
Journal of Computer Science 4 (11): 934-941, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Zulaiha Ali Othman, Faculty of Information Science and Technology, Centre of Artificial Intelligent
Technology, Universiti Kebangsaan Malaysia, Malaysia Tel: 03 89216754 Fax: 03 89216184

934

Embedding Malaysian House Red Ant Behavior into an Ant Colony System

Zulaiha Ali Othman, Helmi Md Rais and Abdul Razak Hamdan

Faculty of Information Science and Technology, Centre of Artificial Intelligent Technology,
Universiti Kebangsaan Malaysia, Malaysia

Abstract: Problem statement: Ant Colony System (ACS) is the most popular algorithm used to find
a shortest path solution in Traveling Salesman Problem (TSP). Several ACS versions have been
proposed which aim to achieve an optimum solution by adjusting pheromone levels. However, it still
has a room on an improvement. This research aims to improve the algorithm by embedding individual
Malaysian House Red Ant behavior into ACS. Approach: Modeling individual ants’ ability
reconstructing a path can provide a general idea on how such behavior can improve existing basic ACS
ability in finding solution. This study presents a model of Dynamic Ant Colony System with Three
Level Update (DACS3) which developed by embedding such behavior into ACS. The three level
phases of pheromone updates are: local construction, local reinforcement and global reinforcement.
The performance of DACS3 is measured by its shortest distance and time taken to reach the solution
against several ant colony optimization algorithms (ACO) on TSP ranging from 14 to 100 cities by
running the algorithm in c language. Results: The result shows that DACS3 has reached the shortest
distance benchmark for dataset 14, 30 and 57 and has 0.5% differences for data set 100. While, others
ACO manage to reach for data set 14 and 30 only and reached about 2.5% differences for data set 100.
For dataset 57, DACS has reached 4.6% differences whilst ACS has reached 2.5% differences.
Conclusion: Embedding a simple behavior of a single ant into ACS influences an achievement to
reach an optimal distance and also can perform considerably faster compare to other ACO’s
algorithms.

Key words: Dynamic Ant Colony System (DACS), Traveling Salesmen Problem (TSP), optimization,

swarm intelligent

INTRODUCTION

 Today’s business environment is increasingly
complex and dynamic, with substantial flexibility
required in operations. This is especially true of the
logistics and transportation industry, where the need to
deliver on time and to fulfill changes in customer
requests makes it important to find the shortest paths
for a delivery route. People, as we know, have a
reduced ability to see the overall problem, particularly
when the problem is relatively complex in term of its
size and constraints. However, this inability can be
overcome with the help of certain advanced
optimization methods, which can aid humans in
expediting the process.
 The Ant Colony System (ACS) is one the most
successful algorithm used in combinatorial optimization
problems such as the Traveling Salesman Problem
(TSP), Vehicle Routing Problem (VRP), Job-Shop

Scheduling Problem (JSP) and Quadratic Assignment
Problem (QAP)[1,6]. The algorithm is inspired by the
foraging behavior of a colony of ants, which
communicate through chemical substances called
pheromones, acting as a memory preservation
mechanism and providing guidance for ants in
searching for shortest paths[2].
 The principle of cooperation is the backbone of
these algorithms. However, observing the behavior of a
single ant can add value to the principle. Manipulating
pheromone substances is a simple addition that can help
to find the best solution. Therefore, many versions of
ACS algorithms have been produced to find the shortest
path by using the principle of cooperation among the
ants. This study looks at individual ants’ behavior in
trying to reconnect paths previously laid by the colony
when an obstacle is placed on such paths. Such
blockages add another level of pheromone updates,
which could contribute to faster optimum solutions.

J. Computer Sci., 4 (11): 934-941, 2008

 935

 This study concentrates on an improvement of an
ACS applied to the TSP domain, as first presented by
Marco Dorigo[3]. The problem is to find the shortest
tour of all the cities, where all cities are connected to
each other and visiting each city only once.

MATERIALS AND METHODS

Ant behaviors: Nature is a good source of solutions to
problems faced by humans. Ants provide a good
example for the case of transporting goods or finding
shortest paths. Ants are social insects which cooperate
through group communication, laying down chemical
substances called pheromones[4] to mark locations that
have already been visited. The pheromones also serve
as a reference for the return route back to their nest.
These pheromones are then used by other ants as an
indicator of the best path between the nest and food
sources. The amount of pheromone laid determines
whether the path is desirable to be taken by others;
higher pheromone levels indicate more desirable routes.
 Research on social insects began in the early
twentieth century, when the South African scientist
Eugene Marais (1872-1936) focused his attention on
the behavior of termites, which he refers to as White
Ants in his research. His research was then picked up
by Konrad Lorenz (1903-1989) in his studies of
imprinting and instinctive behavior of termites.
Although both scientists are considered to be pioneers
in the field of Ethology, the scientific studies of animal
behavior, they were unaware of the actual mechanics of
termite communication[5]. The answer to this question
was discovered in the 1940s and 1950s when a French
biologist named Pierre Paul Grasse investigated how
termites communicate. He discovered that social insects
react to significant stimuli that activate genetically
encoded reactions called stigmergy, which describe as a
type of indirect communication that workers stimulated
by the performance they achieved[6]. The characteristics
of stigmergy were also found in single and double
bridge experiments on Argentine Ants, where they
studied the pheromones laying and following behavior
of ants[7].
 Margo Dorigo et al.[11] applied the results of these
experiments to artificial ants, basing his research on
ethologist studies that found ants established shortest
paths based on pheromone trails. He took it one step
further to study the random movement of ants, which he
referred to as autocatalytic behavior, where ants move at
random, detect an existing trail, decide to follow and then
re-enforce by laying down its own pheromones.
Autocatalytic behavior is a process of positive and
negative feedback, or pheromone reinforcement and
evaporation, that causes very rapid convergence[3,8].
Figure 1 show the experimental setup of Marco Dorigo,
where an obstacle was placed in the path of multiple ants.

Fig. 1: Obstacle experiment

Blockade

c (stop)

d (edge)

e (re - start)

Poi nt A

Point B

Existing trail

Remaining trail

Rein forcing

Trail

Rein forcing

Trail

Fig. 2: Single ant obstacle experiment

 The principle of cooperation among swarm insects
is that communication among individuals contributes to
the survival of the group as a whole[9]. We have
conducted experiments to several colonies of Malaysian
House Red Ants by using the experimental method of
Marco Dorigo. An object or obstacle is placed on a
single ant’s normal path to find out how it behaves[10].
Malaysian House Red Ant is a small size red ant
species and because of its size, it walks pattern is very
slow and can easily be observed. The experiment is
conducted at a time when there are not many ants in the
colony or the colony is inactive, normally late at night.
It is very important to find a good trail set up by the
early colony activities in order for an individual ant to
walk with. Figure 2 shows ant behavior in constructing
its paths.
 An ant travels along its normal path, Point A �
Point B, following the strategic rules set out by the
pheromones. When we put an obstacle in its path, the
ant begins to search for an alternative route. It begins
by examining both edges of the obstacle several times.
Once it chooses a shorter edge to continue along, it
begins to set up the path by visiting the shorter edge

J. Computer Sci., 4 (11): 934-941, 2008

 936

point d from point c and then tries to find a point e
which returns to the existing trail. Once it does so,
reinforces the newly constructed path by revisiting
(c,d,e) several times.
 Once the new alternative path has received enough
reinforcement, the ant then continues its journey using
the path that existed before the obstruction. However,
after some distance, it returns to the point c, where it
restarts its journey and continues to reinforce the
remaining path several times.
 From our observation, we can see that many of the
individual ant experience a chaotic behavior[19] but few
has a bit of an intelligent try to reconstruct the trail.
Thus, by observing these few intelligent ants, we can
conclude that to construct paths or a tour, there are
three events involved: one event for path construction
and two events for trail reinforcement.

Ant Colony Optimization (ACO) metaheauristic
background:
Ant System (AS): AS was first introduced and applied
to TSP by[3]. Initially, ants were placed on n cities,
moving from city r to city s using probabilistic formula
called random-proportional rules:

k

ku j (e)

[(r,s)].[(r,s)]
if s J (r)

[(r,u)].[(r,u)]
S

0 otherwise

β

β

∈

� τ η ∈� τ η�= �
�
��

� (1)

 The Euclidean distance formula (dij = ([xi-xj]

2+[yi-
yj]

2)1/2) is used to calculate the move distance between
city r and city s. τ(r,s) is the trail intensity of edge (i,j)
and the visibility η (r,s) = 1/dij is the inverse distance of
move (r,s). � is a parameter which determines the
relative importance of distance versus pheromone level
(�>0). Jk(r) is the set of cities that remains to be visited
by ant k when positioned at city r. After all ants have
completed a tour, the pheromone level on all edges is
updated using a local pheromone updating rule[6], as
follows:

m

k
k 1

k

(r,s) (1 p). (r,s) (r,s)

wher

1 / L if (r,s) tourdonebyant k
(r,s)

0 Otherwise

=

τ ← − τ + ∆τ

∈�
∆τ = �

�

�

 (2)

(1-p) is the pheromone decay parameter (0<p<1),
representing the trail evaporation when the ant chooses

a city and decide to move. Lk is the length of the tour
performed by ant k and m is the number of ants.

Ant Colony System (ACS): Luca Maria Gambardella
and his colleague[11] have modified the AS algorithm,
introducing the ACS to provide more balance and
guidance in searching. Firstly, the state transition rules
(pseudo-random proportional rules) combine Eq. 1 and
3, providing a direct method to balance between
exploring new edges and exploiting existing edges.
Secondly, only edges that belong to the best ant tour are
allowed to undergo pheromone updates through a
global pheromone updating rule. Finally, the local
pheromone updating rule is applied while ants are
trying to construct a solution[12]:

0

ku J (r)
arg max[(r,u)].[(r,u)] ifq q (Exploitation)

S
S Otherwise(Biased exploration)

β

∈
� τ η ≤
�= �
�
�

 (3)

 Each ant builds a tour by repeatedly applying the
state transition rules. q is a random number uniformly
distributed [0.1] and q0 is the parameter (0�q0�1) which
determines the relative importance of exploitation
versus exploration.
 While constructing a tour, an ant will modify the
pheromone level on the visited edges using the local
pheromone updating rule Eq. 4. Lmn is the tour length
produced by the nearest neighbor heuristic and n is the
total number of cities[13]:

0

0 mn

(r,s) (1 p). (r,s) p.

wher (1 / L .n)

τ ← − τ + ∆τ

∆τ =
 (4)

 After all ants have constructed a tour, only the
globally best ant which produces the shortest tour from
the beginning of the trial will be allowed to do
pheromone updates using the global pheromone
updating rule Eq. 5. Lgb is the length of the globally
best tour from the beginning of the trial[14]:

gb
k

(r,s) (1 p). (r,s) p. (r,s)

(L) if (r,s) Globalbest tour
wher (r,s)

0 Otherwise

τ ← − τ + ∆τ

� ∈�∆τ = �
��

 (5)

Max-Min Ant System (MMAS): Stutzle and Hoos[15]
considered ACS when developing MMAS, but
otherwise make improvements directly onto AS.
MMAS is different in three ways. The first
improvement is that only one ant would update the
pheromone, which is the same as the model of ACS, but

J. Computer Sci., 4 (11): 934-941, 2008

 937

it could choose whether to update one solution of the
current iteration or follow the global best solution.
Second, the pheromone strength was to be bounded to
upper and lower limit[tmax, tmin] in order to avoid search
stagnation. Lastly, the initial value for pheromone
strength was initializing to tmax which was intended to
provide a higher search exploration of solution at the
beginning of the algorithm runs[16]:

best
rs

best best
rs

(r,s) p. (r,s)

wher 1 / f (s)

τ = τ + ∆τ

∆τ =
 (6)

 Equation 6 shows how MMAS performs the
pheromone updates. sbest could be either the global
solution from the beginning of the trail or the solution
of the current iteration. However, MMAS prefers to use
the iteration’s best solution, this is the most important
element in the MMAS search. By making this choice,
the solution elements that frequently occur would
receive large pheromone reinforcements which result in
considerably different solutions from iteration to
iteration:

() () ()()max

max gb

r,s * r,s . r,s with 0 1

1 1
where .

1 p f (S)

τ = τ + δ τ − τ < δ <

τ =
−

 (7)

 One stabilizer mechanism that was introduced in
MMAS is Pheromone Trails Smoothing (PTS). PTS,
represented by Eq. 7, was used in MMAS to improve
performance. When MMAS is close to convergence,
this mechanism helps increases pheromone trails
proportionally to the maximum pheromone trail limit.
The advantage of the mechanism is that the information
gathered during the run is not completely lost, but
merely weakened. This mechanism is interesting when
a long run is allowed.

Dynamic Ant Colony System (DACS): Yi and
Gong[17] have proposed an algorithm which is a direct
improvement of AS, but considers the improvement
made in ACS and MMAS by introducing dynamic
decay parameter (1-p[τ(r,s)]) to avoid pheromone levels
growing too high and reaching local optima. With the
theory that intense pheromones evaporate more quickly
than faint pheromones, the dynamic decay parameter
was applied to both the local pheromone updating rule,
Eq. 8 and the global pheromone updating rule, Eq. 9:

() ()() ()

()
0

0 mn

r,s 1 p r,s . r,s p.

where 1 / L .n

� �τ ← − τ τ + ∆τ� 	

∆τ =
 (8)

 Yi and Gong also try to accelerate the computation
of the solution by allowing the best and worst tour done
by ants to do pheromone updates. Lgw is the length of
the globally worst tour and Lgb is the length of the
globally best tour:

() ()() ()

1
gb

1
gw

r,s 1 p. r,s . r,s C

where

p. (r,s) if (r, s) Global Best Tour
C p. (r,s) if (r,s) Global Worst Tour

0 if (r,s) Others

and

(L)
(r,s)

(L)

−

−

� �τ ← − τ τ +� 	

∆τ ∈�
�= − ∆τ ∈�
� ∈�

��∆ = �
��

 (9)

 These ACO algorithms adopt several other
strategies[18] to improve solution quality and/or achieve
better performance, such as candidate list, don’t look bit
and tour improvement heuristics.

Dynamic ant colony system 3 level updates
(DACS3): DACS3 considers the basic concepts
introduced in ACS and DACS. However, we apply
individual ant behavior as shown in Fig. 2, so DACS3
differs from previous systems in three ways. First,
capturing all knowledge from the group and updating
the pheromone level once the knowledge becomes
available would expedite the process and increase the
chances of finding a better solution. Second, a dynamic
penalty on worst tours would open up chances for ants
to navigate, limiting intentions and providing caution in
an ant’s decision to move. Finally, only one best tour
from group performance is considered when applying
the global pheromone updating rule, which is compared
with two subdivided sections (best of the best and worst
of the best). Figure 3 shows the workflow of the
DACS3 model.
 In the local construction phase, all cities are
considered as starting cities r. Every ant would have to
make a complete tour and the decision to choose which
city s to move to is provided by state transition rules
Eq. 1 and 3. Even though we use both exploitation and
exploration decision rules to move, we favor
exploration as the main strategy in finding solution.
Every time an ant visits a city s, it modifies the
pheromone level by using the local pheromone
updating rule, Eq. 4. The reason why we used the ACS
version of local pheromone updating rule is because we
believed that when an ant moves to a new location, it
would make a constant pheromone deposit and
evaporation.

J. Computer Sci., 4 (11): 934-941, 2008

 938

Determine Move
Possibility

Local Search
(Optional)

Cities Parameters Ants

Intermediate
Pheromone Update

Global
Pheromone Update

Next
Location

Solution

All Tours

Local
Construction
Phase

Global
Reinforcement
Phase

Local
Reinforcement
Phase

Tour

Local
Pheromone Update

Best Tour

Fig 3: DACS3 Diagram

 Once all ants in the group completed their tours,
the available knowledge of every member of the group
will then be used to modify the pheromone level using
the intermediate pheromone updating rule Eq. 10 in the
local reinforcement phase. The updates are necessary
before all ants in the group can be given a new task to
complete. In this phase, the dynamic decay parameter
will be used because it helps to alleviate an early
stagnation, reducing the possibility of pheromone levels
growing too high.
 All current completed tours in the group will be
compared to the group best tour in the current iteration
and to the group worst tour from the beginning of trial.
If no match is found, the edges would experience
normal dynamic evaporation. This method will boost
very effort the ants make to produce the best tour but:

(r,s) (1 [p. (r,s)]). (r,s) Cτ ← − τ τ + ∆ (10)
where

if Group Best Tour
C if Group Worst Tour

if Others0

p. (r,s) (r,s)
[p. (r,s)]. (r,s) (r,s)

(r,s)

∆� ∈
�∆ = − ∆ ∈�
� ∈�

τ
τ τ

and
1

grb

1
grw

(L)
(r,s)

(L)

−

−

��∆τ = �
��

dampen the worst tour from group performances. The
dynamic penalty[p.τ(r,s)] is used to caution all ants off
the bad paths on the next tour. Lgrb is the total distance
of the best tour in the current iteration and Lgrw is the
total distance of the worst tour of the group from the
beginning of the trial.
 The pheromone level is again modified using the
global pheromone updating rule, Eq. 11. Only the best
tour from the group performance will be considered for
the pheromone updates. Every move in the solution or
the tour will be compared with every move in the
complete tours gathered for two categories, best of the
best and worst of the best. This method will provide
better search guidance in the effort to search for a better
solution:

() ()() ()r,s 1 p. r,s . r,s C

where

p. (r,s) if (r,s) Global Best Tour

C p. (r,s) . (r,s) if (r,s) Global Worst Tour

0 if (r,s) Others

� �τ ← − τ τ + ∆� 	

∆τ ∈�
�∆ = − τ ∆τ ∈� �� � 	

∈

1
gb

1
gw

and

(L)
(r,s)

(L)

−

−

�
�

��∆τ = �
��

 (11)

 Lgb is the total distance of the globally best tour
(best of the best) and Lgw is the total distance of the
globally worst tour (worst of the best) from the
beginning of the trial. Fig. 4 shows how the DACS3
algorithm works. In this algorithm, we do not apply any
additional strategic techniques or heuristics.
 The experimental setup: The algorithm was tested
using several datasets taken from TSPLIB. The
algorithm was developed in the C language in
Microsoft Visual Studio. Testing was performed on a
machine with an Intel(R) Pentium (R) M 1.86GHz
processor with 1 gigabyte of physical memory.
Burma14 (GEO), Oliver30, Berlin52 and KroC100
(Euclidean) were taken as a case study for algorithm
comparison.
 The experiments sought to determine which
algorithms could reach optimal distance, if all tested
algorithms were able to find it and then performance
speed would be the second measurement. For
comparison, the first column is the best distance from
the beginning of the trail, as compared to the
benchmark distance. The second column shows the
number of iteration required to come up with the best
distance. The third column is an average time from 15
trials. Distance was measured by the integer distance

J. Computer Sci., 4 (11): 934-941, 2008

 939

(the roundup distance from each moves) and the real
distance (in the bracket). The value is measured in
Euclidean and GEO distances. Real distance was used
as a measurement in calculating distances for Euclidean
datasets, while integer distance was used as the basis of
the distance calculation for GEO datasets. Table 1
shows the parameter settings for the DACS3
experiment, which is a similar setup from research on
the ACS and DACS algorithms[2,5,10,13,16].

GlobalBestTour = ∞ ;
GlobalWorstTour = 0;
LocalGroupWorstTour = 0;
Initialize pheromone level for all cities = 0τ ;
Generate initial solution using Nearest Neighbor (NN) heuristic;
CPU timer starts;
/* Trial begins */
Do
 /* Iteration begins */
 If i <= n
 LocalGroupBestTour =∞ ;
 For k = 1 to m
 Start city = i;
 Do
 Select the next city j;
 /*Perform Local Pheromone Update*/
 Update trail level ijτ ; (Equation (4))

 While (until all cities visited)
 EndFor
 /*Perform Intermediate Pheromone Update*/
 For k = 1 to m
 Compute tour distance;
 If (tour distance < LocalGroupBestTour)
 LocalGroupBest = current solution;
 Else if (tour distance > LocalGroupWorstTour)
 LocalGroupWorst = current solution;
 Else
 /*Pheromone updates for others*/
 Update trail level ijτ ; (Equation (10))

 EndIf
 /*Pheromone updates for LocalGroupBest & LocalGroupWorst*/
 Update trail level ijτ for LocalGroupBest; (Equation (10))

 Update trail level ijτ for LocalGroupWorst; (Equation (10))

 EndFor
 EndIf
 /*Perform Global Pheromone Update*/
 Compute tour distance of LocalGroupBest
 If (tour distance < GlobalBestTour)
 GlobalBest = LocalGroupBest;
 Else if (tour distance > GlobalWorstTour)
 GlobalWorst = LocalGroupBest;
 Else
 /*Pheromone updates for others*/
 Update trail level ijτ ; (Equation (11))

 EndIf
 /*Pheromone updates for GlobalBest & GlobalWorst*/
 Update trail level ijτ for GlobalBest; (Equation (11))

 Update trail level ijτ for GlobalWorst; (Equation (11))

While (until all termination statements satisfied)

Fig 4: DACS3 algorithm

Table 1: DACS3 parameter settings
Parameters Value
Ants population size 10.0
q0 0.9
β 2.0
p 0.1
Max iterations 10000.0

RESULTS

 Table 2 shows the experimental results of DACS3
compared to several other algorithms. Figure 5 shows
the percentage difference to optimal distance. Figure 6
shows the time taken to reach final solution. Figure 7a-
d shows log graphs of shortest distance versus
iterations. The comparison is done for DACS3 with
ACS and DACS for datasets Burma14, Oliver30,
Berlin52 and KroC100.

0

0 .5

1
1 .5

2

2 .5

3

3 .5
4

4 .5

5

B u rm a 1 4 O l iv e r3 0 B e r l in 5 2 K ro C 1 0 0

D a ta s e ts

Pe
rc

en
ta

ge

D A C S 3

D A C S

A C S

Fig. 5: Percentages differences of shortest distance

compare to standard benchmark

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

B u rm a 1 4 O l iv e r 3 0 B e r l in 5 2 K r o C 1 0 0

D a ta s e t s

D A C S 3
D A C S
A C S

Se
co

nd
s

Fig. 6: The performance time taken to reach the

shortest distance

 Algorithm comparison
Burma14 (14 cities problem)

3250

3350

3450

3550
3650

0 500 1000
Iterations

G
eo

 d
is

ta
nc

e Log. (DACS3)
Log. (DACS)
Log. (ACS)

Fig. 7a: Log graph algorithm comparison for Burma14

problem

J. Computer Sci., 4 (11): 934-941, 2008

 940

Table 2: Result comparison between algorithms
 DACS3 DACS ACS
 --- -- ---
TSP Optimal Best Best Average Best Best Average Best Best Average
Problem Distance Distance Iteration Time (sec) Distance Iteration Time (sec) Distance Iteration Time (sec)
Burma14 3323 3323.00 94 1.003 3323.00 527 4.823 3323.00 527
(14-city problem) (N/A) -3330.61 -3330.61 -3330.61 4.767
Oliver30 420 420.00 168 7.043 420.00 1826 71.582 420.00 1826
(30-city problem) -423.74 -423.74 -423.74 -423.74 72.501
Berlin52 7542 7542.00 6447 1278.590 7881.00 3661 694.835 7732.00 6050
(52-city problem) (N/A) -7544.37 -7880.78 -7734.11 1165.081
KroC100 20749 20880.00 7954 10856.385 21190.00 1720 2242.229 21170.00 2670
(100-city problem) (N/A) -20881.61 -21191.37 -21172.26 3532.969

 Algorithm comparison

Oliver30 (30 cities problem)

420

430

440

450

0 500 1000
Iterations

E
uc

lid
ea

n
di

st
an

ce

Log. (DACS3)
Log. (DACS)

Log. (ACS)

Fig. 7b: Log graph algorithm comparison for Oliver30

problem

 Algorithm comparison
KroC100 (100 cities problem)

20000
21000

22000
23000
24000
25000

26000

0 500 1000
Iterations

E
uc

lid
ea

n
di

st
an

ce
 Log. (ACS)

Log. (DACS)

Log. (DACS3)

Fig. 7d: Log graph algorithm comparison for KroC100

problem

DISCUSSION

 From the result, DACS3 reached the optimal
benchmark distance for all case studies except for
KroC100, where the difference is very small (0.6%).
ACS and DACS are also able to reach the optimal
benchmark distance for the Oliver30 and Burma14 data.
ACS takes 2.5 and 2.0% longer and DACS takes 4.4
and 2.1% longer for the Berlin52 and KroC100 datasets
respectively. In term of time to solution, DACS3
performs 90 and 75% faster compared to ACS and
DACS for Oliver30 and Burma14 respectively.
However, DACS3 takes a longer time to reach the final
solution for larger datasets (Berlin52 and KroC100) but
DACS3 achieved better solution quality compared to
ACS and DACS.

 DACS3 has obtained good searching performance
on small-sized problems (Burma 14 and Oliver 30).
This is shown by the fact that DACS3 has outperforms
other algorithms throughout the run. However, when
DACS3 searches for solutions for slightly bigger
problems (Berlin50 and KroC100), it performs poorly
at the beginning of the search but produces good
performance in the middle and end of the run.

CONCLUSION

 Based on the results stated above, we can
concludes that manipulating and empowering the
available knowledge of the individual ants can provide
a significant advantage in solving the problem as a
whole. Harnessing the experiences of every single
individual can expedite the process of finding a good or
better solution, either in shorter distance or time to
solution. We conclude that DACS3 has outstanding
search performance for smaller datasets, but performs
slightly worse at the beginning of the search on larger
datasets. Since DACS3 has reach shortest distance
among other, therefore, the next step is to optimize the
search performance of DACS3 using various strategic
techniques such as candidate list, Pheromone Trails
Smoothing (PTS) and the elitist ant concepts.

REFERENCES

1. Dorigo, M., G.D. Caro and L.M. Gambardella,

1999. Ant algorithms for discrete optimization. J.
Artifi. Life, 5: 137-172. DOI:
10.1162/106454699568728.

2. Fleischer, M., 2003. Foundation of swarm
intelligence: From principles to practice.
http://arxiv.org/PS_cache/nlin/pdf/0502/0502003v1
.pdf.

3. Dorigo, M., V. Maniezzo and A. Colorni, 1996.
The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man
Cybernet. Part B. Cybernet., 26: 29-41. DOI:
10.1109/3477.484436.

J. Computer Sci., 4 (11): 934-941, 2008

 941

4. Bonabeau, E. and C. Meyer, 2001. Swarm
Intelligence: A whole new way to think about
business. Harvard Bus. Rev., 79: 107-114.
http://www.antoptima.com/admin/pdfrassegna2/pd
f028.pdf.

5. Grosan, C. and A. Abraham, 2006. Stigmergic
optimization: Inspiration, technologies and
perspectives. Stud. Comput. Intel., 31: 1-24.
http://www.springerlink.com/content/q4216530211
19050/.

6. Dorigo, M. and G.D. Caro, 1999. The Ant Colony
Optimization Meta-Heuristic. In: New Ideas in
Optimization, Fred Glover, Marco Dorigo and
David Corne (Eds.). McGraw-Hill, New York,
USA., ISBN: 0-07-709506-5, pp: 11-32.

7. Deneubourg, J.L., S. Aron, S. Goss and J.M. Pasteels,
1990. The self-organizing exploratory pattern of
argentine ant. J. Insect Behav., 3: 159-168. DOI:
10.1007/BF01417909.

8. Dorigo, M., E. Bonabeau and G. Theraulaz, 2000.
Ant algorithms and stigmergy. J. Future Generat.
Comput. Syst., 16: 851-871. DOI: 10.1016/S0167-
739X(00)00042-X.

9. Anderson, C. and N.R. Franks, 2001, Teams in
animal societies, J. Behav. Ecol., 12: 534-540.
http://beheco.oxfordjournals.org/cgi/content/abstra
ct/12/5/534.

10. Rais, H.M., Z.A. Othman and A.R. Hamdan, 2007.
Improved Dynamic Ant Colony System (DACS)
on symmetric Traveling Salesman Problem (TSP).
International Conference on Intelligent and
Advanced System, Nov. 25-28, IEEE Computer
Society, Washington DC., USA., pp: 43-48. DOI:
10.1109/ICIAS.2007.4658345.

11. Dorigo, M. and L.M. Gambardella, 1997. Ant
colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Trans.
Evolut. Comput., 1: 53-66. DOI:
10.1109/4235.585892.

12. Gaertner, D. and K. Clark, 2005. On optimal
parameters for Ant colony optimization algorithms.
Proceedings of International Conference on
Artificial Intelligent, June 27-30, CSREA Press,
USA., pp: 74-82. http://eprints.lancs.ac.uk/7927/.

13. Gambardella, L.M. and M. Dorigo, 1996, Solving
symmetric and asymmetric TSPs by ant colonies.
Proceedings of the IEEE International Conference
on Evolutionary Computation, May 20-26, IEEE
Computer Society, USA., pp: 622-627. DOI:
10.1109/ICEC.1996.542672.

14. Dorigo, M., M. Birattari and T. Stutzle, 2006. Ant
colony optimization: Artificial ants as a
computational intelligence technique. IEEE
Comput. Intel. Mag., 1: 28-39. DOI :
10.1109/MCI.2006.329691.

15. Stützle, T. and H.H. Hoos, 2000. MAX-MIN ant system.
J. Future Generat. Comput. Syst., 16: 889-914.
http://portal.acm.org/citation.cfm?id=348599.348603.

16. Merloti, P.E., 2004. Optimization algorithms
inspired by biological ants and swarm behavior.
http://www.merlotti.com/EngHome/Computing/An
tsSim/AntOptimizationAlg.pdf.

17. Li, Y. and S. Gong, 2003. Dynamic ant colony
optimization for TSP. Int. J. Adv. Manufact.
Technol., 22: 528-533. DOI: 10.1007/s00170-002-
1478-9.

18. Gendreau, M. and J.Y. Potvin, 2005. Metaheuristic
in combinatorial optimization. Ann. Operat. Res.,
140: 189-213. DOI: 10.1007/s10479-005-3971-7.

19. Marsh, L. and C. Onof, 2008. Stigmergic
epistemology, stigmergic cognition. Cognit. Syst.
Res. J., 9: 136-149, DOI:
10.1016/j.cogsys.2007.06.009.

