
Journal of Computer Science 4 (5): 402-407, 2008
ISSN 1549-3636
© 2008 Science Publications

402

A Software Agent for Automatic Creation of a PLC Program

Walid Mohamed Aly

Technical and Vocational Institute Arab Academy for Science, Technology and
Maritime Transport, Alexandria, Egypt

Abstract: Using structured design techniques to design a Programmable Logical Control (PLC)
program would decrease the time needed for debugging and produces a concise bug free code. This
study is concerned with the design of a software agent for automatic creation of code for a PLC
program that can be downloaded on a Siemens Step 7 series. The code is generated according to the
syntax rules for the AWL Language, AWL is the abbreviation for the germen word Anweisungsliste
which means Instruction List The proposed system uses object oriented approach to transfer the design
specification into an object that adequately describes the system using the state based design technique.
The industrial system specifications are supplied by the user through a simple Graphical User Interface
(GUI) environment These specification define the attributes vales of an object oriented class describing
the control system, all the functions needed to generate the code are encapsulated in the class.

Key words: Software agent, PLC, automation, AWL, state diagram

INTRODUCTION

 The act of design is recognized as an act of
intelligence and with the complications of modern
engineering systems design, the computer aided design
plays a major role in this act.
 Industrial control systems were historically
designed using contactors and relays and since the 80’s,
a continuous drift to Programmable Logic Controllers
(PLCs) is happening and with the cost reduction- that
made a practical PLC[1] costs about 650 L.E(≈100$)-
PLC is a rational choice for industrial control systems.
 The IEC 61131- formally known as IEC 1131- is a
standard for PLC, prepared and published by the
International Electro technical Commission (IEC). IEC
61131-3[2] is the third chapter of IEC 61131 and is
concerned with the programming languages standards
by defining the syntax, semantics and structure for five
different languages:

• Ladder diagram
• Function black diagram
• Instruction list
• Structure text
• Sequential function chart

 Molina et al.[3] suggested the use of this standard in
PLC leaning to decrease the knowledge gap between
education and industry. Plc vendors like Siemens and
Rockwell have their products as IEC 61131 complaint,

however PLC products do not have to support the all
five languages to be complaint.
 The AWL language is adopted by Siemens[4] as a
capability of the step 7 PLC series. AWL is the
abbreviation for the germen word Anweisungsliste
which means Instruction List
 AWL resembles the instruction list language and
its source code is in asci code format, that can be edited
by a simple text editor and then imported using the
Micro win or Simatic manager software offered by
Siemens.
 A software agent is software which is goal oriented
and usually is designed to serve a specific purposes, an
intelligent software agent would utilize artificial
intelligent techniques in its quest towards the goal.
Smith et al.[5] defined agent as follows:
 Let us define an agent as a persistent software
entity dedicated to a specific purpose. Persistent
distinguishes agents from subroutines………………....
 This study aims to build a software agent enabling
the PLC program designer to design the application at a
higher descriptive level and have their code
automatically generated by the agent as an AWL code.
 The study starts with the current introductory
section, followed by a section describing the basic PLC
structured design techniques, then the next section
declares the proposed automated design methodology
followed by an application for this proposed
methodology. A final section summarizes and discusses
the results.

J. Computer Sci., 4 (5): 402-407, 2008

 403

PLC structured design: Structured design techniques
will produce a program that is reliable and predictable
and using these techniques decreases the overall
development time by reducing the time needed to edit
and debug the program. Some of these techniques are[6].

Process sequence bits design: If the control system is
sequential in nature and can be described in simple
clear steps, process sequence bits can be used. Using
this design, each step will be represented with a
memory bit and the logic will be split into two main
sections, a section that turns on and off the step bits
according to specification, the other section is
concerned with energizing and deenrgizing the outputs
relative to each step.

Timing diagram design: This design method is
suitable for system that is highly dependable on time,
the timing diagram is drawn and each time value is
assigned a timer which is usually an on delay timer.
Different outputs will be energized and energized by
contacts from these timers.

Flow chart based design: Flow chart based design can
be used for sequential control system with simple
decision making that might change the flow of control,
the design starts with drawing the flow chart of the
system, then each block in the flow chart is
implemented using the master control relay instruction.
Each block of code controls the transfer to the next
block.

State diagrams: Design using state diagrams is a very
useful design tool that can be applied to problems that
have discrete states and transition exist to transfer from
one state to another. It is based on dividing the whole
design to three smaller design problems as follows:

• Design the relation between the inputs and the

transitions
• Design the relation between the transitions and the

states
• Design the relation between the different states and

the outputs

Sequential Function Charts (SFC): The Sequential
Function Charts (SFC) also known as Grafcet- can be
used to design more complex systems which can have
more than one state active at the same time. SFC is a
subsection of the Petri net techniques

 Although all of these techniques exist, however,
many PLC programmers might ignore these design
methods and work on programming based on their prior
experience until they are satisfied with program and
then start commissioning it.

Proposed automated design methodology: In this
research, we use the state design technique for the
automatic creation of the PLC Program. The main steps
for the proposed methodology can be summarized as
follows:

Stage 1: Enter problem description:
Step 1: The user enters the main date about the problem
which is:

• Number of states: States-Num
• Number of inputs together with their names:

Inputs-Num, Input-Names
• Number of outputs together with their names:

Output-Num, Output-Names

 All these data are the values of the attributes of the
object created from class State Design

• Timers Data

 Numbers of timers: Timers-num,
 Timers’ period: delay
 State related to each timer: enabling-state
The Timers are stored as objects of class Timer

Step 2: The user enters the transitions information that
is coded to a Boolean matrix called Transition, such
that if Transition I J is true then Transition can occur
from state I to state J.

Step 3: The user enters the information about the status
of the outputs at each state, this information is coded to
a Boolean matrix called Outputs States, such that if
outputs states [I][J] is true, then output number I is
enabled at state number J.

Step 4: For each transition, a transition condition is
entered as a sum of products expression, resembling the
combinational logic equations.
 The GUI used for the entire prior steps is shown in
Figure 1 with sample data filled.
 Figure 2 shows the Unified Modeling Language
(UML) class diagrams[7] of class State Design and class
Timer.

J. Computer Sci., 4 (5): 402-407, 2008

 404

Fig. 1: GUI for entering problem description

Fig. 2: UML class diagrams for class StateDesign and
class timer

Stage 2: Apply procedures to generate AWL code:
The system will be designed based on state based
design techniques three algorithms will be applied in
sequence to produce the AWL code. First algorithm
outputs the code for the relation between the inputs and
the transitions, second algorithm outputs code for the
relation between the transitions and the states and
finally the third algorithm outputs the code for the
relation between the states and the outputs. Each code
produced from the algorithms is a subroutine the main
method will have to call the three subroutines. Figure 3
shows the relation between states and transition for a
four states problem.

St1

St2 St3

St4

T1
2

T14

T2
1 T24

T32

T41

T4
3

T3
4T42

T13

T 31

T23

Fig. 3: Relation between states and transition for a four

states problem

J. Computer Sci., 4 (5): 402-407, 2008

 405

These three procedures are labeled as follows:
• Coding the relation between the inputs and the

transitions
• Coding the relation between the transitions and the

states
• Coding the relation between the states and the

outputs

 The description for these procedures is as follows.

Coding the relation between the inputs and the
transitions: This algorithm is based on reading each
transition equation as a sum of products equation and
coding it using AWL code to a separate network, each
network will have parallel branch with each branch
consists of bit logic contacts, the OLD, instruction is
used to execute the or relation between branches. The
generated code will be stored as a String called SOP.
 The first networks in this subroutine are used to
initialize the on delay timers.

Procedure: Write –subroutine-calculate- transition

• For I =1 to Timers-num
 SOP+ = Network+i
 +LD+Timer[i].enabling-State+TON
 Timer+I +, +Timer[i].delay
 [next i]
• Read the N transition equations
• for I = Timers-num+1 to N+Timers_num
 Call Write-Network (Transition equations [i], i)
• [next i]
• End

Procedure: Write-Network (Transition equation: T, I)

• Start
• K = number of implicants in equation
• Split T based on the+character to subparts S1, S2,

S3…..SK //Ex: A.B.C+D.E will produce S1:A. B.C
and S2: D. E

• Each subpart produced from previous step is again
split based on the ‘.’ character to more subparts.
//Ex: A. B.C will produce S11: A , S12: B and S13:
C

• Sop = Network + I
• For I = 1 to K
 If Si1 is not initially negated SOP + = LD + Si1 Else

SOP + = LDN + Si1
 L: Number of literals in Si
 For j = 2 to L

 If Sij is not initially negated SOP+ = A+Sij Else
SOP+ = AN+Sij

 [next J]
 Sop+ = OLD
 [next i]
5-Sop+ = T
6-End

Coding the relation between the transitions and the
states: The algorithm is based on reading the Transition
matrix and coding the subroutine with each state as an
output for each network, all the transitions to the state
are connected using the or logic operation together as
normally open contacts and the connected to normally
closed contacts representing the transitions from the
state using the AND logic Operation.

Procedure write-subroutine-calculate-states:

• Start
• Loop1: For I = 1 to States-Num
• S = S + Network + i
• S + = LD ST + i
• If I = 1 S + = O First-Scan-On
• Loop2: For j = 1 to States-Num
 If (Transition[j][i) S + = O + T- + j + I;
 [End Loop2]
• Loop3: For j = 1 to States-Num
 If (Transition[i] [j) S + = AN + T- + i + j
 [End Loop3]
• S + = ,= St + i
• [End Loop1]
• End

Coding the relation between the states and the
outputs: The algorithm is based on reading the output
states matrix and coding the subroutine with each
output as the final output for each network, the code is
generated simply by connecting the states that would
energize an output with the or logic operation

Procedure write-subourtine-update-outputs:

• Start
• Outer Loop : For i = 1 to Outputs-Num
• S + = S+Network+I+LD
• Inner Loop: For j = 1 to Status-Num
 If (output states [i][j]) S+ = St+j+O
 [End Inner Loop]
• Remove O from S
• S+ = Output-Name [i]
• [End Outer Loop]
• End

J. Computer Sci., 4 (5): 402-407, 2008

 406

Practical application: An oven is to be controlled
using a PLC problem such that when a start pushbutton
is presses the horn is on for 10 sec then both coil and
fan are energized, pressing the stop pushbutton will
cause the coil to be de-energized immediately and the
fan to continue working for more 20 sec, then stops.

For the oven control problem, the
configuration data is as follows in Table 1 and 2:

Table 1: Basic configuration data
Parameter Value
No. of states 4: (st1, st2, st3, st4)
No. of inputs/names 2: Start-Stop
No. of outputs/names 3: Horn -fan-coil
No. of timers/enabling state/delay 2: Timer1 enabled by st2 delay
 10000 ms Timer2 enabled by st4
 delay 20000 ms

Table 2: State and Output Relation
State/output Horn fan Coil
St1 Off Off Off
St2 On Off Off
St3 Off On On
St4 Off On Off

 According to this problem description, the code
generated by the software agent is as follows:

Generated code:
 **** Subort ine Update_Outputs****

Network 1
LD ST2
= Horn
Network 2
LD ST3
= Coil
Network 3
LD ST3
O ST4
= Fan

 * *** Subo rt in e Calulat e_ St at e** **
N et wo rk 1
L D ST 1
 O First_ Scan_ ON
O T 4 1
A N T 1 2
= ST 1
N et wo rk 2
L D ST 2
O T 1 2
A N T 2 3
= ST 2
N et wo rk 3
L D ST 3
O T 2 3
A N T 3 4
= ST 3
N et wo rk 4
L D ST 4
O T 3 4
A N T 4 1
= ST 4

****Subort ine_Calculate_Transit ion****
Network 1
LD ST2
TON Timer1, 10000
Network2
LD ST4
TON Timer2, 20000
Network3
LD St art
= T _12
Network4
LD Timer1
= T _23
Network5
LD Stop
= T _34
Network6
LD Timer2
= T _41

 The mapping between the symbols deployed in the
code and the real physical inputs and outputs or
memory location is as shown in Table 3.

Table 3: Symbol table
Symbol Address
Start I0.0
Off I0.1
ST1 M0.0
ST2 M0.1
ST3 M0.2
ST4 M0.3
T_12 M1.0
T_23 M1.1
T_34 M1.2
T_41 M1.3
Horn Q0.0
Coil Q0.1
Fan Q0.2
Timer1 T32
Timer2 T33

DISCUSSION

 Although different well structured techniques exist
for creating PLC programs, usually engineers would
prefer to code the program based on their intelligence
and prior experience. When they feel satisfied with the
program, they download and start commissioning the
software, this might cause the production of non 100%
functional software or creating a soft ware that is not
easy to understand except by its programmer.
 one of the other problems automatic control
engineering might face is that PLC vendors supply the
PLC hardware with the program download to C.P.U
without giving the control engineers the privilege of
having the program itself, nevertheless the engineers

J. Computer Sci., 4 (5): 402-407, 2008

 407

might be totally aware of the system and can adequately
describe it.
 The automatic PLC program creation agent
presented in this research is based only on the
description supplied by engineer and would produce the
AWL code that is ready to be downloaded to a PLC
Siemens station.
 The industrial system specifications are supplied
by the user through a simple GUI environment either
locally and be even done remotely using the remote
method invocation supported by the JAVA
programming language
 The proposed agent is a solution for the mentioned
problems as it will create a 100% functional code that
would be easy to interpret; this was clearly
demonstrated with the code generated for the oven
control system mentioned in the research.
 A more intelligent PLC software agent might even
read the input states and output states and build its own
perception of the control system and automatically
produce the code without even a need to enter the
problem specification.

REFERENCES

1. Bolton, W., 2006. Programmable Logic
Controllers. 4th Edn. Newnes Publisher,
U.S.A. ISBN-13: 978-0750681124

2. Lewis W., 1998. Programming Industrial
Control Systems Using Iec 1131-3, Publisher:
Institution of Electrical Engineers, U.S.A.
ISBN-13: 978-0852969502

3. Molina, F.J., J.L. C.M. Barbancho and A.
Gomez, 2007. Using industrial standards on
PLC programming learning, seville control
and automation. Proceedings of 15th
Mediterranean Conference on Control and
Automation (MED '07), June 2007, Greece,
pp: 1-6.

4. Tubbs, P., 2007. Programmable Logic
Controller (PLC) Tutorial, Siemens Simatic
S7-200, 2007. Publisher: Stephen Philip
Tubbs, Oklahoma, U.S.A. ISBN-13: 978-
0965944687

5. Smith, D.C., A. Cypher and J. Spohrer, 1994.
KidSim: Programming agents without a
programming language. Communications
of the ACM, Vol.37,pp. 55-67.

6. Hugh J., 2007. Automating Manufacturing
Systems with PLCs, Retrieved from URL:
http://www.eod.gvsu.edu/~jackh/books/plcs.

7. Ali, N.H., Z. Shukur and S. Idris, 2007. A
design of an assessment system for UML

Class Diagram. Proceedings OF Conference of
Computational Science and its Applications
(ICCSA07), August 2007, Kuala Lumpur,
Malaysia, pp: 539-546. DOI: 10.1007/978-3-
540-74472-6,URL: http://2007.iccsa.org/

