) to avoid pheromone levels 
growing too high and reaching local optima. With the 
theory that intense pheromones evaporate more quickly 
than faint pheromones, the dynamic decay parameter 
was applied to both the local pheromone updating rule, 
Eq. 8 and the global pheromone updating rule, Eq. 9: 
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 Yi and Gong also try to accelerate the computation 
of the solution by allowing the best and worst tour done 
by ants to do pheromone updates. Lgw is the length of 
the globally worst tour and Lgb is the length of the 
globally best tour: 
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 These ACO algorithms adopt several other 
strategies[18] to improve solution quality and/or achieve 
better performance, such as candidate list, don’t look bit 
and tour improvement heuristics. 
 
Dynamic ant colony system 3 level updates 
(DACS3): DACS3 considers the basic concepts 
introduced in ACS and DACS. However, we apply 
individual ant behavior as shown in Fig. 2, so DACS3 
differs from previous systems in three ways. First, 
capturing all knowledge from the group and updating 
the pheromone level once the knowledge becomes 
available would expedite the process and increase the 
chances of finding a better solution. Second, a dynamic 
penalty on worst tours would open up chances for ants 
to navigate, limiting intentions and providing caution in 
an ant’s decision to move. Finally, only one best tour 
from group performance is considered when applying 
the global pheromone updating rule, which is compared 
with two subdivided sections (best of the best and worst 
of the best). Figure 3 shows the workflow of the 
DACS3 model. 
 In the local construction phase, all cities are 
considered as starting cities r. Every ant would have to 
make a complete tour and the decision to choose which 
city s to move to is provided by state transition rules 
Eq. 1 and 3. Even though we use both exploitation and 
exploration decision rules to move, we favor 
exploration as the main strategy in finding solution. 
Every time an ant visits a city s, it modifies the 
pheromone level by using the local pheromone 
updating rule, Eq. 4. The reason why we used the ACS 
version of local pheromone updating rule is because we 
believed that when an ant moves to a new location, it 
would make a constant pheromone deposit and 
evaporation. 
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Fig 3: DACS3 Diagram 
 
 Once all ants in the group completed their tours, 
the available knowledge of every member of the group 
will then be used to modify the pheromone level using 
the intermediate pheromone updating rule Eq. 10 in the 
local reinforcement phase. The updates are necessary 
before all ants in the group can be given a new task to 
complete. In this phase, the dynamic decay parameter 
will be used because it helps to alleviate an early 
stagnation, reducing the possibility of pheromone levels 
growing too high. 
 All current completed tours in the group will be 
compared to the group best tour in the current iteration 
and to the group worst tour from the beginning of trial. 
If no match is found, the edges would experience 
normal dynamic evaporation. This method will boost 
very effort the ants make to produce the best tour but: 
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dampen the worst tour from group performances. The 
dynamic penalty[p.τ(r,s)] is used to caution all ants off 
the bad paths on the next tour. Lgrb is the total distance 
of the best tour in the current iteration and Lgrw is the 
total distance of the worst tour of the group from the 
beginning of the trial. 
 The pheromone level is again modified using the 
global pheromone updating rule, Eq. 11. Only the best 
tour from the group performance will be considered for 
the pheromone updates. Every move in the solution or 
the tour will be compared with every move in the 
complete tours gathered for two categories, best of the 
best and worst of the best. This method will provide 
better search guidance in the effort to search for a better 
solution: 
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 Lgb is the total distance of the globally best tour 
(best of the best) and Lgw is the total distance of the 
globally worst tour (worst of the best) from the 
beginning of the trial. Fig. 4 shows how the DACS3 
algorithm works. In this algorithm, we do not apply any 
additional strategic techniques or heuristics. 
 The experimental setup: The algorithm was tested 
using several datasets taken from TSPLIB. The 
algorithm was developed in the C language in 
Microsoft Visual Studio. Testing was performed on a 
machine with an Intel(R) Pentium (R) M 1.86GHz 
processor with 1 gigabyte of physical memory. 
Burma14 (GEO), Oliver30, Berlin52 and KroC100 
(Euclidean) were taken as a case study for algorithm 
comparison.  
 The experiments sought to determine which 
algorithms could reach optimal distance, if all tested 
algorithms were able to find it and then performance 
speed would be the second measurement. For 
comparison, the first column is the best distance from 
the beginning of the trail, as compared to the 
benchmark distance. The second column shows the 
number of iteration required to come up with the best 
distance. The third column is an average time from 15 
trials. Distance was measured by the integer distance 
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(the roundup distance from each moves) and the real 
distance (in the bracket). The value is measured in 
Euclidean and GEO distances. Real distance was used 
as a measurement in calculating distances for Euclidean 
datasets, while integer distance was used as the basis of 
the distance calculation for GEO datasets. Table 1 
shows the parameter settings for the DACS3 
experiment, which is a similar setup from research on 
the ACS and DACS algorithms[2,5,10,13,16]. 
 

GlobalBestTour = ∞ ; 
GlobalWorstTour = 0; 
LocalGroupWorstTour = 0; 
Initialize pheromone level for all cities = 0τ ; 
Generate initial solution using Nearest Neighbor (NN) heuristic; 
CPU timer starts;  
/* Trial begins */ 
Do 
     /* Iteration begins */ 
     If i <= n 
          LocalGroupBestTour =∞ ; 
          For k = 1 to m 
               Start city = i; 
               Do 
                    Select the next city j; 
     /*Perform Local Pheromone Update*/ 
     Update trail level ijτ ; (Equation (4)) 

               While (until all cities visited) 
          EndFor 
          /*Perform Intermediate Pheromone Update*/ 
          For k = 1 to m 
               Compute tour distance; 
               If (tour distance < LocalGroupBestTour) 
                    LocalGroupBest = current solution; 
               Else if (tour distance > LocalGroupWorstTour) 
     LocalGroupWorst = current solution; 
               Else 
     /*Pheromone updates for others*/ 
     Update trail level ijτ ; (Equation (10)) 

               EndIf 
          /*Pheromone updates for LocalGroupBest &   LocalGroupWorst*/ 
          Update trail level ijτ  for LocalGroupBest; (Equation (10)) 

          Update trail level ijτ  for LocalGroupWorst; (Equation (10)) 

          EndFor 
     EndIf 
     /*Perform Global Pheromone Update*/ 
     Compute tour distance of LocalGroupBest 
     If (tour distance < GlobalBestTour) 
          GlobalBest = LocalGroupBest; 
     Else if (tour distance > GlobalWorstTour) 
          GlobalWorst = LocalGroupBest; 
     Else 
          /*Pheromone updates for others*/ 
          Update trail level ijτ ; (Equation (11)) 

     EndIf 
     /*Pheromone updates for GlobalBest & GlobalWorst*/ 
     Update trail level ijτ  for GlobalBest; (Equation (11)) 

     Update trail level ijτ  for GlobalWorst; (Equation (11)) 

While (until all termination statements satisfied)  
 
Fig 4: DACS3 algorithm 
 
Table 1: DACS3 parameter settings 
Parameters Value 
Ants population size 10.0 
q0 0.9 
β 2.0 
p 0.1 
Max iterations 10000.0 

RESULTS 
 
 Table 2 shows the experimental results of DACS3 
compared to several other algorithms. Figure 5 shows 
the percentage difference to optimal distance. Figure 6 
shows the time taken to reach final solution. Figure 7a-
d shows log graphs of shortest distance versus 
iterations. The comparison is done for DACS3 with 
ACS and DACS for datasets Burma14, Oliver30, 
Berlin52 and KroC100. 
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Table 2: Result comparison between algorithms 
 DACS3     DACS   ACS 
 --------------------------------------------------------- ------------------------------------------ ------------------------------------------- 
TSP Optimal Best Best Average Best Best Average Best Best Average 
Problem Distance Distance Iteration Time (sec) Distance Iteration Time (sec) Distance Iteration Time (sec) 
Burma14 3323 3323.00 94 1.003 3323.00 527 4.823 3323.00 527  
(14-city problem) (N/A) -3330.61   -3330.61   -3330.61  4.767 
Oliver30 420 420.00 168 7.043 420.00 1826 71.582 420.00 1826 
(30-city problem) -423.74 -423.74   -423.74   -423.74  72.501 
Berlin52 7542 7542.00 6447 1278.590 7881.00 3661 694.835 7732.00 6050 
(52-city problem) (N/A) -7544.37   -7880.78   -7734.11  1165.081 
KroC100 20749 20880.00 7954 10856.385 21190.00 1720 2242.229 21170.00 2670 
(100-city problem) (N/A) -20881.61   -21191.37   -21172.26  3532.969 
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Fig. 7b: Log graph algorithm comparison for Oliver30 
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DISCUSSION 
 
 From the result, DACS3 reached the optimal 
benchmark distance for all case studies except for 
KroC100, where the difference is very small (0.6%). 
ACS and DACS are also able to reach the optimal 
benchmark distance for the Oliver30 and Burma14 data. 
ACS takes 2.5 and 2.0% longer and DACS takes 4.4 
and 2.1% longer for the Berlin52 and KroC100 datasets 
respectively. In term of time to solution, DACS3 
performs 90 and 75% faster compared to ACS and 
DACS for Oliver30 and Burma14 respectively. 
However, DACS3 takes a longer time to reach the final 
solution for larger datasets (Berlin52 and KroC100) but 
DACS3 achieved better solution quality compared to 
ACS and DACS. 

 DACS3 has obtained good searching performance 
on small-sized problems (Burma 14 and Oliver 30). 
This is shown by the fact that DACS3 has outperforms 
other algorithms throughout the run. However, when 
DACS3 searches for solutions for slightly bigger 
problems (Berlin50 and KroC100), it performs poorly 
at the beginning of the search but produces good 
performance in the middle and end of the run. 
 

CONCLUSION 
 
 Based on the results stated above, we can 
concludes that manipulating and empowering the 
available knowledge of the individual ants can provide 
a significant advantage in solving the problem as a 
whole. Harnessing the experiences of every single 
individual can expedite the process of finding a good or 
better solution, either in shorter distance or time to 
solution. We conclude that DACS3 has outstanding 
search performance for smaller datasets, but performs 
slightly worse at the beginning of the search on larger 
datasets. Since DACS3 has reach shortest distance 
among other, therefore, the next step is to optimize the 
search performance of DACS3 using various strategic 
techniques such as candidate list, Pheromone Trails 
Smoothing (PTS) and the elitist ant concepts.  
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