
Journal of Computer Science 3 (10): 773-779, 2007
ISSN 1549-3636
© 2007 Science Publications

773

Query Based Client Indexing in Client/Server Information Systems

Hagen Höpfner

School of Information Technology, International University in Germany,
Campus 3, 76646, Bruchsal, Germany

Abstract: One issue in client/server information systems is the storage of the relationships between
clients and data used by these clients. In particular in scenarios that allow the caching of data on the
client site, this information can be used in order to keep the global database consistent. Thus, if the
data on the server are updated, it is possible to detect caches affected by the update. In a following Step
it is possible either to patch or to invalidate these caches. In this study we discuss approaches that use
posted queries in order to index the clients on the server site.

Key words: Query index, Trie, stateful server, caching, client indexation

INTRODUCTION

 Client/server information systems use caching
techniques for reducing the volume of transmitted data.
Data that have been received once are stored on the
client and can be reused if the client requires parts of
this data later on. In case of a server site update, this
desired redundancy potentially leads, especially in
loosely coupled systems like information systems with
mobile clients, to inconsistencies within the global
database. As shown in the following example, checking
the relevance of such updates regarding the clients’
caches has to be done on the server. Let us assume the
following two relations:

Cinemas CID Name Movie_ID Time
 99 CinemaxX 01 4 pm
 99 CinemaxX 02 7 pm
Movies MID Title Length
 02 Lord of the Rings III 210 min
 01 Matrix Reloaded 138 min

The client posted the query: SELECT name, title,
time FROM cinemas, movies WHERE movie ID =
MID AND title = ’Matrix Reloaded’. The result
contains the following data:

Name Title Time
CinemaxX Matrix Reloaded 4 pm

 Therefore, the client is not able to decide locally
about the relevance of a server site update like
UPDATE cinemas SET time = ’15:30’ WHERE CID =
99 and movie ID = 01.

 One possibility for avoiding this problem is to
forbid the usage of operators (like the projection in the
example) that remove attributes required for checking
the update relevance. From the users point of view that
means transmitting not required data. Therefore, this
approach is not applicable. In a PhD-thesis[7] we have
shown that it is better to check the relevance on the
server. Therefore, it is necessary to know the state of
each cache. Furthermore, one has to be able to assign
caches to clients. In this study we discuss different
approaches to realize such a client index that uses the
queries posted by the clients and, therefore, contains the
required cache descriptions as well as the cache client
assignment. For illustration purposes we use a mobile
information system. However, it is important to point
out that our approach is applicable in any kind of
loosely coupled information system.
 The remainder of the study is structured as follows:
First we give a brief overview of the query notation
used to support the index by requiring a strict syntax.
Then we discuss different indexing approaches and
their evaluation. Finally, we summarize and conclude
the study.

QUERY REPRESENTATION

 Queries in mobile information systems are
typically generated by an application. So, it is not
necessary to support descriptive query languages like
SQL. Instead, queries can be represented in a way that
reduces the effort for converting them in order to be
usable as index. The query notation used here
corresponds to the well-known conjunctive queries with
inequality comparisons but also supports self-join. It
contains elements from relational algebra and from

Am. J. Applied Sci., 3 (10): 773-779, 2007

 774

relational calculus. Queries are sequences of a set of
selection predicates SP, a set of join predicates VP and
a set of up to one projection predicate PP. The elements
of each set are lexicographically ordered in a query.
With V ⊆ VP, pp ∈ PP ∪ {�}, S ⊆ SP and V ∪ {pp} ∪
S � ∅ a conjunctive query Q is represented as predicate
sequence query (PSQ) Q’ = �vp1…vpnsp1…spopp� with
�i, k ∈ N, 1 � i < k � n; vpi, vpk V ∈ {�} � vpi � vpk
and �i, k ∈ N, 1 � i < k � o; spi, spk ∈ S ∪ {�} � spi �
spk. Here the symbol � means lexicographically
smaller.
 The appearance of predicates in a PSQ is based on
further conditions and self-joins are handled by
renaming tables. Details about this query representation
can be found in two previous publications[7, 9].

CLIENT INDEXING

 As mentioned above, the aim of the client indexing
is to be able to assign cache states to clients (and vice
versa). If a client posts a query its ID is registered
together with the query. So, the server is stateful.
Therefore, in case of an update, it is possible to figure
out which clients hold data affected by the update and
to notify these clients.
 In the following we use the cinema database
schematically shown in Fig. 1. In contrast to the
relations in the introduction this database supports
cinemas with more than one auditorium.

Sequential storage of queries: Assigning queries to
clients can be simplest done by using a two column
relation (Table 1). The first column contains the queries
and the second one contains a list of IDs of clients that
posted the corresponding query. This easy solution
benefits from its obvious compatibility to relational
storage. Multi-valued attributes are not allowed in this
data model. Therefore, both columns have to be strings
or one has to remodel the schema. Due to the m:n-
relationship (query/client) we would get three relations.
As each entity type has only one attribute and due to the
given cardinalities, we could reduce them to an relation
Client Index (query,client). An alternative would be the
usage of an object relational system, which allows
multi-valued attributes.

Naive Trie-based indexing: Storing queries in a
sequential manner is independent of query
representation. However, in the following we discuss
approaches that benefit from syntactical properties of
PS-queries.

 Prefix predicates that are common in various
queries are, therefore, stored only once. Formally, PS-
queries are words Qi of the alphabet of the allowed
predicates P = PP ∪ SP ∪ VP. Standard database
textbooks suggest the usage of digital trees for
searching in sets of words. One such an approach is the
Trie[4] that stores the information by using the edges.
Nodes include all letters of the alphabet and describe
which edge has to use for completing a word. Let us,
for example, assume that words might use all 26 letters
of the English alphabet. A Trie would store the words
data, dating and date as shown in Fig. 2. Remember,
each node contains all 26 possible letters.
 Obviously in case of a big alphabet, this approach
leads very often to unused letters in the nodes (Fig. 2).
To overcome the waste of memory one can use a Trie-
approach that stores only needed letters. Figure 3 shows
such a Trie for the three words mentioned above. It is
based on de la Briandais’ algorithm[3].

Fig. 1: ER diagram of the example database

Fig. 2: Example of a standard Trie

Fig. 3: Example of a memory saving Trie

Am. J. Applied Sci., 3 (10): 773-779, 2007

 775

 Beside this approaches there are a few data
structures like Compact Tries[16], Patricia trees[14,17] and
Prefix trees[15] that reduce the depth of digital trees. The
idea is to minimize the number of nodes but at the same
time, to guarantee the indexing property. Compact Tries
remove non-branching sub paths to leaf nodes. Patricia
trees represent non-branching sub-paths as the number
of involved edges only. Prefix trees are extended
Patricia trees and store the skipped partial word (sub-
path) in addition to the number. However, such
compression techniques are not usable in our scenario
because we have to guarantee the reconstruct-ability of
the stored queries. Furthermore, we do not want to
index the query string but the client IDs of clients
having posted the particular query. Therefore, we adapt
the original Trie. A query tree[10] is based on three sets
of nodes: leaf nodes B, inner nodes I and the root node
{root}. Each leaf node contains an ID-list of clients
having posted the query represented by the path from
the root node to this leaf node. The root node contains a
nonempty list of references to inner nodes. Each inner
node references either another inner node or a leaf
node. The edges used as references between and to
inner nodes are marked by a predicate. Edges to leaf
nodes are marked with the empty predicate e.
 As mentioned above it is not rational to store all
letters in each node. Therefore, we implemented a
query tree AB based on de la Briandais’ Trie[3]. We
already used a similar index structure for checking
update relevancy[10]. For this reason we had to store
temporary results TR and to represent the names of the
relations used in the query separately. Furthermore, we
extend the list of client-IDs and store it as CA = {(CID,
AID)}, not separately, but in the last predicate node of a
query. CID is a client-ID and AID is a query ID that is
unique for each client. So, (CID, AID) is globally
unique. A query tree is constructed of five node types:

• The root node root = (0,Kc) with the node type ID 0

is the entrance point of a query tree and contains a
list of links Kc to relation nodes

• A relation node kr = (1, name, Kc, kp) with the node
type ID 1 represents a relation name and contains a
list of links Kc to relation nodes, join nodes,
selection nodes, or projection nodes and a reverse
link kp to its parent node. Starting at root the
relation nodes in a path are lexicographically
ordered

• A join node kv = (2, vp, Av, Kc, CA, kp) with the
node type ID 2 stores a join predicate vp ∈ VP. To
support the update relevance check mentioned
above, each last join node of a path contains a set

Av of attribute names used in predicates in the sub
tree starting at this join node. The parent node of a
join node might be a relation node or another join
node. Child nodes might be projection nodes,
selection nodes, or further join nodes

• A selection node ks = (3, sp, Kc, CA, kp, TR) with
the node type ID 3 stores a selection predicate sp ∈
SP and contains a list of links Kc to projection
nodes or selection nodes as

• well as a back link kp to a selection node, a join
node, or a relation node

• A projection node kp = (4, pp, kp, CA, TR) with
node type ID 4 stores a projection predicate pp ∈
PP and contains a link back to a selection node, a
join node or a relation node

 Figure 4 shows the query tree for the queries of
Table 1. Client IDs and query IDs are stored in the leaf
nodes of the query tree. Hence, deregister a query
requires a complete traversal. In order to improve this,
we use a help index that allows bottom-up traversal of
the tree. Therefore, we used a sorted list[6] and an AVL-
tree[1,7]. This leaf node index (LNI) contains all client
IDs and indexes the leaf nodes of the query tree in
which a query of a particular client ends. We will not
discuss this help structure in more detail here but
assume that it exists.

Inserting and deleting a query: A client submits a
query and its client ID (if available) in order to register
a query. The server automatically assigns a new client
ID to new clients. This client ID, a generated query ID
and the query result are returned to the client.
 The next step is to preprocess the query.
Afterwards and without loss of generality, a query with
r relation names, n join predicates, o selection
predicates and one projection predicate is represented
as an enhanced query EQ of the form �(name1, 1) ...
(namer, 1)(vp1, 2) ... (vpn, 2)(sp1, 3) ... (spo, 3)(pp, 4)�.
Therefore, names of relations and attributes are
converted to uppercase, predicate types are computed
and relation names are extracted. This enhanced query
is then inserted into the query tree by using
Algorithm 1.

Table 1: Naive sequential storage of queries
Query Clients
�[movie, shown_in, (movie.MID = shown_in.MID)] {23,66,20}
[movie.FSK > 16] [movie.genre = �action�]
[movie(name), shown_in(time)]�
�[movie.FSK > = 18][movie(name, FSK, genre)]� {200,11}
�[movie, shown_in, (movie.MID = shown_in.MID)] {66,200}
[movie(name), shown_in(date, time)]�
�[movie.FSK> = 18][movie(name, FSK)]� {45,24}

Am. J. Applied Sci., 3 (10): 773-779, 2007

 776

Algorithm 1: Inserting a new query into the query tree
INPUT: EQ // preprocessed query
 CID // client ID
 root // root node of the AB
OUTPUT: AID // query ID
01 def find_last_equal_node(node, EQ, n)
02 if node.Kc � ∅ ∧ n < |EQ|
03 for each child c ∈ node.Kc
04 let p be the nth element of EQ
05 if c.value = = p.value ∧ c.type = = p.type
06 return (find_last_equal_node (c, EQ, n+1))
07 return (node, n)
08 return (node, n)
09
10 def insert_path(EQ, CID)
11 (node, pn) = find_last_equal_node (root, EQ, 0)
12 k = node
13 generate new AID by using LNI
14 if pn<|EQ|
15 insert the query suffix staring at predicate pn+1
16 let k be leaf node of the query path
17 else
18 if k referenced by CID in LNI
19 break
20 k.CA = k.CA ∪ {(CID, AID)}
21 Insert AID into LNI and link from (CID, AID) to k
22 if p1 ∈ EQ ∧ p2 ∈ EQ ∧ (p1 ∈ VP ∧ p2 ∈ SP ∧ PP)
23 Insert attribute names of selection predicates and projection predicates into the last join node
24 return (AID)

Fig. 4: Query tree for indexing client Ids

Am. J. Applied Sci., 3 (10): 773-779, 2007

 777

Algorithm 2: Removing a new query into the query tree
INPUT: CID , AID // client ID and query ID
01 def delete_path(CID, AID)
02 let node be leaf node of the query path
03 node.CA = node.CA − {(CID, AID)}
04 free_nodes(node)
05 remove {(CID, AID)} from LNI
06
07 def free_nodes(node)
08 if node. CA = = ∅ ∧ node.Kc = = ∅
09 parent = node.kp
10 parent.Kc = parent.Kc − node
11 free(node)
12 free_nodes(parent)

 The function find_last_equal_node (line 01-08)
computes the number n of reusable nodes and, thus, the
prefix of the query that is already included in the tree.
The remaining suffix is inserted into the tree (line 15).
The next step is to generate (based on the LNI) a new
query ID. If the given query was already completely
contained in the tree, then we have to check whether
this client has posted this query before (line 17-18).
This is the case if there is a link from the LNI entry
with the clients’ ID to the leaf node k where the query
ends. We then stop the insertion (line 19). In all other
cases (query is at least partially new or was posted by a
different client) we insert the query, register the new
(CID, AID) in the LNI (line 20) and establish the link to
the leaf node k (line 21). If the query contains join
predicates and selection predicates or a projection
predicate (line 22), then we have to insert the
corresponding attribute names into the last join node
(line 23).
 If a client wants to deregister a query, then it
submits its client ID and the corresponding query ID.
However, deregistering a query might be a user driven
process but can also be the result of a cache
replacement decision. In this study we do not discuss
the client implementation but can point out that our
approach is applicable to any kind of client/server
information system that use, for example, caching,
hoarding, or replication. With help of the LNI
deregistering is done bottom-up. At first we request the
leaf note k of the query from LNI and remove (CID,
AID) from the CA-list in k. Now we can remove k if
the CA-list is empty (no other query has posted this
query). The next step is to look at k’s parent node. If its
CA-list is empty and k was the only node, then we can
remove this node too and so on. Algorithm 2 realizes
this procedure.
 Beside this query tree, we implemented an
optimized query tree OAB. Because of the given space
limitation we were not able to include this idea in this
study but refer to the original German paper[8] that

Table 2: Number of predicates per query set
 Set 1 Set 2 Set 3 Set 4
VP 1579 3792 6017 3948
 (26) (42) (45) (45)
SP 14530 24978 41709 27584
 (2287) (2462) (2708) (2528)
PP 8799 9343 9481 9170
 (390) (785) (1275) (896)

includes the algorithms as pseudo code. However, the
idea is to use the commutability of selection predicates
in order to reduce the number of nodes in a query tree.

EVALUATION

 The algorithms discussed in this study were
implemented in the programming language Python
(version 2.2.3). We used a standard PC with an AMD
AthlonTMXP 2000+ processor (1666.663 MHz) and
512 MB RAM running SuSE Linux 9.1 (SuSE specific
kernel 2.6.5). We do not discuss the results of the
sequential indexing but focus on the query tree. For the
evaluation we created four sets of queries:

Set 1: queries with 1 to 3 predicates (short queries)
Set 2: queries with 3 to 5 predicates (mid length

queries)
Set 3: queries with 5 to 7 predicates (long queries)
Set 4: queries with 1 to 13 predicates

 The query generator worked in two steps. At first
we generated 60000 candidate queries from which we
selected the aforementioned four duplicate free sets.
Table 2 illustrates the usage of the different predicate
types within the query sets. The number in brackets
stands for the number of different predicates of the
same type used in the predicate set. The other number
stands for the total number of predicates at this time in
the particular set.

Am. J. Applied Sci., 3 (10): 773-779, 2007

 778

Space consumptions: Due to the characteristics of the
programming language used, it is nearly impossible to
evaluate the space consumptions of the query tree.
However, we can point out, that the trees of all four
query sets fit into main memory. The Python process
used maximally 8% of the available memory. Instead of
discussing a Kilobyte number here, we use the number
of nodes as evaluation criterion. Query set 1 contains
24908 predicates that are represented by 15662 nodes in
the tree. The ratio of query set 2 was 38113 predicates
to 25436 nodes. For query set 3 that contains 57207
predicates, 41277 nodes were required and the 40702
predicates of query set 4 resulted in 28840 nodes. If we
look at the procedural values (set 1: 37.12%, set 2:
33.26%, set 3: 28%, set 4: 29.14%) it becomes obvious
that shorter queries benefit more than longer ones from
the tree representation. The reason is that shorter
queries contain fewer predicates that lead to less
variety. Hence, the possibility to find two syntactically
overlapping queries is higher for shorter queries.
 The optimized query tree that was mentioned at the
end of previous Section reduces the number of required
nodes further. Set 1 required 15517 nodes, set two
24171 nodes, set three 38276 nodes and set four 24742
nodes. Compared to the not optimized query tree this
means a reduction by 1% for set 1, 5% for set 2, 7% for
set 3 and 14% for set 4. Obviously, longer queries
benefit from the optimization that simply rearranges
sub-trees that consist of selection predicates only in
such a way that the number of required nodes is
minimized. Since longer queries probably contain more
selection predicates, this optimization is more suitable
for longer queries.

Time consumption for inserting queries: Inserting a
query into the query tree is comparable to inserting a
word into a Trie. Due to the list implementation of child
node links within a parent node, it is not possible to
reach a constant time complexity that is theoretically
possible for equally long words. Depending on the
length of these lists our algorithm has to check different
numbers of child nodes.
 As illustrated in Fig. 5, the length of a query has a
small impact on the time required for insertion.
However, as illustrated in Fig. 6 one can neglect this
issue. The outliers resulted from background activities
of the test computer. They are only recognizable
because inserting a query took less then 0.02 seconds.

Fig. 5: Insert into tree-cumulative time

Fig. 6: Insert into tree-time per query

Fig. 7: Optimized insertion-cumulative time

 The algorithm briefly mentioned before for
inserting queries into an optimized query tree is more
complex than the not optimized version.
 We also discussed the issue that the optimization
reduces the number of nodes that are required for
representing all queries. However, as shown in Fig. 7,
the optimization takes a lot of time. Since we did not
discuss the algorithm in detail in this study we also do
not discuss its evaluation here.

Am. J. Applied Sci., 3 (10): 773-779, 2007

 779

CONCLUSION

 In this study we discussed and evaluated data
structures for realizing a stateful database server that
indexes clients’ cache states and assigns them to the
clients. The results show that the idea of digital trees is
adaptable to query indexes and reduces the number of
predicates/nodes required for storing the queries.
Looking at an update relevance check, that was not part
of this study, we can point out that a lower number of
nodes also reduce the time required for checking the
relevance of a server site update. With an optimized
insert algorithm, which suffers from its time
consumptions, we can reduce the number of nodes
further.
 This study is part of ongoing work. One of the next
steps will be to analyze the time complexity of our
algorithms in more detail and to reduce the time
consumption of the optimized insert function.
Furthermore, we have to investigate whether these time
consumptions are due to the used implementation
language or whether they result from bad time
complexity of the algorithm. Independent of this
analysis it seems to be a good idea to combine the
normal insert with the optimization in such a way, that
the tree is built up normally but optimized from time to
time.

REFERENCES

1. Adelson-Velskii, G.M. and E.M. Landis, 1962. An

Algorithm for the Organization of Information.
Soviet Math. Doklady, 3: 1259-1263.

2. Beckmann, N., H.-M. Kriegel, R. Schneider
and B. Seeger, 1990. The R�-tree: An Efficient and
Robust Access Method for Points and Rectangles.
ACM SIGMOD Record, 19: 322-331.

3. de la Briandais, R., 1959. File Searching Using
Variable Length Keys. In: Proceedings of the
AFIPS Western Joint Computer Conference,
AFIPS Press, Montwale, pp: 295-298.

4. Fredkin, E., 1959. Trie Memory. Information
Memorandum, Bolt Beranek and NewMan Inc.,
Cambridge.

5. Guttman, A., 1984. R-trees: A Dynamic Index
Structure for Spatial Searching. ACM SIGMOD
Record, 14: 47-57.

6. Höpfner, H., 2004. Serverseitige Auswertung von
Indexen semantischer, clientseitiger Caches in
mobilen Informationssystemen. Proceedings der
34. GI Jahrestagung (P. Dadam and M. Reichert,
Ed.) Köllen Druck+Verlag GmbH, Bonn. (in
German), pp: 298-302.

7. Höpfner, H., 2005. Relevanz von Änderungen für
Datenbestände mobiler Clients. Fakultät für
Informatik der Otto-von-Guericke Universität
Magdeburg. (in German).

8. Höpfner, H., 2006. Anfragebasierte Client-
Indexierung in Client-Server-Informations
systemen. Informatik-Forschung und Entwicklung
(in German), 20: 209-221.

9. Höpfner, H. and K.-U. Sattler., 2003. Towards
Trie-Based Query Caching in Mobile DBS. In:
Persistence, Scalability, Transactions-Database
Mechanisms for Mobile Applications (B. König-
Ries, M. Klein and P. Obreiter, Ed.) Köllen
Druck+Verlag GmbH, Bonn, pp: 106-121.

10. Höpfner, H., S. Schosser and K.-U. Sattler, 2004.
An Indexing Scheme for Update Notification in
Large Mobile Information Systems. In: Current
Trends in Database Technology-EDBT 2004
Workshops (W. Lindner, M. Mesiti, C. T¨urker,
Y. Tzikzikas and A. Vakali, Ed.), Springer-Verlag,
Heidelberg/Berlin, pp: 345-354.

11. Hagen Höpfner, Can Türker and Birgitta König-
Ries, 2005. Mobile Datenbanken und
Informationssysteme-Konzepte und Techniken.
dpunkt.verlag, Heidelber., (in German).

12. Lee, M.L., W. Hsu, C.S. Jensen, B. Cui and
K.L. Teo, 2003. Supporting Frequent Updates in R-
trees: A Bottom-up Approach. In: Proceedings of
the 29th Conference on Very Lage Databases
(J.-C. Freytag, P.C. Lockemann, S. Abiteboul,
M. Carey, P. Selinger and A. Heuer, Ed.), Morgan
Kaufmann Publishers Inc., San Fransisco,
pp: 608-619.

13. Lehner, W., 2002. Subskriptionssysteme-
Marktplatz für omnipräsente Informationssysteme.
B.G. Teubner GmbH, Stuttgart. (in German).

14. Morrison, D.R., 1968. PATRICIA-Practical
Algorithm to Retrieve Information Coded in
Alphanumeric. Journal of the ACM (JACM), 15:
514-534.

15. Gunter Saake, Andreas Heuer and Kai-Uwe Sattler,
2005. Datenbanken: Implementierungstechnicken
MITP-Verlag GmbH, Bonn. (in German).

16. Sussenguth, E.H. Jr., 1963. Use of tree Structures
for Processing Files. Communications of the ACM,
6: 272-279.

17. Szpankowski, W., 1990. Patricia Tries Again
Revisited. Journal of the ACM (JACM), 37: 691-
711.

