
Journal of Computer Science 4 (5): 393-401, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Amjad Hudaib, Department of Computer Information Systems, University of Jordan, Amman 11942,
Jordan Tel.: +962-5355000/ext: 22610 Fax: +962-5354070

393

A Fast Pattern Matching Algorithm with Two Sliding Windows (TSW)

Amjad Hudaib, Rola Al-Khalid, Dima Suleiman, Mariam Itriq and Aseel Al-Anani

Department of Computer Information Systems, University of Jordan, Amman 11942 Jordan

Abstract: In this research, we propose a fast pattern matching algorithm: The Two Sliding Windows
(TSW) algorithm. The algorithm makes use of two sliding windows, each window has a size that is
equal to the pattern length. Both windows slide in parallel over the text until the first occurrence of the
pattern is found or until both windows reach the middle of the text. The experimental results show that
TSW algorithm is superior to other algorithms especially when the pattern occurs at the end of the text.

Key words: Pattern matching, string matching, berry-ravindran algorithm, boyer moore

INTRODUCTION

 Pattern matching is a pivotal theme in computer
research because of its relevance to various applications
such as web search engines, computational biology,
virus scan software, network security and text
processing[1-4] .
 Pattern matching focuses on finding the
occurrences of a particular pattern P of length ‘m’ in a
text ‘T’ of length ‘n’. Both the pattern and the text are
built over a finite alphabet set called ∑ of size σ.
 Generally, pattern matching algorithms make use
of a single window whose size is equal to the pattern
length[5]. The searching process starts by aligning the
pattern to the left end of the text and then the
corresponding characters from the pattern and the text
are compared. Character comparisons continue until a
whole match is found or a mismatch occurs, in either
case the window is shifted to the right in a certain
distance[6-12]. The shift value, the direction of the sliding
window and the order in which comparisons are made
varies in different pattern matching algorithms.
 Some pattern matching algorithms concentrate on
the pattern itself[5]. Other algorithms compare the
corresponding characters of the pattern and the text
from left to right[6]. Others perform character
comparisons from right to left[8,11]. The performance of
the algorithms can be enhanced when comparisons are
done in a specific order[9,13]. In some algorithms the
order of comparisons is irrelevant such as Brute Force
and Horspool algorithms[7].
 In this study, we propose a new pattern matching
algorithm: The Two Sliding Windows algorithm
(TSW). The algorithm concentrates on both the pattern
and the text. It makes use of two windows of size that is

equal to the size of the pattern. The first window is
aligned with the left end of the text while, the second
window is aligned with the right end of the text. Both
windows slide at the same time (in parallel) over the
text in the searching phase to locate the pattern. The
windows slide towards each other until the first
occurrence of the pattern from either side in the text is
found or they reach the middle of the text. If required,
all the occurrences of the pattern in the text can be
found.

Related works: Several pattern matching algorithms
have been developed with a view to enhance the
searching processes by minimizing the number of
comparisons performed[14-16]. To reduce the number of
comparisons, the matching process is usually divided
into two phases. The pre-processing phase and the
searching phase. The pre-processing phase determines
the distance (shift value) that the pattern window will
move. The searching phase uses this shift value while
searching for the pattern in the text with as minimum
character comparisons as possible.
 In Brute Force algorithm (BF), no pre-processing
phase is performed. It compares the pattern with the
text from left to right. After each attempt, it shifts the
pattern by exactly one position to the right. The time
complexity of the searching phase is O (mn) in the
worst case and the expected number of text character
comparisons is (2n).
 New ways to reduce the number of comparisons
performed by moving the pattern more than one
position are proposed by many algorithms such as
Boyer-Moore (BM)[11,17] and Knuth-Morris-Pratt
algorithms (KMP)[6,18].

J. Computer Sci., 4 (5): 393-401, 2008

 394

 KMP algorithm compares the pattern with the text
from left to right. If a mismatch occurs it uses the
failure function f(j)that indicates the proper shift of the
pattern[6,18] . The failure function f (j) is defined as the
length of the longest prefix of P that is the suffix of
P[1..j]. Thus, KMP reduces the number of times it
compares each character in P with a character in the
text T. KMP performs (2n) text character comparisons
and the complexity of the pre-processing phase is O
(m). KMP achieves a running time of O (n+m), which
is optimal in the worst case[6].
 BM algorithm improves the performance by pre-
processing the pattern using two shift functions: the
bad-character shift and the good-suffix shift. During the
searching phase, the pattern is aligned with the text and
it is scanned from right to left. If a mismatch occurs, the
BM algorithm shifts the pattern with the maximum
value taken between the two shift functions. The worst
case time complexity when searching all occurrences of
the pattern is O (mn) and O (nm−1) for best
performance[11,17].
 A simplification of BM algorithm is the Horspool
algorithm[7]. It does not use the good suffix function,
instead it uses the bad-character shift with the rightmost
character. Its pre-processing time complexity is
O(m+σ) and the searching time complexity is O(mn)[7].
 The Berry-Ravindran algorithm (BR) calculates the
shift value based on the bad character shift for two
consecutive text characters in the text immediately to
the right of the window. This will reduce the number of
comparisons in the searching phase. The pre-processing
and searching time complexities of BR algorithm are
O(σ2) and O(nm) respectively[7]. In this research, the
proposed algorithm makes use of the pre-processing
phase of BR algorithm.

The Two Sliding Windows (TSW) algorithm: The
Two Sliding Windows algorithm (TSW) scans the text
from both sides simultaneously. It uses two sliding
windows, the size of each window is m which is the
same size as the pattern. The two windows search the
text in parallel. The text is divided into two parts: the
left and the right parts, each part is of size ┌ n/2┐. The
left part is scanned from left to right using the left
window and the right part is scanned from right to left
using the right window. Both windows slide in parallel
which makes the TSW algorithm suitable for parallel
processors structures. TSW algorithm stops when one
of the two sliding windows finds the pattern or the
pattern is not found within the text string at all. The
TSW algorithm finds either the first occurrence of the
pattern in the text through the left window or the last
occurrence of the pattern through the right window. If

necessary, the algorithm can be modified easily to find
all the occurrences of the pattern. Also if the pattern is
exactly in the middle of the text, TSW can find it easily.
 The TSW algorithm utilizes the idea of BR bad
character shift function[8] to get better shift values
during the searching phase. BR algorithm provides a
maximum shift value in most cases without losing any
characters. The main differences between TSW
algorithm and BR algorithm are:

• TSW uses two sliding windows rather than using

one sliding window to scan all text characters as in
BR algorithm

• The TSW uses two arrays, each array is a one
dimensional array of size (m-1). The arrays are
used to store the calculated shift values for the two
sliding windows. The shift values are calculated
only for the pattern characters. While the original
BR algorithm uses a two-dimensional array to store
the shift values for all the alphabets[8]. Using one
dimensional array reduces the search processing
time and at the same time reduces the memory
requirements needed to store the shift values

Pre-processing phase: The pre-processing phase is
used to generate two arrays nextl and nextr, each array
is a one-dimensional array. The values of the nextl
array are calculated according to Berry-Ravindran bad
character algorithm (BR). nextl contains the shift values
needed to search the text from the left side. To calculate
the shift values, the algorithm considers two
consecutive text characters a and b which are aligned
immediately after the sliding window. Initially, the
indexes of the two consecutive characters in the text
string from the left are (m+1) and (m+2) for a and b
respectively as in Eq. 1.

Bad Char 1 if p[m 1] a
shiftl [a,b] min m i if p[i]p[i 1] ab

m 1 if p[0] b
m 2 Otherwise

 − = = − + =
 + =
 +

 (1)

 On the other hand, the values of the nextr array are
calculated according to our proposed shift function.
nextr contains the shift values needed to search the text
from the right side, initially the indexes of the two
consecutive characters in the text string from the right

J. Computer Sci., 4 (5): 393-401, 2008

 395

Fig. 1: The pre-processing algorithm

are (n-m-2) and (n-m-1) for a and b respectively, which
are used to calculate the shift values as in Eq. 2.

Bad Char m 1 if p[m 1] a
shiftr [a,b] min m ((m 2) i) if p[i]p[i 1] ab

1 if p[0] b
m 2 Otherwise

 + − = = − − − + =
 =
 +

 (2)

 The two arrays will be invariable during the
searching process. Figure 1 shows the steps of the pre-
processing algorithm.

Searching phase: In this phase, the text string is
scanned from two directions, from left to right and from
right to left. In mismatch cases, during the searching
process from the left, the left window is shifted to the
right, while during the searching process from the right,
the right window is shifted to the left. Both windows
are shifted until the pattern is found or the windows
reach the middle of the text. Figure 2 explains the steps
of the TSW algorithm.

Step1: Compare the characters of the two sliding
windows with the corresponding text characters from
both sides. If there is a mismatch during comparison
from both sides, the algorithm goes to step2, otherwise
the comparison process continues until a complete
match is found. The algorithm stops and displays the
corresponding position of the pattern on the text string.
If we search for all the pattern occurrences in the text
string, the algorithm continues to step2.

Step2: In this step, we use the shift values from the
next arrays depending on the two text characters placed
immediately after the pattern window. The two
characters are placed to the right side of the left window
and to the left side of the right window. The
corresponding windows are shifted to the correct
positions based on the shift values, the left window is
shifted to the right and the right window is shifted to

Fig. 2: TSW Pattern Matching Algorithm

the left. Both steps are repeated until the first
occurrence of the pattern is found from either sides or
until both windows are positioned beyond ┌n/2┐.
 If the first occurrence of the pattern exists in the
middle of the text, the TSW algorithm in Fig. 2
continues comparing pattern characters with text
characters through the inner loops before the TSW
algorithm terminates the searching process through the
outer loop.

Working example: In this study we will present an
example to clarify the TSW algorithm. Part of
nucleotide sequence of a gene (only 47 nucleotides)
from Chromosome I (CHR-I) has been used to test the
algorithm[10], this sequence is taken from the gene index
32854-32901[10]. The plant genome (Arabidopsis
thaliana) consists of 27,242 gene sequences distributed
over five chromosomes (CHR-I to CHR-V).

J. Computer Sci., 4 (5): 393-401, 2008

 396

Fig. 3: The nextl and nextr arrays

Given:
Pattern(P)=”GAATCAAT”, m=8
Text(T)=”ATCTAACATCATAACCCTAATTGGCA
GAGAGAGAATCAATCGAATCA”, n=47

Pre-processing phase: Initially, shiftl=shiftr=m+2=10.
 The shift values are stored in two arrays nextl and
nextr as shown in Fig. 3a and 3b respectively.
 To build the two next arrays (nextl and nextr), we
take each two consecutive characters of the pattern and
give it an index starting from 0. For example for the
pattern structure GAATCAAT, the consecutive
characters GA,AA,AT,TC,CA,AA and AT are given
the indexes 0,1,2,3,4,5 and 6 respectively.
 The shift values for the nextl array are calculated
according to Eq. 1 while the shift values for the nextr
array are calculated according to Eq. 2.

Searching phase: The searching process for the pattern
p is illustrated through the working example as shown
in Fig. 4.

First attempt: In the first attempt (Fig. 4a), we align
the first sliding window with the text from the left. In
this case, a mismatch occurs between text character (A)
and pattern character (G), therefore we take the two
consecutive characters from the text at index 8 and 9
which are (T and C) respectively. To determine the
amount of shift (shiftl) we have to do the following two
steps:

• We find the index of TC in the pattern which is 3
• Since we search from the left side we use nextl

array and shiftl = nextl[3] = 5

 Therefore the window is shifted to the right 5 steps.

Second attempt: In the second attempt (Fig. 4b), we
align the second sliding window with the text from the
right. In this case, a mismatch occurs between text
character (A) and pattern character (T), therefore we
take the two consecutive characters from the text at
index 37 and 38 which are (A and A) respectively. To
determine the amount of shift (shiftr), we have to do the
following two steps:

• We find the index of AA in the pattern, AA has

two indexes 1 and 5
• Since we search from the right side we use nextr

array for the two indexes
 nextr[1] = 3 , nextr[5] = 7, then we choose the

minimum value to determine shiftr. Shiftr =
nextr[1] = 3.

 Therefore the window is shifted to the left 3 steps.

Third attempt: In the third attempt (Fig. 4c), a
mismatch occurs from the left between text character
(A) and pattern character (G), therefore we take the two
consecutive characters from the text at index 13 and 14
which are (A and C) respectively, since AC is not found
in the pattern, so the window is shifted to the right 10
steps.

Fourth attempt: In the fourth attempt (Fig. 4d), a
mismatch occurs from the right between text character
(A) and pattern character (T), therefore we take the two
consecutive characters from the text at index 34 and 35
which are (A and T) respectively. To determine the
amount of shift (shiftr) we have to do the following two
steps:

• We find the index of AT in the pattern, AA has two

indexes 2 and 6
• Since we search from the right side, we use nextr

array for the two indexes

nextr[2] = 4, nextr[6] = 8, we choose the minimum.
 Shiftr = nextr[1] = 4.
 Therefore the window is shifted to the left 4 steps.

Fifth attempt: We align the left most character of the
pattern P[0]with T[32]. A comparison between the
pattern and the text characters leads to a complete
match at index 32. In this case, the occurrence of the
pattern is found using the right window.

J. Computer Sci., 4 (5): 393-401, 2008

 397

Fig. 4: Working Example

Analysis:
Preposition 1: The space complexity is O(2(m-1))
where m is the pattern length.

Preposition 2: The pre-process time complexity is
O(2(m-1)).

Lemma 1: The worst case time complexity is O(((n/2-
m+1))(m))

Proof: The worst case occurs when at each attempt, all
the compared characters of both the pattern and the text
are matched except the last character and at the same
time the shift value is equal to 1. If the pattern is
aligned from the left then shift by one occurs when the
first character of the two consecutive characters is
matched with the last pattern character, while if the
pattern is aligned from the right then shift by one occurs
when the second character of the two consecutive
characters is matched with the first pattern character.

Lemma 2: The best case time complexity is O(m).

Proof: The best case occurs when the pattern is found
at the first index or at the last index (n-m).

Lemma 3: The Average case time complexity is
O(n/(2∗(m+2))).

Proof: The Average case occurs when the two
consecutive characters of the text directly following the
sliding window is not found in the pattern. In this case,
the shift value will be (m+2) and hence the time
complexity is O([n/(2∗(m+2))]).

RESULTS AND DISCUSSION

 Several experiments have been conducted using
TSW algorithm. In each experiment, we consider
Book1 from the Calgary corpus to be the text[19]. Book1
Table 1: The average number of attempts and comparisons of TSW

and BR algorithms
 TSW BR
Pattern No. of ----------------------------- -------------------------------
length words Attempts Comparisons Attempts Comparisons
4 8103 3904 4213 6409 7039
5 4535 4456 4896 9577 10645
6 2896 7596 8311 10898 12173
7 1988 9341 10263 11953 13345
8 1167 10056 11087 13256 14807
9 681 9538 10538 14149 15892
10 382 9283 10272 14127 15799
11 191 5451 5967 12808 14243
12 69 6384 7168 9598 10923
13 55 7947 8673 10334 11370
14 139 19437 21319 19548 21673
15 32 19682 21739 19817 22384
16 10 20029 21596 26086 28644
17 3 21897 25404 22554 28148

consists of 141,274 words (752,149 characters).
Patterns of different lengths are also taken from Book1.
 The searching process is performed from both sides
of Book1 and the pattern is located from either sides.
Table 1 shows the results of comparing the algorithms
TSW with BR and Fig. 5a and 5b show the average
number of attempts and comparisons respectively.
 In Table 1, the length of the pattern is given in
column one while the second column is the number of
words selected for each pattern length from Book1. For
example, as shown in Table 1, 1167 patterns with
length 8, were taken. The average number of

J. Computer Sci., 4 (5): 393-401, 2008

 398

comparisons made by TSW algorithm is 11087 and
average number of attempts is 10056, while the average
number of comparisons made by BR is 14807 and
average number of attempts is 13256. TSW made the
minimum average number of comparisons and average
number of attempts. Although TSW algorithm uses the
same shift function of BR algorithm the TSW algorithm
searches the text from both sides simultaneously, while

0
5000

10000
15000
20000
25000
30000

1 3 5 7 9 11 13 15
Pattern length

A
ve

ra
ge

 n
um

be
r o

f a
tte

m
pt

s TSW
BR

(a)

0
5000

10000

15000

20000

25000

30000

35000

1 3 5 7 9 11 13 15
Pattern length

 A
ve

ra
ge

 n
um

be
r o

f c
om

pa
ris

on
s

TSW
BR

(b)

Fig. 5: The average number of attempts and

comparisons of TSW and BR algorithms

BR algorithm only searches the text from the left side,
so the average number of comparisons and attempts in
BR algorithm are more than that of our algorithm.
 Table 2 shows the results of comparing TSW
algorithm with other algorithms. TSW algorithm has
the minimum average number of comparisons and
attempts among all other algorithms. The results are
reasonable since TSW algorithm searches the text from
both sides while all other algorithms search the text
from one side. This can be justified by the following
two advantages of TSW algorithm. First, it searches the
text from both sides simultaneously. Second, the BR
shift function shifts the pattern by a value that ranges
from 1 up to m+2 positions from both sides when a
mismatch occurs. This has a positive effect on the
number of comparisons and attempts in most cases.
 BF algorithm in Table 2, has the largest number of
comparisons and attempts because it shifts the pattern
by one position to the right each time a mismatch
occurs. Noticeably, KMP algorithm has almost the
same number of comparisons and attempts as in BF
algorithm. Although, KMP uses a failure function to
determine the shift values in case of a mismatch, its
searching results are close to BF because multiple
occurrence of a substring in a word is not common in a
natural language. The performance of BM algorithm is
better than KMP and BF, since it uses the good suffix
function and the bad-character shift to calculate the
shift which depends on the reoccurrence of the
substring in a word which reduces the number of
comparisons performed.
 Table 3-5 show the index, number of comparisons
and attempts needed to search for the first appearance
of the pattern (with different lengths) in the beginning,
middle and at the end of Book1. In Table 3 and 4,
TSW algorithm results are reasonably

Table 2: The average number of attempts and comparisons for patterns with different lengths
 TSW BR BM KMP BF
Pattern No. of ------------------------------ ----------------------------- ---------------------------- ---------------------------- -----------------------------
length words Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 8103 3904 4213 6409 7039 9549 10055 35946 36972 36029 37056
5 4535 4456 4896 9577 10645 13435 14246 61500 63460 61685 63645
6 2896 7596 8311 10898 12173 14793 15749 79064 81663 79353 81952
7 1988 9341 10263 11953 13345 15797 16817 97291 100722 97667 101100
8 1167 10056 11087 13256 14807 17190 18314 117903 122341 118360 122799
9 681 9538 10538 14149 15892 18145 19403 136829 142234 137387 142793
10 382 9283 10272 14127 15799 18048 19254 148359 154279 148997 154917
11 191 5451 5967 12808 14243 16449 17477 144335 149852 145007 150525
12 69 6384 7168 9598 10923 12074 13001 114781 120531 115338 121088
13 55 7947 8673 10334 11370 13422 14176 133469 140255 133952 140739
14 139 19437 21319 19548 21673 25075 26603 265189 275981 266460 277257
15 32 19682 21739 19817 22384 24791 26609 277260 288103 278900 289750
16 10 20029 21596 26086 28644 33423 35146 391604 403333 393580 405313
17 3 21897 25404 22554 28148 26266 30016 334855 347547 336367 349060

J. Computer Sci., 4 (5): 393-401, 2008

 399

Table 3: The number of attempts and comparisons performed to search for the first appearance of a selected pattern from the beginning of the text
 TSW BR BM KMP BF
Pattern ----------------------------- ----------------------------- ----------------------------- ---------------------------- ------------------------------
length Index Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 67 25 29 13 17 18 22 68 72 68 72
5 33 11 15 6 10 8 12 34 38 34 38
6 82 23 28 12 17 16 22 83 89 83 89
7 39 11 17 6 12 7 14 40 46 40 46
8 99 21 28 11 18 16 24 100 109 100 109
9 260 51 65 31 44 35 43 259 278 261 280
10 590 105 120 55 69 74 93 589 607 591 607
11 189 35 47 16 26 19 29 190 202 190 202
12 2401 363 402 198 226 254 269 2398 2537 2402 2541

Table 4: The number of attempts and comparisons performed to search for the first appearance of a selected pattern from the middle of the text
 TSW BR BM KMP BF
Pattern ----------------------------- ----------------------------- ---------------------------- ---------------------------- -----------------------------
length Index Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 370383 129947 137725 65258 72993 92820 98573 370381 370529 370384 370532
5 370382 113693 136161 57118 63667 76853 81719 370310 430611 370383 430684
6 370381 98091 106374 49270 54977 65873 69675 368479 376328 370381 378230
7 370380 87631 99564 44280 49423 57885 61504 365718 390065 370380 394727
8 370379 79241 92310 40408 45146 52106 55303 360918 388684 370379 398145
9 370378 72129 80309 37118 41536 47672 50528 368576 386294 370378 388096
10 370377 66303 74941 34490 38503 44166 46915 368073 393393 370377 395697
11 370376 61585 71378 32152 35861 41471 44021 367999 405422 370376 407799
12 370375 54745 63718 29387 29440 41713 41758 365826 430607 370374 435156

Table 5: The number of attempts and comparisons performed to search for the first appearance of a selected pattern from the end of the text
 TSW BR BM KMP BF
Pattern ----------------------------- ----------------------------- ----------------------------- ---------------------------- -----------------------------
length Index Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 768606 66 76 136118 151948 195168 207233 768607 816438 768607 816440
5 768468 94 102 112181 114792 158135 160057 768469 816294 768469 816296
6 768189 164 183 99387 102611 132797 134899 768190 805725 768190 805729
7 768510 68 79 93558 104611 116750 124074 768322 791589 768511 791778
8 768486 66 78 83653 93537 101472 107957 768485 795109 768487 795575
9 768595 44 55 77868 87499 93751 99992 768593 780584 768596 780587
10 768222 104 117 70970 79150 84280 89630 768220 780205 768223 780208
11 768240 92 107 65279 72965 77326 82378 768238 780224 768241 780227
12 768306 78 96 60905 67108 70803 74580 768304 780292 768307 780295

Table 6: The average number of attempts and comparisons performed to search for (100) patterns selected from the beginning of the text
 TSW BR BM KMP BF
Pattern No. of ---------------------------- ------------------------------ ----------------------------- ----------------------------- ------------------------------
length words Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 100 143 157 76 85 113 121 422 437 423 439
5 100 185 206 99 115 138 151 633 658 635 660
6 100 227 255 121 142 163 179 866 903 869 906
7 100 347 388 195 226 255 281 1550 1621 1555 1627
8 100 504 568 270 310 350 380 2366 2484 2378 2496
9 100 670 750 363 417 469 509 3493 3652 3511 3671
10 100 1160 1290 640 727 812 878 6645 6951 6689 6996
11 100 622 705 331 396 426 474 3698 3822 3710 3834
12 100 865 972 478 557 580 632 5542 5823 5567 5848
acceptable compared with BR and BM algorithms since
they search the text only form left to right, while TSW
algorithm searches the text from both sides, which
normally increases the number of comparisons and
attempts.
 On the other hand, BF and KMP have the largest
number of comparisons. TSW algorithm performance is

observed in Table 5 where a pattern with different
lengths is selected from the end of Book1. TSW
algorithm finds it with minimum effort by the right to
left window.
 Table 6-8 show the average number of
comparisons and attempts needed to search for the first,
middle and last appearance of 100 words selected from

J. Computer Sci., 4 (5): 393-401, 2008

 400

Table 7: The average number of attempts and comparisons performed to search for (100) patterns selected from the middle of the text
 TSW BR BM KMP BF
Pattern No. of ---------------------------- ----------------------------- ---------------------------- ---------------------------- ------------------------------
length words Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 100 2726 2959 3645 4070 5451 5794 20263 20982 20324 21043
5 100 13965 15140 11558 12793 16057 16984 74308 76485 74524 76701
6 100 16682 18317 12878 14337 17545 18639 93846 97081 94112 97347
7 100 27267 30095 19547 22006 25732 27537 156518 162057 157247 162786
8 100 27830 30915 20831 23336 27043 28845 184588 191677 185458 192551
9 100 33929 37200 23284 25852 30154 32043 226004 234510 227028 235537
10 100 29676 32817 20546 22989 26300 28049 214942 224036 216065 225160
11 100 23195 24646 20264 22005 26377 27620 231558 237139 232474 238061
12 100 26806 30222 21113 24235 26818 29098 255284 269960 256314 270993

Table 8: The average number of attempts and comparisons performed to search for (100) patterns selected from the end of the text
 TSW BR BM KMP BF
Pattern No. of --------------------------- ------------------------------ ---------------------------- --------------------------- ------------------------------
length words Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 100 133 148 6899 7719 10197 10857 38402 39254 38459 39310
5 100 271 297 12930 14404 18352 19484 83041 85608 83229 85795
6 100 364 402 21315 23957 28737 30713 154185 158658 154638 159112
7 100 402 447 22237 24731 29554 31372 180131 185979 180783 186631
8 100 536 592 21495 23841 28051 29727 191651 197606 192232 198187
9 100 776 859 24919 28257 31525 33891 240397 248454 241177 249235
10 100 1579 1756 31603 35360 40451 43195 333436 345747 334643 346956
11 100 619 669 32797 36438 41812 44450 367043 377922 368994 379873
12 100 1667 1872 30928 35067 38553 41374 367780 384834 369501 386555

Table 9: The number of attempts and comparisons performed to search for a set of patterns that do not exist in the text
 TSW BR BM KMP BF
Pattern ------------------------------ ------------------------------ ----------------------------- ------------------------------ --------------------------------
length Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
4 132894 142538 135240 151799 193892 206747 768769 777901 768769 777941
5 113904 121958 115988 129713 156915 166626 768768 777900 768768 777940
6 96782 98008 98075 98201 135651 135728 768767 777899 768767 777939
7 85970 86986 87081 87141 115235 115270 768766 777898 768766 777938
8 78722 82124 81500 86587 100541 103498 768765 777897 768765 777937
9 72136 76506 75625 82879 91793 96158 768764 777896 768764 777936
10 65890 69354 68904 74522 85619 89079 768763 777895 768763 777935
11 60094 61964 62235 64683 80370 82038 768762 777894 768762 777934
12 56774 60319 60911 67164 74262 78281 768761 777893 768761 777933

Book1. The results of taking 100 words are similar to
that of taking a single word with different lengths. As
shown in Table 8, TSW algorithm best performance is
when we search for words selected from the end of
Book1. In case of a complete mismatch, as in Table 9,
the average number of comparisons and attempts of the
TSW algorithm is the minimum; this is because the
shift value in most cases reaches m+2.

CONCLUSION

 In this research, we presented a fast pattern
matching algorithm The Two Sliding Windows
algorithm TSW which makes use of two sliding
windows. It employs the main idea of BR by
maximizing the shift value and using two sliding
windows rather than using one sliding window to scan

all text characters as in BR algorithm. The TSW uses
two arrays; each array is a one dimensional array of size
(m-1). The arrays are used to store the calculated shift
values for the two sliding windows, while the original
BR algorithm uses a two-dimensional array.
 We evaluated TSW performance by using a text
string and various set of patterns. Also in the algorithm,
during the pre-processing phase we reduced the
memory required by using one-dimensional arrays for
the pattern characters only. The concept of searching
the text from both sides simultaneously gives TSW
algorithm a preference over other algorithms in the
number of comparisons and attempts especially if the
pattern searched for occurs at the end of the text. In
future research, we intend to implement the TSW
algorithm on real parallel processors to minimize the
number of comparisons and attempts. Also we intend to

J. Computer Sci., 4 (5): 393-401, 2008

 401

implement the idea of the two sliding windows on other
algorithms such as KMP and BM.

REFERENCES

1. Wang, Y. and H. Kobayashi, 2006. High

performance pattern matching algorithm for
network security. IJCSNS, 6: 83- 87.
URL:http://paper.ijcsns.org/07_book/200610/
200610A3.pdf

2. Navarro, G. and M. Raffinot, 2002. Flexible
Pattern Matching in Strings-Practical On-line
Search Algorithms for Texts and Biological
Sequences. First Edition. Cambridge University
Press, New York. ISBN: 0-521-81 307-7

3. Crochemore, M. and W. Rytter, 2002. Jewels of
Stringology. First Edition. WorldScientific,
Singapore. ISBN: 9789810247829

4. Smyth, W.F., 2003. Computing Patterns in Strings.
First Edition. Pearson Addison Wesley. United
States. ISBN: 978-0-201-39839-7

5. Charras, C. and T. Lecroq, 2004. Handbook of
Exact String Matching Algorithms. First Edition.
King’s College London Publications.
ISBN: 0954300645

6. Knuth, D.E., J.H. Morris and V.R. Pratt, 1977. Fast
pattern matching in strings. SIAM J. Comput.,
6: 323-350.

7. Horspool, R.N., 1980. Practical fast searching in
strings. Software Practice Experience, 10: 501-506.

8. Berry, T. and S. Ravindran, 1999. A fast string
matching algorithm and experimental results. In:
Proceedings of the Prague Stringology Club
Workshop ’99, Liverpool John Moores University,
pp: 16-28.

9. Crochemore, M. and D. Perrin, 1991. Two-way
string-matching. ACM, 38: 651-675.
DOI: http://doi.acm.org/10.1145/116825.116845

10. Thathoo, R. et al., 2006. TVSBS: A fast exact
pattern matching algorithm for biological
sequences. Current Sci., 91: 47-53. URL:
http://profile.iiita.ac.in/avirmani_02/TVSBS.pdf

11. Boyer, R.S. and J.S. Moore, 1977. A fast
string searching algorithm. Commun. ACM.,
20: 762-772. DOI:10.1145/359842.359859

12. Michael, T.G. and Roberto Tamassia, 2002.
Algorithm Design, Foundations, Analysis and
Internet Examples. First Edition. John Wiley and
Sons, Inc, USA. ISBN: 0-471-38365-1

13. He, L., F. Binxing and J. Sui, 2005. The wide
window string matching algorithm. Theor. Compu.
Sci., 332: 391-404. DOI: 10.1016/j.tcs.2004.12.002

14. Hume, A. and D. Sunday, 1991. Fast string
searching. Software Practice Experience,
21: 1221-1248. DOI: 10.1002/spe.4380211105

15. Lecroq, T., 1995. Experimental results on string
matching algorithms. Software-practice and
Experience, 25: 727-765.

 DOI: 10.1002/spe.4380250703
16. Davies G., and Bowsher S., 1996. Algorithms for

pattern matching, Software-Practice and
Experience,16:575-601.
DOI:10.1002/spe.4380160608

17. Tsai, T.H., 2003. Average case analysis of the
boyer-moore algorithm. Source. Random Struct.
Algorithms, 28: 481-498. DOI: 10.1002/rsa.v28:4

18. Frantisek F., Christopher G. Jennings and W. F.
Smyth, 2007. A simple fast hybrid pattern-
matching algorithm, J. Discrete Algorithms 5: 682–
695. DOI: 10.1016/j.jda.2006.11.004

19. T. Bell, J. Cleary, and I. Witten, Text Compression.
First Edition. Englewood Cliffs, N.J.: Prentice
Hall, 1990. ISBN: 0-13-911991-4

