
Journal of Computer Science 4 (1): 66-71, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Hamed Al Rjoub, Department of Computer Sciences, Irbid National University, Irbid, Jordan
66

Parallel Two-Dimensional Quicksort Algorithm (PTSA)

1Hamed Al Rjoub, 1Ahmad Odat, 2Abdullah Audat

1Department of Computer Sciences, Irbid National University, Irbid, Jordan
2Adaptive TechSoft, Amman, Jordan

Abstract: In this research, a Parallel Two-Dimensional Sorting Algorithm (PTSA) is presented that
has better performance than the classical Quicksort, to sort a data vector of size n = r (rows) ×
c(columns). PTSA algorithm divides the input vector into n/r sub-vectors, which represents tow-
dimensional vector of Slave Processor Elements (VPE), the maximum number of VPE for parallel
sorting is equal to r×c, VPE just the read,and write operations. The number of Master Processors (MP)
which do the sort operation is equal to c, The time needed for PTSA algorithm is reduced by θ (n/r log
n/r) with respect to the time needed by Quicksort θ (n log n) to sort the same vector. Simulation results
show that the efficiency of sorting using PTSA algorithm is increased and the complexity is reduced
significantly compared with classical Quicksort.

Key words: Data mining, accelerate, sorting rows, sorting columns, proccessors, iterations

INTRODUCTION

 Sorting is an integral component of most database
management systems (DBMSs) and data stream
management systems (DSMSs), its efficiency can
influence drastically the overall system performance.
 To speed up the performance of database system,
parallelism is applied to the data administration
operations.
 We all know that Quicksort is one of the fastest
algorithms for sorting, in spite of its slow running time
in the worst case that is θ(n2) on an input array of n
numbers. However, its running time in the average case
is θ(n log(n)). Given the importance of parallelism in
improving the running time of Quicksort many
researches have been done in this area. Previous results
show that the parallel Quicksort outperform the sample
sort algorithm. In[11], the experiments show that the
speed of the parallel Quicksort is more than six units
higher than the speed of sample sort for three
processors of the Enterprise 1000. While, for one
processor, parallel Quicksort achieved 15% faster
execution times than the traditional Quicksort. This is
due to its low memory requirement and that parallel
Quicksort could sort data sets twice the size that of
traditional Quicksort could under the same system
memory restrictions.
 In this research, we present a parallel two
dimensional sorting algorithm that outperform
traditional Quicksort and many of the previous parallel
Quicksort algorithms in running time and in the number

of comparisons. The idea is dividing the vector data
into number of processors to sort data in parallel. Due
to that, the transactions of comparison and data transfer
is reduced and the complexity time to sort an array of
size n is reduced to O(n/r (logn/r)). In addition, the
complexity time of this algorithm depends on the
number of processors, where many of the previous
work in parallel Quicksort have higher complexity time
and generally the complexity time is dependent on the
number of processors used in parallel and in some cases
is dependent on the number of partitions.
 Bitonicsort[3,4,9] has running time of O((n/p)log2 p)
where p is the number of processors used and n is in the
range of Ω(p). Mergesort[10], has running time of
O(log 2p/log(p/n)) where n = O(p). ColumnSort[1], has
running time of O((nlogn)/p) where n = Ω(p1+ε) ε>0.
Cubesort[6], its running time is O((n/p)log 2p/log(n/p))
essentially n = Ω (p).
 In[8], the cost of parallel Quicksort algorithm is
measured given the pair (t,p) where t is the time needed
and p is the number of processors that are both
dependent on the input size. However, to sort n words
all of length l over an alphabet Σ of size O(n) it
requires only O(log(nl)/log(nl/p)×nl/p) times and using
p<nl processors.

RELATED WORKS

 An early advancement in parallel sorting comes in
1968 when Batcher discovered the elegant θ(log 2n)
depth bitoni sorting networks[3].

J. Computer Sci., 4 (1): 66-71, 2008

 67

 Sorting is the most studied problem in computer
science for two reasons: First, it is used as a substep in
many applications. Second, it is a simple combinatorial
problem with many interesting and diverse solutions.
Parallel algorithms for sorting have been studied since
at least the 1960's. Batcher bitonic sorting technique
provides a parallel algorithm for sorting n numbers in
θ(log2n) time with n processers. Bitonic sort used
parallelism to increase the chip speed by treating
several bits in parallel at each step.
 The idea on which bitonic sort depends is the
sorting and merging operations; given two inputs A and
B, the algorithm must define the two correspondent
output in a manner that if (A<B) so, A = L that
represents the smallest element and B = H that
represents the highest element. If (B<A) then B = L
and A = H.
 This procedure can be applied to two input lists to
obtain only one-sorted lists. The merging operation
between the two lists is done in two stages: the first is
the odd stage in which all the elements in both lists are
compared with the odd index and arranged given H, L
as described above. In the same manner, in the second
stage (the even stage) all the elements in both lists are
compared with even index. This means, given two lists
a1, a2,.........as, b1,b2,.....bt the algorithm must produce a
sorted list C1, C2,... C t+s. Figure.1 represent a simple
description of how bitonic sort work.
 The main advantage of bitonic sort is that it can be
extended to compare 4 by 4 elements in each step.
Using bitonic sort, 2p words can be sorted in only 1/2 p
(p+1) steps. In the literature, many parallel sorting

 Fig. 1: Bitonic sort

algorithms have been proposed like radixsort and
Quicksort[5] and a variant of Quicksort is called
columnsort[1]. In[11], a parallel Quicksort algorithm is
presented and implemented that works in stages. In the
first stage, a parallel partition of data is done in which
the array is divided in k blocks of fixed dimension B. A
number of processors p is assigned to sort these blocks.
 The algorithm works as follow: each processor
sorts in parallel two blocks one from the head and the
other from the tail of the array. This procedure is
repeated until most of the blocks are sorted. In the
second stage, it assigns one processor to sort the
remaining unsorted blocks. The third stage is the
process partition in which the array is divided into two
partitions and the processors are divided into two
groups, each group is assigned to a partition. In the
Final stage, it uses Quicksort in each group of
processors to sort its partition. If one processor finishes
sorting its blocks it helps the other processors in the
same group by a consecutive operation of push and pop.
 The time complexity of the algorithm depends on
the size of block B and on the number of processors P
and does not depend on the distribution of keys. In[10],
comparisons of three parallel sorting algorithms are:
odd-even transition Sort[2], Parallel Rank Sort, Parallel
Merge Sort is presented. The odd-even transposition
algorithm[2], works as follow: first of all the data is
divided into (n*p) partitions, where p is the number of
processors. These partitions are distributed to all the
processors. Each processor sorts sequentially its part.
Then, the merging stage consists of two substages: odd
stage and even stage. In the even stage, the even
processors (i) communicate with the odd processors
(i+1) to merge their data in a manner that higher data
values are kept in the higher number of processors. The
lower values are kept in the lower number of
processors. The same procedure is done in the odd stage
where the odd processors (i) communicate with the
even processors (i-1) to merge their data in the same
previous manner. The whole data will be sorted in at
most p stages and the time complexity is O(bn2) where
b = 1/2p2. That means the time will be reduced to 1/p2.
The second algorithm compared was Parallel Merge
Sort, this algorithm is based on the Divide and Conquer
Algorithm, but here we have the concept of slaves and
master processors. The initial array is divided into (n/p)
elements. Each processor denoted as slave sorts its part
in parallel and then these sorted subarrays will be
returned to the master processor that sorts the entire
final array. The time complexity of this algorithm is
O(n/p log(n/p)). The third algorithm compared and
implemented in[10], is Parallel Rank Sort Algorithm that
works as follow: the basic idea is to determine the rank

J. Computer Sci., 4 (1): 66-71, 2008

 68

of the elements. The data is divided in different
partitions, each slave processor is assigned a data of
size (n/p) elements where n is the size of the input data
and p is the number of processors. Each slave processor
is responsible to rank its elements and return the ranks
to the master processor, which in turn is responsible of
constructing the whole sorted list. The time complexity
is O(n2) = 1/p.

Parallel Two-Dimensional Sorting Algorithm PTSA:
Quicksort[7] is a sequential sorting algorithm that is
widely believed to be the fastest comparison-based
sequential sorting algorithm. It is a recursive algorithm
that uses the Divide and Conquer method to sort all
keys. The standard Quicksort first picks a key from the
list, the pivot and finds its position in the list where the
key should be placed. This is done by walking through
the array of keys from one side to the other. When
doing this, all other keys are swapped into two parts in
the memory: first the keys less than or equal to the
pivot are placed in one part of the pivot and the keys
larger than the pivot are placed in the other part of the
pivot.

PTSA Algorithm Description: The main idea of
PTSA algorithm is to divide the input into number of
rows and then to use Quicksort in parallel manner to
sort theses rows and obtain the following:

• Sorted rows in parallel, where each row has its own

processors
• Sorted columns in parallel, where each column has

its own processors

 PTSA passes through three stages: distribution data
is the first stage, parallel sorting rows is the second
stage and parallel sorting columns is the third stage.

Distribution data stage: In this stage, given an input
array A to a matrix of processor Elements of size n,
where, n = rows (r)×columns (c), A will be divided into
a r×c, where r is an odd number greater than or equal to
3 and c is greater than or equal to r, where c = n/r. The
first row is assigned to the first processor (Mp0), the
second row to the second processor (Mp1) and so on to
till the last row (Mpr-1). Next, the first column is
assigned to the first processor (Mp0), second column
(Mp1) to the second processor and so on to till the last
column (Mpc-1).
Parallel sorting rows stage: In this stage, the
processors MP0, MP1, MPr-1, are assigned to the data
rows respectively to sort them in parallel fashion.

Fig. 2: Parallel two-dimensional sorting algorithm

structure

Parallel sorting columns stage: In this stage, the
processors MP0,MP1,..., MPc-1, are assigned respectively
to the data columns to sort them in parallel fashion
using quicksort algorithm.
 At the end of stage1 and stage2 minimum and
maximum values are obtained, where the minimum
value is located at O0 and the maximum value is located
at On-1. The values are shifted in Mp0 one step to the left
and the values in Mpr-1 are shifted one step to the right.
The above steps are repeated until it ends-up with one
middle row. Finally, the middle row is sorted using
quicksort algorithm. Figure. 2, illustrates the three
stages mentioned above.

PTSA algorithm analysis: PTSA as a two dimensional
sorting algorithms is based on Quicksort algorithm
which is used to sort rows and columns in parallel.
 However, it is known that Quicksort performs
better when the input data is increased, but here in
PTSA algorithm the additional time required by
Quicksort to sort a number of data inputs (which is
equal to n) is reduced to n/r. In each iteration tow
values (maximum, minimum) are transferred at the
same time, while in the Divide and Conquer the transfer
is made once only either the min or the max. The
algorithm analyses steps are as follows:

Step 0: It assumed that:

 i. Data Vector (A) of size n

J. Computer Sci., 4 (1): 66-71, 2008

 69

 ii. Cl is a number of clock cycles required to send
one data item from one master processor to
another

Step 1: The required clock cycle (Sr1) to divide the data

vector (DV) into rows and columns is
computed and each row is sent to one of the
row processor elements:

()r1S 2n / r * cl= ,

 where, cl is a number of clock cycle required to
send one data item from one processor to another.

Step 2: The required clock cycles (Sr2) to sort all rows

in parallel is computed using quick sort
algorithm:

()r2S n / r log(n / r) * j= ,

 where, j is the number of clock cycles needed to
process one iteration of traditional quicksort algorithm.
Throughout this work, j is assumed to be equal to 10*
cl, where cl = 1.

Step 3: The required clock cycles (Sr3) to distribute all

sorted rows item to the processors in VPE is
computed as:

r3S r * (c 1) *cl.= −

Step 4: The required clock cycles (Sr4) to sort in

parallel r items using quicksort algorithm is
compute an shifted as:

r4S (r log r) * j.=

Step 5: Compute the required clock cycles (Sr5) to take

maximum and minimum items then shift:

r5S cl.=

Step 6: Steps 4, 5 are repeated c/2 times.

Step 7: Steps 4, 5 and 6 are repeated r/2 times.

Step 8: The required clock cycles (Sr8) to sort the

middle row processors using Quicksort
algorithm is computed as:

r8S (n / r log(n / r)) * j.=

Step 9: The required lock cycles (Sr9) to send in
parallel middle row processors values to the
suitable location is computed as:

r9S cl.=

Step 10: The mathematical model to calculate the total

number of clock cycles to sort input data using

PTSA is:-
9

tot ri
i 1

S S
=

=� .

Complexity Analysis: The time complexity of PTSA
algorithm is calculated for the three stages together.
The time needed by PTSA algorithm to sort an array of
n elements denoted as Ttot. TSor refers to the time needed
by the Quicksort to sort one subarray. Tmer is the time
needed to put maximum and minimum items in their
locations in the output vector. Tpar is the time needed to
distribute data to VPE of size r × c.

Ttot = TSor + Tmer + Tpar.

Ttot = (r*T(n/r)+c*T(r))+θ((n-c)/2)+ θ(1).
T(n/r), T(r) is the time needed by Quicksort to sort an
input data of size n/r rows, r columns, respectively
Ttot = r*O(n/rlogn/r)+c*O(rlogr)+(n-c)/2.
Ttot ≤C(n/rlogn/r)+C(rlogr)+(n-c)/2
≤Cn/r[logn-logr] + Crlogr+(n-c)/2
� C[n/r(logn-logr) + rlogr]+(n-c)/2.
 Ttot �O(n/rlogn/r + rlogr).

RESULTS

Simulation results: The idea behind the work in this
simulation is to compare the time needed for Quicksort
(to sort an array of n items) with the time needed by
PTSA (to sort the same array) by dividing it into r×c
VPE.In the case of sorting an array of size n, f(n)
becomes the count function. That is; f(n) gives the
number of basic operation (clock cycles) done by the
PTSA. Suppose that the time spent in each clock cycle
is t, then the total time it would take to execute f(n) is
tf(n). Clearly, the constant time t depends on the speed
of the computer and therefore varies from computer to
computer. However, f(n), the number of clock cycles, is
the same for each computer. If we know how the
function f(n) grows as the size of the problem
grows,we can determine the efficiency of the PTSA
with respect to Quicksort algorithm. We compare its
results of the traditional Quicksort on the same stand-
alone PC with Pentium III processor running at 800Mhz
under windows XP platform using Microsoft Excel.

J. Computer Sci., 4 (1): 66-71, 2008

 70

Table 1: The running time of Quicksort and PTSA algorithm for
different input data size and r = 99

Size(n) Running Time Quick sort(µs) Running Time PTSA(µs)
1000000 199315.686 70116.104
2000000 418631.371 140642.209
3000000 645495.932 211319.291
4000000 877262.743 282094.417
5000000 1112674.833 352942.450
6000000 1350991.864 423848.581
7000000 1591724.644 494803.028
8000000 1834525.486 565798.835
9000000 2079134.421 636830.804
10000000 2325349.666 707894.900

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10
Data Size (Millions)

Ti
m

e
(µ

s)

Running Time
Quick sort(µs)

Running Time
PTSA(µs)

Fig. 3: The variation in running time in Quicksort and

PTSA, for different input data size and r = 99

The dynamic data size and fixed number of rows:
For different data size and fixed number of rows = 99,
suppose that a computer can executes 1 billion
operations per second, Table. 1 and Figure. 3 shows the
time required to execute PTSA and the time required to
execute traditional Quicksort.

The fixed data size and dynamic number of rows:
For fixed data size = 107 and different number of rows,
suppose that a computer can executes 1 billion
operations per second, Table 2 and Figure 4 shows the
time that the computer takes to execute PTSA and
Quicksort algorithm.

The PTSA accelerate: Analyzing the results presented
in Table. 3 it can be seen the accelerate (Ac = Quicksort
time on one processor / PTSA time on c processors) is
around (1.5-1.7).

Example 1: Figure. 5, shows an example of an array of
size 9, At the end we obtain a sorted array S, The
initial values for the counters are zero (i = 0, j = 0) :

Step 1: The vector is distributed into three rows and

three columns (to the VPE).

Table 2: The running time of Quicksort and PTSA algorithm for fixed
input data size = 107 and different number of vectors

Vectors(r) Running Time Quick sort(µs) Running Time PTSA(µs)
100 2325349.7 707894.9
200 2325349.7 790105.3
300 2325349.7 842908.3
400 2325349.7 881605.4
500 2325349.7 912103.5
600 2325349.7 937246.8
700 2325349.7 958617.5
800 2325349.7 977185.5
900 2325349.7 993588.1
1000 2325349.7 1008266.0

Table. 3: The Accelerate of parallelism for PTSA Algorithm
 Running Time Running Time Accelerate
Size (n) Quick sort (µs) PTSA (µs) PTSA (Sp)
50 2.822 1.880 1.501
100 6.644 4.186 1.587
150 10.843 6.642 1.633
200 15.288 9.196 1.662
250 19.914 11.824 1.684
300 24.686 14.509 1.701
350 29.579 17.243 1.715
400 34.575 20.018 1.727
450 39.662 22.829 1.737
500 44.829 25.672 1.746

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0
N u m b e r o f V e c t o r s (H u n d r e d s)

T
im

e
(µ

s)

R u n n in g ti m e q u i c k s o r t (µ s)

R u n n in g t i m e P T S A (µ s)

Fig. 4: The variation in running time in Quicksort and

PTSA algorithm, for fixed size of data = 107
and different number of vectors

Step 2: The first row is sent to the first MP (p0) and the

second row is sent to the second MP (p1) and
the third row is sent to the third MP (p2).

Step 3: Sorting is carried out in parallel in the same

order for all rows.

Step 4: The first column is sent to the first MP column

(p0) and the second column is sent to the
second MP column (p1) and third column is
sent to the third MP column (p2)

Step 5: Sorting is carried out in parallel in the same

order for all columns.

J. Computer Sci., 4 (1): 66-71, 2008

 71

Fig. 5: Example 3×3 PTSA Algorithm

Step 6: In the location VPE (p11) we get the minimum

element and in location VPE (p33) we get the
maximum element for giving vector.

Step 7: In parallel put the value at VPE (p11) in the first

location (minimum) and the value at VPE
(p33) (maximum) in last location for output
vector.

Step 8: The first row of processor elements is shifted

one position to the left and third row of
processor elements shifted one position to the
right.

Step 9: i = i+1, j = j-1.

Step 10: Repeat step5, step 6, step 7, step 8 and step 9

(c-1) iterations.

Step 11: Sort the middle row and the result send it in

parallel to the output vector (S) locations
from si to sJ.

CONCLUSION

 In this research a new algorithm is proposed for
sorting an array of size n. The idea of this algorithm is

to use parallelism to reduce the running time. We have
obtained a scalable system, in which its performance is
improved when the number of input data is increased.
The reduction becomes significant and that is
confirmed by our simulation results where the reduction
in number of comparisons respectively to the traditional
Quicksort is about 55-65%.

REFERENCES

1. Aggarwal, A. and D. Huang, 1988. Network

complexity of sorting and graph problem and
simulating CRCWPRAMs by nterconection
Networks. Springer-Verlag, 319: 339-350.

2. Bitton, D., D. Dewitt, K. Hsiao and J. Menon,
1984. Ataxonomy of parallel sorting. ACM
Comput. Surveys, 16. 3: 287-318.

3. Batcher, K.E., 1968.v Sorting networks and their
applications. In Proceedings of the AFIPS SPring
Joint Comput. Sci., 32: 307-314.

4. Baudet, G. and D. Stevenson, 1978. Optimal
sorting algorithm for parallel computer. IEEE
Transa. on Comput., C-27: 84-87.

5. Thomas H.C., Charles E. Leiserson, Ronald L.
Rivest, 2000. Introduction to Algorithm. The MIT
Press, Cambridge. Massachusetts, London-
England. ISBN: 0-262-03141-8.

6. Cypher, R.E. and J.L. Sanz, 1988. Cubesort: An
optimal sorting algorithm for feasile parallel
computers. Springer-Verlag, 319: 456-464.

7. Hoare, C.R., 1962. Quicksort. Comput. J., 5 (1):
10-16.

8. Costas, S., 1986. Iliopouls algorithmic time parallel
for partitioning. Technical Reports of the
Department of Computer Science of Purdue
University. West Lafayette. IN 47907: CSD
TR#86-603.

9. Johnson, S.L., 1984. Combining parallel and
sequential sorting on a boolean n-cube. In:
Proceedings of the 1984 IEEE. International
conference on Parallel Processing, 444-448.

10. Nassimi, D. and S. Sahni, 1982. Parallel
permutation and sorting lgorithms and a new
generalized connection networks. JACM.
29: 642-667.

11. Song, D. and A. Shirasi, 1988. Parallel exchange
sort algorithm. South Methodist University, IEEE.

