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Abstract: This study presents an analysis of the convex optimization applied to the synthesis of the 
radiation pattern for linear antenna arrays. This study emphasizes the application of the convex 
optimization for the array pattern synthesis considering the simultaneous elimination of several zones 
interferences, reduction of the level of power in two space zones densely populated by interferences, as 
well as the variation of these zones in terms of proximity-distance of the source of interest, variation of 
the size of the interferences zones and the number of zones within the radiation pattern. Simulation 
results are provided. These results define certain levels where the linear array could be exploited to 
achieve a maximum performance. 
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INTRODUCTION 

 
 Mobile communications systems are facing an 
increasing demand for heterogeneous broadband 
services and applications. Given the limited spectrum 
available to provide high data rate communication for 
an increasing number of cellular subscribers, it is 
generally expected that the deployment of smart 
antennas will increase the overall system capacity and 
performance. Smart antennas will not only increase the 
antenna gain, but also reduce interference and delay 
spread by means of spatial filtering and thus enhance 
the properties of the mobile radio channel required for 
high data rate communication. The performance 
increase to be expected when using smart antennas 
highly depends on how accurate the interference pattern 
is reduced while maintaining a maximum gain in the 
direction of the signal of interest. Since early before the 
advent of mobile communications, adaptive array 
techniques aimed at reducing interference[1]. Various 
adaptive methods have quickly been established, 
evolving toward several applications[2]. Being directed 
toward either the signal processing or the antenna 
design, the application of smart arrays to mobile 
communications soon reached a boom, either involving 
space diversity methods, or advanced adaptive spatial-
temporal receivers for spread-spectrum systems, e.g.[3]. 

 The antenna array pattern synthesis problem 
consists of finding weights that satisfy a set of 
specifications on the beam pattern. The array antenna 
pattern synthesis can be obtained applying different 
analytic techniques[1-3] and in recent years techniques 
based on genetic algorithms[4] and differential 
evolution[5]. An important comment in[3] is that in many 
minimization methods, there is no guarantee that we 
can reach the absolute optimum unless the problem is 
convex.  
 In the last two decades, several fundamental and 
practical results have been obtained in convex 
optimization theory[6,7]. The engineering community not 
only has benefited from these recent advances by 
finding applications but has also fuelled the 
mathematical development of both the theory and 
efficient algorithms. The two classical mathematical 
references on the subject are[8,9].  
 The antenna array synthesis problem can often be 
expressed as a convex optimization problem which can 
be solved numerically with algorithms such as interior 
point methods[10]. Results reported by Lebret[10], show 
that the problem of the minimization of the side lobe 
level of the radiation pattern can be solved by convex 
optimization. Lebret makes an analysis of the convex 
optimization to synthesize antenna arrays. However, 
this analysis is limited to simple design cases for the 
linear array pattern.  
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Fig. 1: Uniform Linear Array (ULA) of N equispaced 

identical elements 
 
 This study illustrates the application of the convex 
optimization for the array antenna pattern synthesis, 
considering the simultaneous elimination of several 
zones interferences, reduction of the level of power in 
two space zones densely populated by interferences, as 
well as the variation of these zones in terms of 
proximity-distance of the source of interest, variation of 
the size of the interferences zones and the number of 
zones within the radiation pattern. 
 The purpose of this study is to evaluate the limits 
of performance for linear antenna arrays and to define 
the levels and the cases where the linear array could be 
exploited to achieve a maximum performance. 
 
Problem statement: An antenna array is a 
configuration of individual radiating elements that are 
arranged in space and can be used to produce a 
directional radiation pattern. We assume that in a 
mobile communications system, the base station is 
equipped with a Uniform Linear Array (ULA) of N 
equidistant identical elements (Fig. 1). The array 
receives the signals from the K users located in the far 
field zone of the array. We suppose all the signals to be 
uncorrelated and the waves are propagating in a 
homogeneous medium, this is, the unique spread effect, 
the source to the array is only the arrival time τ. Let a 
desired signal from far field impinge on the array from 
a known Direction of Arrival (DOA) �0 along with M 
uncorrelated interfering signals from unknown DOAs 
{�1, �2,…,�M}, respectively. 
 The radiation pattern of the array depends on the 
configuration, the distance between the elements, the 
amplitude and phase excitation of the elements and also 
the radiation pattern of individual elements[11]. Since 
the array elements are identical, we can assume the 
radiation pattern of the array considering the sum of all 
contributions signals, x(t), of each individual element: 
 

N
0 i

i
i 1

j2 fx(t) s(t) e
=

π τ= ω�  (1) 

 The above relation as often referred to as pattern 
multiplication, which indicates that the total field of the 
array is equal to the product of the field due to the 
single element located at the origin and a factor called 
array factor, AF, defined as: 
 

N
i

i
n 1

jkx cosAF( ) e
=

θθ = ω�  (2) 

 
Where: 
k = 2π/λ = The wave number and denotes the 

positions of each element in the array 
ω = [ω1…ωN] = The weight vector, which is chosen to 

give a desired beam pattern  
 
 The synthesis of the antenna array pattern is a 
procedure in which an array of antennas is exploited to 
achieve maximum reception in a specified direction by 
estimating the signal of arrival from a desired direction 
(in the presence of noise) while signals of the same 
frequency from other directions are rejected. This is 
achieved by varying the weights across the array.  
 The output of array can be expressed as[12]  
 

Ty(t) x(t)= ω  (3) 
 
Where: 
x(t) = The signal vectors received by the elements of 

array 
ωT = The transpose vector of the weight vector ω = 

[ω1…ωN] 
 
 It is assumed that the signal incident on the array 
can be modeled as stationary stochastic processes. The 
mean output power of the array is given by: 
 

TP( ) Rω = ω ω  (4) 
 
in (4) R is the array correlation matrix defined by: 
 

TR E[x(t)x (t)]=  (5) 
 
where, E denotes expected value. The response of the 
array to a plane wave of frequency f0 incident on the 
array from a direction θ can be represented as: 
 
r( ) C( )θ = θ ω  (6) 
 
C is the steering matrix[13], which contain the 
contribution of N elements of array and is given by: 
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 In this case, D and B denotes the real and 
imaginary part of the output of the array, respectively: 
 

( )0 j

0 j

D cos 2 f ( )

B sen(2 f ( )), j 1,.., N

= π τ θ

= π τ θ =
 (8) 

 
τj is the arrival time of the wave in the j element of the 
array. 
 The response of the array can be fixed in K 
directions by imposing a linear constraint of the 
following form on the weight vector: 
 
C dω =  (9) 
 
Where: 
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and 
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d specifies the desired response in each direction of (θ1, 
θ2,…,θk). 
 By using the previous notation we can formulate 
the synthesis of the antenna array pattern as the next 
optimization problem[12]:  
 

T        min            R
subject to          C� d

ω ω
=

 (12) 

 
 Usually C and d are defined by the desired signal 
direction, which is assumed know. The optimization 
problem indicated by Eq. 12 can be express as a convex 
optimization problem[13]: 
 

Tminimize            R

subject to     C� d      

ω ω
− + Γ ω ≤ ε

 (13) 

 
where, Γ≥0 is a robustness matrix, is a tolerance vector. 

 For solving the problem denoted in (13) using 
convex optimization, is convenient to present some 
concepts to understand and apply convex optimization. 
For example:  
 
• If a set C is convex for all x1, x2 ∈ C and all real 

number α, 0<α<1, then the point αx1+(1-α )x2∈C 
• A function f is convex on a convex set if 

1 2 1 2f ( x (1 x )) f (x ) (1 )f (x )α + − α ≤ α + − α  for α: 0≤α  

 
 The convex optimization problems can be solved 
efficiently by Interior Point Method (IPM)[14,15]. 
 Examples of convex functions are: the affine 
function aTx+b where a, x are vectors and b is a scalar, 
quadratics functions xTRx and norm of vectors ||x|| 
(which include the Euclidian norm, the absolute value 
and the maximum value of a set of elements). 
 The convex optimization problems can be solved 
efficiently by Interior Point Method (IPM)[16,17], so the 
problem (13) can be solved using IPM method. Then, it 
is necessary to express the problem (13) in the 
following way: 
 

T

T
i i i i

minimize                 f x

subject  to        A x b c x d , i 1,...,m+ ≤ + =
 (14) 

 
Where: 
A = A positive semidefinite matrix in R2×(N−1) 
b, c and d = vector in R2 
x = Optimization variable  
 

RESULTS AND DISCUSSION 
 
Simulation results for the pattern synthesis: When 
some information about the weights or the direction of 
arrival is only known approximately, it is essential that 
the performances of the array are not degraded with 
slightly different parameter values. To evaluate the 
convex optimization applied to the synthesis of the 
antenna array pattern, the scenarios proposed are 
mainly presented in terms of extremely adverse 
conditions, i.e., by increasing the isolation between 
main lobe and minors lobes at the radiation pattern; by 
rejecting interferences presented as individuals, as well 
as, grouping in 20° wide zones of interferences; and by 
steering the main lobe at different users spatial 
positions. In the discussion we report four different 
experiments which were carried out to show the 
versatility of the convex optimization applied to the 
array synthesis. 
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Beam pattern synthesis in broadside mode, three 
punctual interferences and two fixed size and wide 
zone angular of interferences: As a first goal in our 
simulations, we tried to optimize the beam pattern in 
the broadside mode, then, we consider an antenna array 
composed by 30 elements separated uniformly a 
distance λ/2. The source of interest is located spatially 
in broadside mode (90°). Furthermore, we add as a 
constraint the reduction of the side lobe level at -40dB, 
concerning to the two spaced zones densely populated 
by interferences (located at 62 and 118°) near the major 
lobe and the spaced zone width of 20°. Finally, we add 
to the evaluation the suppression of three punctual 
interferences located spatially at 20, 40 and 140°. 
Figure 2 shows the radiation pattern already optimized. 
From Fig. 2, it is observed that when it is applied the 
convex optimization it is possible to reduce the level of 
the side lobes in the two angular zones, specified in a 
level of -40 dB and simultaneously the cancellation of 
the three individual interferences. The side lobe level is 
reduced to -19.05 dB.  
 From this first scenario, we can conclude that the 
radiation pattern satisfy the established design 
conditions. 
 
Analysis of robustness considering variation of 
number of zone angular of interferences: We take 
into account the same simulation considerations that in 
the previous case, but now we consider the variation of 
the number of interferences angular zones. Figure 3 
shows the radiation pattern under the influence of this 
parameter. 
 From Fig. 3a, we can observe that for the zone 
angular of interferences ranked from 61-82°, the side 
lobe level maintain the 40dB level of isolation, as well 
as the level of the rest of the side lobes maintain 
uniformly at -26.01dB, below that settled down in the 
design considerations. The three established individual 
interferences are also canceled. In a same way, in the 
radiation pattern response of the Fig. 3b, two zone 
angular of interferences ranked from 61-82° and from 
98-118°, carried on the 40dB isolation level, but now 
the level of the side lobes was increased in 26.7% (-
19.01dB) remaining marginally above the 
recommended isolation level. The radiation patterns 
showed in Fig. 3c and d corresponds to three and four 
zone of interferences, respectively. In both cases the 
side lobe and isolation levels decrease and does not 
fulfill the design considerations, because of the zones 
angular of interferences are located at the opposite ends 
of the uniform linear array operation window. In all 
cases the three established individual interferences were 
correctly canceled. 

 From this experiment, we can conclude that the 
robustness for convex optimization taking into account 
the presence of angular zones of interferences is 
marginally affected and the array beam pattern can be 
adjusted in some issues like the width of the major lobe, 
isolation level or the side lobe level. 
 
Analysis of robustness shifting the angular zones of 
interferences: We take into account the same simulation 
considerations that in the first case, but now we impose 
as a restriction moving away the two 20° wide angular 
zones as regards to the major lobe. We consider initially 
two angular zones located in 63 and 97°, both far away 
4° of the major lobe. (Fig. 4a) shows the array beam 
pattern response, in which does not fulfill the 19dB 
isolation level required but maintain the level of -40dB at 
the angular zones. distance of the angular zones to the 
main beam Increasing now the distance between angular 
zones of interferences as regards to the major lobe at 
5.5°, 10.5° and so on we obtain the array beam pattern 
response showed at Fig. 4b, c and d. Particularly, Fig. 4d 
shows the behavior of the beam pattern response, in 
terms on the side level lobe, as we increase the 
mentioned distance. We can conclude that in order to 
keep the robustness for convex optimization, applied to 
the antenna array beam pattern synthesis problem, it is 
necessary that the interferences zones must be separated 
5° at least regarding the major lobe. 
 
Analysis of robustness increasing the wide of the 
interferences angular zones: Now we impose as a 
restriction to increase the width of the two interferences 
zones, also, in a same way that in the previous 
simulations, we want to eliminate three punctual 
interferences, reduce and make uniform the side lobe 
level and we should keep the major lobe width in 5°. 
 

 
 
Fig. 2: Optimized diagram to reduce the level of lateral 

lobes in -40dB for two densely populated 
angular zones with interferences 
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 (a) (b) 
 

 
 (c) (d) 
 
Fig. 3: Optimized pattern to reduce the side lobe level at -40dB, in deferens space zones densely populated by 

interferences, with a space zones width of 20°. (a): One space zone; (b): Two space zones of interferences; (c): 
three spaces zones; (d): Four space zones of interferences 

 

 
 (a) (b) 
 

 
 (c) (d) 
 
Fig. 4: Optimized diagrams to reduce the level of lateral lobes in -40dB in two densely populated zones with 

interferences, a wide zone one of 20°. In this case the zones move away of the main beam. (a): Separated zones 
4° of the main beam; (b): Separated zones 5.5°; (c): Separated zones 10,5; (d): SLL with respect to them 
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Fig. 5: SLL with respect to the wide one of the angular 

zones to the main beam 
 
The two angular zones are located spatially at 62 and 
98° started both with 20° width. Figure 5 shows the 
behavior of the side lobe level with different angular 
zones widths. This behavior shows particularly that the 
critical parameter in the analysis of robustness is 
precisely the wide of the interferences zones, affecting 
significantly the isolation level when the angular width 
is bigger than 20°. 
 

CONCLUSION 
 
 In this study we emphasized in the application of 
the convex optimization for the array antenna pattern 
synthesis, considering the simultaneous elimination of 
several zones interferences, reduction of the level of 
power in two space zones densely populated by 
interferences, as well as the variation of these zones in 
terms of proximity-distance of the source of interest, 
variation of the size of the interferences zones and the 
number of zones within the radiation pattern. From the 
obtained results we found that the convex optimization 
is sensible to the distance to which are the zones of 
scatterers respect to the wide one of the main beam. 
With this one sets out to work in zones of interferences 
that are remote at least 5° with respect to the main 
beam, thus to obtain diagrams that fulfil the design 
considerations 
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