
Journal of Computer Science 4 (4): 305-308, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Hasan Krad, Department of Computer Science and Engineering, College of Engineering,
 Qatar University, P.O. Box 2713, Doha, Qatar Tel: +974 485-2677 Fax: +974 485-2777

305

Performance Analysis of a 32-Bit Multiplier with a Carry-Look-Ahead

Adder and a 32-bit Multiplier with a Ripple Adder using VHDL

Hasan Krad and Aws Yousif Al-Taie
Department of Computer Science and Engineering,

College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Abstract: This study presents a performance analysis of two different multipliers for unsigned data,
one uses a carry-look-ahead adder and the second one uses a ripple adder. The study’s main focus is on
the speed of the multiplication operation on these 32-bit multipliers which are modeled using VHDL,
A hardware description language. The multiplier with a carry-look-ahead adder has shown a better
performance over the multiplier with a ripple adder in terms of gate delays. Under the worst case, the
multiplier with the fast adder shows approximately twice the speed of the multiplier with the ripple
adder. The multiplier with a ripple adder uses time = 979.056 ns, while the multiplier with the carry-
look-ahead adder uses time = 659.292 ns.

Key words: Multiplier, carry-look-ahead adder, ripple adder, VHDL simulation

INTRODUCTION

 Multiplication can be considered one of the basic
arithmetic operations. However, it is not as simple as
addition or subtraction operations, because it takes
more time to perform two subtasks, addition and
shifting. Typically, a multiplication operation takes
between 2 and 8 cycles[2]. Therefore, using high-speed
multipliers is a critical requirement for processors with
a high performance. The multiplier uses the addition
operation for all the partial products. The adder can be a
ripple adder, a carry-look-ahead adder, or any other
adder[5,8]. However, using a fast adder for the multiplier
improves the over all performance of the multiplication
operation. Our study is focused on multipliers using
unsigned data. VHDL, a Very High Speed Integrated
Circuit Hardware Description Language, was used to
model our multiplier design.
 Several researchers had worked on the
performance analysis of adders and other researchers on
the performance analysis of multipliers. Sertbas and
Selami worked on the performance analysis of
classified binary adder architectures. They compared
the ripple adder, carry-look-ahead adder, carry select
adder and the conditional sum adder. They used VHDL
in their comparison. Their study included the unit-gate
models for area and delay[1]. Asadi and Navi developed
a new 54×54 bit multiplier using a high-speed carry-
look-ahead adder. Their proposed multiplier reduced
the number of transistors, delay and power

consumption[2]. Aziz and Kamruzzaman developed a
synthesizable VHDL model for a generalized signed
multiplier capable of performing multiplication of both
signed-magnitude and two’s compliment operands[3].

Ripple carry adder: Ripple carry adders use multiple
full adders with the carry ins and carry outs chained
together, where the correct value of the carry bit ripples
from one bit to the next[4].

The two Boolean functions for the sum and carry are:

 SUM = Ai ⊕ Βi ⊕ Ci
 Cout = Ci+1 = Ai · Bi + (Ai ⊕ Bi) · Ci

 We modeled this module with the following VHDL
code:

ENTITY R_Adder IS
 PORT (
 a,b: IN BIT_VECTOR (31 DOWNTO 0);
 cin: IN BIT;
 sum: OUT BIT_VECTOR (31 DOWNTO 0);
 cout: OUT BIT
);
END Entity;

ARCHITECTURE R_Adder_Beh OF R_Adder IS
constant gate_delay2: time: = 10 ns;
constant gate_delay4: time: = 20 ns;

J. Computer Sci., 4 (4): 305-308, 2008

 306

SIGNAL car: BIT_VECTOR (32 DOWNTO 0);
BEGIN
 car(0) <= cin;
 PROCESS (a, b, car)
 BEGIN
 FOR i IN 0 to 31 LOOP
 sum(i) <= a(i) XOR b(i) XOR car(i) after

gate_delay2;
 car(i+1) <= (a(i) AND b(i)) OR (car(i) AND (a(i)

XOR b(i))) after gate_delay4;
 END LOOP;
 END PROCESS;
 cout <= car(32);
END ARCHITECTURE;

Carry look ahead adder: To reduce the delay caused
by the effect of carry propagation through the ripple
carry adder, we can attempt to evaluate quickly for each
stage whether the carry-in from previous stage will
have a value of 0 or 1[4].
 Given the two Boolean functions for the sum and
carry as follows:

 SUM = Ai ⊕ Bi ⊕ Ci
 Cout = Ci+1 = Ai · Bi + (Ai ⊕ Bi) · Ci

If we let:
 Gi = Ai · Bi The generate function

 Pi = (Ai ⊕ Bi) The propagate function
Then
 Ci+1 = Gi + Pi · Ci The Carry Function

 Thus, for 4-bit adder, we can extend the carry, as
shown below:

C1

 = G0 + P0 · C0
C2

 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0

C3
 = G2 + P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0

C4
 = G3 + P3 · G2 + P3 · P2 · G1 + P3 · P2 · P1 · G0 + P3 · P2 ·

P1 · P0 · C0

 In general, we can write:

SUMi = Ai ⊕ Bi ⊕ Ci = Pi ⊕ Ci. The sum function

i ii

i 1 j k k
j 0 k j 1 k 0

C (G P) P Cin+
= = + =

= +� ∏ ∏ The carry function

 We modeled this module with the following VHDL
code:

ENTITY CLA_Adder IS
 PORT (
 a,b:IN BIT_VECTOR (31 DOWNTO 0);

 cin: IN BIT;
 sum: OUT BIT_VECTOR (31 DOWNTO 0);
 cout: OUT BIT
);
END Entity;

ARCHITECTURE CLA_Adder_Beh OF CLA_Adder
IS
constant gate_delay1: time: = 5 ns;
constant gate_delay2: time: = 10 ns;
SIGNAL gen: BIT_VECTOR (31 DOWNTO 0);
SIGNAL pro: BIT_VECTOR (31 DOWNTO 0);
SIGNAL car: BIT_VECTOR (32 DOWNTO 0);
BEGIN
 gen <= a AND b after gate_delay1;
 pro <= a XOR b after gate_delay1;
 car(0) <= cin;
 PROCESS (gen, pro,car)
 BEGIN
 FOR i IN 1 to 32 LOOP
 car(i) <= gen(i-1) OR (pro(i-1) AND car(i-1))

after gate_delay2;
 END LOOP;
 END PROCESS;
 sum <= pro XOR car(31 DOWNTO 0) after

gate_delay1;
 cout <= car(32);
END ARCHITECTURE;

Unsigned multiplier: Multiplication involves the
generation of partial products, one for each digit in the
multiplier. These partial products are then summed up
to produce the final product. The multiplication of two
n-bit binary integers results in 2n-bit product. We can
perform a fast multiplication by the number 2, by
simply shifting the number one-bit position to the left.
This is called a fast multiplication or bit shifting[5].

VHDL simulation: The VHDL simulation of the two
multiplier are presented in this section. The VHDL
code for both an unsigned multiplier using a fast carry-
look-ahead adder and an unsigned multiplier using a
ripple adder are generated. The VHDL model has been
developed using the DirectVHDL simulator. The
multipliers use 32-bit values. The worst case was
applied using the two multipliers, where the gate delay
is assumed to be 5 ns. The algorithms for the two
multipliers are shown below:

Algorithm for a multiplier with a carry-look-ahead
adder:

Begin Program
Multiplier = 32 bits

J. Computer Sci., 4 (4): 305-308, 2008

 307

Multiplicand = 32 bits
Register = 64 bits
Put the multiplier in the least significant half and clear
the most significant half
 For i = 1 to 32
 Begin Loop
 If the least significant bit of the 64-bit register

contains binary ‘1’
 Begin If
 Add the Multiplicand to the Most Significant

Half using the CLAA
 Begin Adder
 C[0] = ’0’
 For j = 0 to 31
 Begin Loop
 Calculate Propagate P[j] = Multiplicand[j]

⊕ Most Significant Half[j]
 Calculate Generate G[j] =

Multiplicand[j]�· �Most Significant Half[j]
 Calculate Carries C[i + 1] = G[i] + P[i] ·
C[i]

 Calculate Sum S[i] = P[i] ⊕ C[i]
 End Loop
 End Adder
 Shift the 64-bit Register one bit to the right

throwing away the least significant bit
 Else
 Only Shift the 64-bit Register one bit to the

right throwing away the least significant bit
 End If
 End Loop
 Register = Sum of Partial Products
End Program

Algorithm for a Multiplier with a Ripple Adder:

Begin Program
Multiplier = 32 bits
Multiplicand = 32 bits
Register = 64 bits
Put the multiplier in the least significant half and clear
the most significant half
 For i = 1 to 32
 Begin Loop
 If the least significant bit of the 64-bit register

contains binary ‘1’
 Begin If
 Add the Multiplicand to the Most Significant

Half using the RA
 Begin Adder
 C[0] = ’0’
 For j = 0 to 31
 Begin Loop

 Calculate Sum S[j] = Multiplicand[j] ⊕
Most Significant Half[j] ⊕ C[j]

 Calculate Carries C[j+1] = Multiplicand[j] ·
Most Significant Half[j] +
(Multiplicand[j]�� ⊕ Most Significant Half[j])
· C[j]

 End Loop
 End Adder
 Shift the 64-bit Register one bit to the right

throwing away the least significant bit
 Else
 Only Shift the 64-bit Register one bit to the right

throwing away the least significant bit
 End If
 End Loop
 Register = Sum of Partial Products
End Program

Fig. 1: Waveform and command line window for the

32-bit multiplier using a carry look ahead adder

Fig. 2: Waveform and command line window for the

32-bit multiplier using a ripple adder

J. Computer Sci., 4 (4): 305-308, 2008

 308

Future work: This study can be extended to cover
signed multipliers using VHDL.

CONCLUSION

 Two different multipliers using a fast carry-look-
ahead adder and a ripple adder have been modeled and
simulated using VHDL. The multiplier with a carry-
look-ahead adder has shown a better performance over
the multiplier with a ripple adder in terms of gate
delays. In other words, the multiplier with the carry-
look-ahead adder has approximately twice the speed of
the multiplier with the ripple adder, under the worst
case. In fact, the multiplier with the carry-look-ahead
adder uses time = 659.292 ns, Fig. 1[9], while the
multiplier with a ripple adder uses time = 979.056 ns,
Fig. 2[9].

ACKNOWLEDGEMENT

 We are very grateful to Dr. Belaid Moa for his
valuable comments on this study.

REFERENCES

1. Sertbas, A. and R.S. Özbey, 2004. A performance

analysis of classified binary adder architectures and
the VHDL simulations. J. Elect. Electron. Eng.,
Istanbul, Turkey, 4: 1025-1030.
http://www.istanbul.edu.tr/eng/ee/jeee/main/pages/i
ssues/is41/41005.pdf .

2. Asadi, P. and K. Navi, 2007. A novel high-speed
54-54 bit multiplier. Am. J. Applied Sci., 4 (9):
666-672.
http://www.scipub.org/fulltext/ajas/ajas49666-
672.pdf .

3. Aziz, S.M., C.N. Basheer and J. Kamruzzaman,
2002. A synthesizable VHDL model for an easily
testable generalized multiplier. In: Proceeding of
the 1st IEEE International Workshop on Electronic
Design, Test Application (DELTA.02), Jan. 29-31,
2002, IEEE Computer Society, Washington, DC,
USA, pp: 504-506.
http://portal.acm.org/citation.cfm?id=789090.7899
67&coll=GUIDE&dl=GUIDE&CFID=40436358&
CFTOKEN=40390034

4. Stephen Brown and Zvonko Vranesic, 2005.

Fundamentals of Digital Logic with VHDL Design.
2nd Edn. McGraw-Hill Higher Education, USA.
ISBN: 0072499389.

5. William Stallings, 2006. Computer Organization
and Architecture Designing for Performance. 7th
Edn. Pearson Prentice Hall, USA. ISBN: 0-13-
185644-8.

6. Armstrong, J.R. and F.G. Gray, 2000. VHDL
Design Representation and Synthesis. 2nd Edn.
Prentice Hall, USA. ISBN: 0-13-021670-4.

7. Zainalabedin Navabi, 2007. VHDL Modular
Design and Synthesis of Cores and Systems. 3rd
Edn. McGraw-Hill Professional, USA. ISBN:
9780071508926.

8. Wakerly, J.F., 2006. Digital Design-Principles and
Practices. 4th Edn. Pearson Prentice Hall, USA.
ISBN: 0131733494.

9. Software Simulation Package: DrirectVHDL,
Version 1.2, 2007, Green Mounting Computing
Systems, Inc., Essex, VT, USA.
http://www.gmvhdl.com

