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Abstract: Quick sort is a sorting algorithm whose worst case running time is �(n2 ) on an input array 
of n numbers. It is the best practical for sorting because it has the advantage of sorting in place. 
Problem statement: Behavior of quick sort is complex, we proposed in-place 2m threads parallel 
heap sort algorithm which had advantage in sorting in place and had better performance than classical 
sequential quick sort in running time. Approach: The algorithm consisted of several stages, in first 
stage; it splits input data into two partitions, next stages it did the same partitioning for prior stage 
which had been spitted until 2 m partitions was reached equal to the number of available processors, 
finally it used heap sort to sort respectively ordered of non internally sorted partitions in parallel. 
Results: Results showed the speed of algorithm about double speed of classical Quick sort for a large 
input size. The number of comparisons needed was reduced significantly. Conclusion: In this study 
we had been proposed a sorting algorithm that uses less number of comparisons with respect to 
original quick sort that in turn requires less running time to sort the same input data. 
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INTRODUCTION 

 
 Sorting is one of the most well studied problems in 
computer science because it is fundamental in many 
applications. Quick sort [1] is typically the fastest sorting 
algorithm, basically due to better cache behavior among 
other factors. However, the worst case running time for 
Quick sort is O (n2) for an input size n, which is 
unacceptable for large data sets. In this study, we 
propose PSA Partition and Swap Algorithm, which 
reduces the time needed for sorting with respect to 
Quiksort in the worst case. A comparison between 
Quick sort and PSA algorithm in terms of running time 
is performed; the simulation results show that PSA is 
faster than Quick sort in the worst case for sorting the 
same input data size. Our algorithm is based on 
partitioning the input data to different partitions then 
using Heapify procedure in parallel to sort each 
partition. The heap is a very fundamental data structure 
used in many application programs. A heap is a data 
structure that stores an array in a binary tree 
maintaining two properties: the first is that the value 
stored in every node is smaller than or equal to the 
value of its children. The second property is that the 
binary tree must be complete. This implies that the 

complete binary tree with height h has between 2h and 
2h+1 -1 node. So, the height of a binary tree of n nodes is 
O (log2 n). The basic operations of the heap are Build-
Heap and Heapify. Heapify operation arranges the heap 
to restore its heap property. 
 

MATERIALS AND METHODS 
 

Partition and Swap Algorithm (PSA): Given an array 
of size n, PSA divides the array into four sub-arrays in 
two steps to facilitate the sorting and to reduce the 
number of comparisons needed. The algorithm works in 
three phases the first partition phase, the second 
partition phase and finally the Heapify phase. 
 In the first partition phase the algorithm divides the 
array A[n] into two sub-arrays A1, A2 based on the 
middle value midval, in a manner that all the elements 
of A1 (or denoted left) are smaller than the midval and 
all the elements of A2 (or denoted as right) are greater 
than the (midval), if the data must be ordered in an 
ascendant manner. (If the data must be ordered in 
descendent manner, all the elements of A1 must be 
greater than the midval and all the elements of A2 must 
be smaller). In the second partition phase, the 
partitioning in the first partition phase is repeated for 
each of A1, A2. Where A1 is divided into two subarrays 
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A1l, A1r and A2 is divided into two sub arrays A2l, A2r 

then the elements of these four sub arrays are ordered as 
in the previous phase. The third phase, is heavily phase 
in which the resultant subarrays A1l, A1r, A2l, A2r are 
organized using heavily procedure into sorted 
subarrays. 
 
First partition phase: 
 
• Given an array A of size n find the middle location 

of the n elements the pivot can be find by �n/2�. 
Step 1 in the flowchart 

• For each part (left and right to the pivot) find the 
max and min values (step 2 in the flowchart) 

• Find the mid value midval that can be calculated as 
following: 

 
�Lmax + Lmin+ Rmax+Rmin /4� 

 
• For each element in the two subarrays A1 (left), A2 

(right) do the following comparisons (if the array is 
ordered in an ascendant manner) For i, j are two 
pointers, 

A[0], A[n] denote the first and last element in the array 
 
Swap procedure: 
 
for i = 0 to n/2, j = n to n/2 do: 
 
if A[0] = Lmax > midval and  
   Rmin = A[n]< Lmax 

   Swap (Rmin, Lmax ) 
   if i ≠ j  
    i = i+1, j = j+1 
     Return if  
   Else   End  
Else  
i = i+1 and Return if 
 
 The procedure stops when i = j, that means the two 
pointers are encountered and all the elements on the left 
and on the right have been visited and compared. This 
condition is important to ensure the correctness of the 
algorithm and to ensure that all the elements have been 
compared. In the case of n being an odd number, we 
take �n/2� to find the mid location (pivot location),

 

 
 

Fig. 1: The flow chart of PSA algorithm
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Fig. 2: PSA algorithm/first partition phase 
 
in which case the right will have more elements than 
the left and the pointer i must continue to visit the 
elements until it encounters j. 
 
Second partition phase: The algorithm starts working 
in parallel in dividing the two subarrays A1, A2 to four 
consecutive partitions A1l, A1r, A2l, A2r and the swap 
procedure will be repeated for the following counters in 
A1 for i = 0 to n/4, j = n/2 to n/4 and for A2 the counter 
will be: for i = n/2 to 3n/2, j = n to j = 3n/2. 
 At the end of this phase we obtain four subarrays in 
such a manner that: 
All the elements of A1l < all the elements of A1r and all 
the elements of A2l < all the elements of A2r 
 
Heapify phase: In this phase, we use heavily procedure 
on all the four resultant sub-arrays to organize them in 
sorted subarrays.  
 Figure 1 shows the flowchart that describes how 
PSA work. In the first step of the flowchart the initial 
array is divided into two sub-arrays and the midval-
location is found. In the second step, the min and max 
values for each partition are found and a series of swap 
operations are done. Step 3 indicates the last phase that 
is heavily phase.  
 
Example: Figure 2 shows a numerical example of how 
PSA works in an array of size n = 12. In Fig. 2, A is 
divided into two sub-arrays A1, A2 where the bold items 

 
 
Fig. 3: PSA algorithm/merge in place 
 

 
 
Fig. 4: PSA Algorithm/ Heapify Phase 
 
represent the swapped elements. In part A of Fig. 3, the 
sub-array A1 is divided, to left1 and right1. In part B, 
A2  is divided into  two  sub-arrays  left 2, right 2. In 
Fig. 4, it is shown how the four sorted sub-arrays are 
inserted in their location into the final sorted array. 
 

RESULTS 
 
 To study the effectiveness of our algorithm PSA 
with respect to Quick sort and other sorting algorithms, 
we have used turbo Delphi to implement both Quick 
sort and PSA. Where we wrote a generic code that 
could run on both programs. Turbo Delphi is an 
integrated development environment that runs under 
win 32 and is built based on object-oriented Pascal 
language. Our simulator runs on Pentium 4,  2.66 GHZ, 
512 Mb. We have implemented both Quick sort and 
PSA on the same machine and we have performed 
different simulations. Our simulation results show that 
the performance of PSA  is  better  than  quick  sort in 
term of running time (Table 1). 
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Fig. 5: The running time of both Quick sort and PSA 

algorithms 
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Fig. 6: The number of comparisons needed to sort the 

same input size in both Quick sort and PSA 
algorithms 

 
For an input size 1000-5000 the performance of PSA is 
similar to that of Quick sort.  
 However, for a large data size (100.000) PSA 
outperforms Quick sort (Fig. 5). Figure 6, shows that 
there a big difference in the number of comparisons 
needed to sort the same input data between both Quick 
sort and PSA, where PSA requires a less number of 
comparisons with respect to Quick sort in all the input 
data sizes tested. 

 
DISCUSSION 

 
 Our goal in this study is to propose an algorithm 
that performs better than Quick sort in term of running 
time. However the performance of quicksort is optimal 
only for a large input size. Analyzing the results 
presented in Table 1 we can  see   that  the  efficiency 
of   our  algorithm is   about  73% for a  small input size  

Table 1: Comparison between the running time of Quick sort and 
PSA for different input size 

 Quick sort running PSA running 
Input size time (ms) time (ms) 
1000 0.234 0.171 
5000 1.640 0.829 
10000 3.313 2.139 
50000 20.485 12.203 
100000 40.460 26.090 

 
(1000 items), however the efficiency of our algorithm 
respectively to Quick sort is about 64.56% for a large 
input size and does not change if the input size 
increased from n to 10 n (10000-100000 items). And 
that is accorded with our goal is to propose an 
algorithm simple that works in parallel and has a good 
efficiency for all input size. 
 

CONCLUSION 
 
 In this study we have been proposed a sorting 
algorithm that uses less number of comparisons with 
respect to original Quick sort that in turn requires less 
running time to sort the same input data. Our algorithm 
is based on dividing the initial array in four partitions in 
a manner that during the partitioning process the sub-
arrays are organized from the smaller to the bigger 
elements reducing in that the number of comparisons 
for the final merging operation. In addition it is used the 
heavily procedure that organize the nodes of each 
partition in a data structure useful for the searching 
operation. Our results show that PSA algorithm 
performs better than original Quick sort for the input 
data size tested. 
 Sorting algorithms can be classified into three 
categories: the first category is based on the number of 
comparisons in the worst and average and best case. 
The second category is based on the memory usage and 
the last category is based on the difference in behavior 
in the worst case and the average case. 
 In[2], a comparison between three sorting 
algorithms (Heap sort[4], Quick sort[3] and Merge sort[5]) 
is done and a new algorithm is proposed that is a 
variant of heap sort (modified heap sort). The new 
algorithm requires nlogn-0.788928 comparisons in the 
average case. The algorithm uses only one comparison 
at each node. With one comparison, the algorithm can 
decide which child of a node contains a larger element 
and this child is promoted to its parent position. 
 The four previous algorithms (heap sort, mergesort, 
quicksort, modified heap sort) were implemented to 
study their performance in term of execution time. For 
an input size 1000 the performance of heap sort is better 
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than the other algorithms. However, for an input size 
from 5000-50000 quicksort outperforms the other 
algorithms in terms of execution time. However, for 
input size 100000 the modified heap sort requires a less 
running time to sort this input data. In[6], a heap 
traversal algorithm is proposed that visits the node of a 
heap and stores its value in an auxiliary data structure 
with size �n/2�, in a manner that the time for locating 
the next node for traversal is O (log n) in the worst 
case. The main advantage of the algorithm is that the 
data structure used is small, which consequently helps 
in the searching operation. The algorithm takes a min-
heap as input and visits the heap in ascending order of 
the value stored in the nodes without making any 
changes to the structure or contents of the heap. The 
nodes that are being traversed are copied into another 
list, producing an ordered list of the values stored in the 
original heap. The algorithm is similar to an in-order 
traversal of a binary search tree. A comparison between 
the running time of generic Quicksort, optimized 
quicksort (optquicksort), heap sort, heap traversal of a 
binary tree (heapbt) and the proposed algorithm heap 
traversal using binary heap (heapbh) is done. The 
comparison results show that for an input size of 30000 
the heapbh performs slightly better than heap sort. An 
another sorting algorithm that reduces the cache size is 
proposed in[7], the proposed dualheap sort algorithm 
partitions recursively the subheaps in half until the 
subheaps become small to partition any more, then the 
array is sorted. The algorithm has different advantages 
in term of more operations and cache size. In the best 
case where the input is already sorted the dualheap sort 
performs no move operations and nlogn comparisons. 
In addition, the continued partitioning of the subheaps 
decreases the cache size needed in each step. The 
algorithm constructs two opposing subheap and then 
exchanges values between them until the larger values 
are in one subheap and the smaller values are in the 
other. The results presented in[7] show that dualheap 
sort performs about (50%) more comparisons and move 
operations than heap sort but the memory size needed is 
smaller. In[8], a variant of heap sort is proposed that 
uses a new data structure for pairs of nodes of which 
can be simultaneously stored and processed in a single 
register. The algorithm sorts pair of elements in 
ascending order. By n/2 comparisons, all larger 
elements of each pair 2i, 2i+1 can be brought to even 
positions. To construct the new data structure of size 
n/2 elements it   needs  (1+�/2)  n  comparisons  where 
�>0, in contrast to weak heaps[9], that takes n-1 
comparisons. In this data structure, during swapping it 
must swap nodes containing pair of elements with 
similar nodes at no extra cost. After constructing the 
heap, in the sorting phase the active elements (the even 
elements are called active and the other ones dormant) 

in the root will be placed in the last unsorted position 
and perform heavily or heap adjustment. This is to find 
out the larger or smaller key between the 2nd key of the 
1st pair and the 1st key of the last pair. In the new data 
structure each key require three movements. The 
experimental results indicate that the new data structure 
for heaps results in better performance of heap sort 
algorithm in term of number of comparisons. In[10], is 
proposed ultimate heap sort that is a variant of heap sort 
that sorts n elements in �(nlog2 (n+1)) time in the worst 
case by performing at most nlog2n+θ(n) key 
comparisons and nlog2n+θ(n) element moves. The 
algorithm transforms the heap on which it operates into 
two-layer heap which keeps small elements at the 
leaves. The two layer heap works as follow: first it 
finds 2d the largest key of the elements in the array 
where denoted as x. x is the largest power of 2 smaller 
than or equal to n. Then, it partitions the array A[1..n] 
into three pieces: A[1…r], A[r+1…….r+e] and 
A[r+e+1,…….n], in a manner that the key of every 
element in the three partitions is larger than, equal to 
and smaller (respectively) to x. Then the array A[1….r] 
is arranged into a heap using standard heap construction 
algorithm. In ultimate heap sort, the input array to be 
sorted of size n is sorted in d-1 rounds. Where d = �log2 
(n+1)�. In each round one half of the elements are 
sorted. In the first phase of the ith round, I = {1….d-1} 
the remaining ni elements are built into a two layer 
heap. In the second phase of the ith round, the ri 
elements with a key larger than x are removed from the 
heap. The removed elements are exchanged with the 
last ri elements of the heap. In the third phase of the ith 
round, ni-2di-ri of the elements with a key equal to that 
of x are gathered together and moved at the end of the 
sub-array containing the remaining elements. The 
computations carried out in each round are the 
following: 
 
• Rearrange A[1..n] into a two layer heap 
• For n steps-1 →j until n-l do: exchange A[1] and 

A[j], remake A[1………j-1] into heap 
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