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Abstract: Reuse repositories manager manages the reusable software components in different 
categories and needs to find the category of reusable software components. In this paper, we have used 
different pure and hybrid approaches to find the domain relevancy of the component to a particular 
domain. Probabilistic Latent Semantic Analysis (PLSA) approach, LSA, Singular Value 
Decomposition (SVD) technique, LSA Semi-Discrete Matrix Decomposition (SDD) technique and 
Naive Bayes Approach purely as well as hybrid, are evaluated to determine the Domain Relevancy of 
software components. It exploits the fact that Feature Vector codes can be seen as documents 
containing terms -the identifiers present in the components- and so text modeling methods that capture 
co-occurrence information in low-dimensional spaces can be used. The FV code representation of 
clusters or domains is used to find the domain-relevancy of the software components. PLSA has 
provided better results than LSA retrieval techniques in terms of Precision and Recall but its time 
complexity is too high. SVD Transformation with Naïve Bayes scheme has outperformed all other 
approaches and shows better results than the existing approach  (LSA) being used by some open source 
code repositories e.g. Sourceforge. The DR-value determined is close to the manual analysis, used to 
be performed by the programmers/repository managers. Hence, the tool can also be utilized for the 
automatic categorization of software components and this kind of automation may improve the 
productivity and quality of software development. 
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INTRODUCTION 

 
 The demand for new software applications is 
currently increasing at the exponential rate, as is the 
cost to develop them. The number of qualified and 
experienced professionals required for this extra work 
is not, however, increasing commensurably[1]. Software 
professionals have recognized reuse as a powerful 
means of potentially overcoming the above said 
software crisis [2, 3, 4, 5] and it promises significant 
improvements in software productivity and quality [6]. 
 There are two approaches for reuse of code: 
develop the reusable code from scratch or identify and 
extract the reusable code from already developed code. 
The organization that has experience in developing 
software, but not yet used the software reuse concept, 
there exists extra cost to develop the reusable 
components from scratch to build and strengthen their 
reusable software reservoir [7, 8]. The cost of developing 

the software from scratch can be saved by identifying 
and extracting the reusable components from already 
developed and existing software systems or legacy 
systems [9, 10].  
 Tracz  in [11] observed that for programmers to 
reuse software they must first find it useful. Poulin [12] 
further concluded that 65% of typical software is made-
up of Domain-specific class of software. So we can 
expect the most savings, if we reuse the domain-
specific software [13]. It means one should concentrate 
on evaluating the software in terms of its relevancy to a 
particular domain. 
 Kawaguchi in [14] used code clones-based similarity 
metric, decision trees, and latent semantic analysis 
(LSA) approaches to help finding similar software 
systems in software archive. Further, Kawaguchi in [15] 
explained the use of LSA approach to automatic 
categorization of software systems and developed web 
interface to visualize determined categories. 
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 In this paper, a probabilistic approach called PLSA, 
is shown to extract different aspects in a software 
component, that provides the domain-relevancy of the 
software component. The LSA approach is also 
proposed to automatically cluster feature-vector (FV) 
codes into meaningful categories. The FV code derived 
descriptions are computed by Latent Semantic Analysis 
(LSA) using Singular Value Decomposition (SVD) and 
Semi-Discrete matrix Decomposition (SDD) 
techniques. The FV code representation of clusters or 
domains is further used to find the domain-relevancy 
(DR-value) of the software components automatically. 
The purely and hybrid Naïve Bayes schemes are also 
tried for the categorization of the software components. 
 

METHODOLOGY 
 
An approach is proposed that allows automatic 
clustering of feature-vector (FV) codes, extracted from 
different software domains, into meaningful categories. 
It exploits the fact that FV codes can be seen as 
documents containing terms – the identifiers present in 
the components- and so text modeling methods that 
capture co- occurrence information in low-dimensional 
spaces can be used. The comments in the source code 
describing the function of the chunks of code and Good 
naming conventions used in the high-level language 
source code. Interfaces of the code components (such as 
function, class, module etc) make high use of verbs, 
nouns, adjectives and adverbs. These verb phrases 
convey the functional characteristics of the component. 
Therefore, function name, constant names and variable-
names used make a good source of representation 
information. The common reserved words are excluded 
because they have no relation with software features. If, 
the keyword consist of more than one word joined with 
“underscore”, “hyphen” or “capital letter and small 
letter combination” then the keyword is broken down to 
find the primitive or root words. The organizations of 
common keywords extracted from the samples of a 
domain can act as descriptor for that particular domain.  
 The words can be divided into two categories – 
open-class words and closed-class words. The words, 
which are nouns, verbs, adjectives or adverbs are called 
open-class words and are supposed to convey desired 
functional information about the component. The 
closed-class words include articles, pronouns, 
prepositions, conjunctions, interjections, helping verbs 
and do not convey any functional information. The 
closed-class words are eliminated from the list of 
keywords. 
 The FV code derived descriptions are computed by 
Probabilistic Latent Semantic Analysis (PLSA), LSA’s 

Singular Value Decomposition (SVD), LSA’s Semi-
Discrete Matrix Decomposition (SDD) and Naïve 
Bayes Approaches and performance of different 
approaches is evaluated. The FV code representation of 
clusters is used to find the domain-relevancy (DR-
value) of the software components. 
 
Naïve Bayes Based Approach: The Naive Bayesian 
classification is the optimal method of supervised 
learning, if the values of the attributes of an example 
are independent given the class of the example [16]. 
Researchers have applied Naïve Bayes algorithm for 
the text-document classification. But values of the 
attributes of an example are not independent in case of 
text-document classification but the in case of the 
Software component classification the attributes of an 
example can be taken independent to each other. We 
propose two-step approach, as mentioned below.  
 
Learning Phase:  In the learning phase, let V is the set 
of all possible target values. This function learns the 
probabilities terms P(wk|vj), describing the probability 
that an extracted features from a software component in 
class vj will be the feature named wk. It also learns the 
class prior probabilities P(vj). Vocabulary is the set of 
all distinct features and other tokens occurring in the 
example software components. The features and 
frequency of occurrence of the features in different 
example software components is collected using 
following steps: 

1. Extract features from Training software 
belonging to different domains 

2. Create Identifier-by-Software Matrix 
3. Calculate the required P(vj)and P(wk|vj) 

probability terms. For each target value vj in V, 
calculate P(vj) and P(wk|vj) using  (1) and (2). 
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Where docsj is  the subset of software components 
from examples for which the target value is vj, Textj is a 
single software component created by concatenating all 
members of docsj, n is total number of distinct positions 
in Textj and For each feature wk in Vocabulary, nk is   
number of times features wk occurs in Textj. 

 
Classification Phase:  This phase returns the estimated 
target value for query the software component that need 
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to be categorized. The following steps are involved in 
the classification phase: 

1. Extracting features and frequency of features from 
the query software components as performed in 
learning phase. 

2. Fold query software’s frequency vector according 
to existing features of the Vocabulary. 

3. Calculate VNB according to (3).  

 
)|()(maxarg j

positionsi
ij

Vv
NB vaPvPV

j

∏
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=  (3) 

Where ai denotes the ith feature of query software 
and Positions is all features in query document that 
found in Vocabulary. This step also makes use of 
“Thesaurus” for automatically increasing the search 
space, by replacing ai with a group of matched features. 
 
PLSA Based Approach: The core of PLSA is a 
statistical, which is known as aspect Model [17]. Aspect 
Model is latent variable model for general co-
occurrence data which associates an unobserved class 
variable z Є Z={z1, z2,…zk} with each observation, i.e., 
with each occurrence of a word w Є W={w1,w2,…wm} 
in a document d Є D = {d1, d2,…, dN}. The following 
steps are proposed to find the DR-value of potential 
reusable components using training software 
components: 

 
Learning Phase:  The following steps are followed in 
the training phase: 

1. Extract keywords/identifiers from Training 
software belonging to different domains. In 
identifiers include function names, constant names 
and variable-names used in the software.  From 
identifiers, exclude reserved because they have no 
relation with software features. The comments are 
also included in the analysis to extract more meta 
information of the software component.  

2. Create identifier-by-software matrix. Considering a 
software system as a document and an identifier as 
a word; create an identifier-by-software matrix, 
similar to the word-by-document matrix.  

3. Remove useless identifiers and perform 
Normalization to obtain f(d, w) matrix.  

4. Initialize the P(w|z) and P(d |z) randomly with 
numbers between [0,1] and normalize them to sum 
to 1 along rows. P(z) is also initialize randomly. 

5. Apply EM algorithm [18] as shown in eq. (4)-(7) 
and iterate it until convergence or iterations are less 
than maximum number of iterations. The 
convergence means the maximization of log-
likelihood function [17] as shown in (8). 
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Where, f (d, w) is the frequency of occurrence of 
word w in document d. 

The output of the Training phase is the probability of 
finding words in different latent classes, i.e. P(w|z) and 
probability of finding documents in different latent 
classes, i.e. P(d |z).   
 
Learning Phase:  In the estimation phase the following 
steps are followed: 

1. Extract the features from q, the potential reusable 
components and FV is mapped according to 
occurrence matrix’s keyword list. 

2. Find different aspects’ values in Query Software 
Components 

3. After training, the estimated P(w|z) parameters are 
used to estimate P(q|z) for query software 
components, q, through a “folding-in” process[17]. 
In the “folding-in” process, EM is used in a similar 
manner to the training process: the E-step is 
identical, the M-step keeps all the P(w|z) constant 
and only re-calculates P(q|z), which shows the 
level of different aspects in Query Software 
Components i.e. DR-value.  

 
Hybrid LSA and Naïve Bayes Classification: The 
Latent Semantic Analysis (LSA) can be applied to 
induce and represent aspects of the meaning of English 
language words [19, 20]. LSA is a variant of the vector 
space model that converts a representative sample of 
documents to a term-by-document matrix in which each 
cell indicates the frequency with which each term 
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(rows) occurs in each document (columns). Thus a 
document becomes a column vector and can be 
compared with a user's query represented as a vector of 
the same dimension. There are four different schemes 
are evaluated to find DR-value of a software 
component: 

• SVD transformation of data with Similarity 
Measure 

• SDD transformation of data with Similarity 
Measure 

• SVD transformation of data with Naïve Bayes 
Classification 

• SDD transformation of data with Naïve Bayes 
Classification 

The following phases are followed for evaluation: 
 

Construction of Feature Vector (FV) of Domains:  
The following steps are proposed to find the FV of the 
different domains using training software components: 
1. Extraction of Meta Information: Meta information 

is collected from the sample software components 
in form of identifiers/keywords and identifier-by-
software matrix is created. The useless identifiers 
are removed and Normalization is performed. 

2. SVD/SDD Transformation: LSA (SVD and SDD 
[21]) is used for decomposition and Dimensionality 
Reduction of the features extracted from previous 
step.  
SVD is a form of factor analysis, or more properly, 

the mathematical generalization of which factor 
analysis is a special case [19]. It constructs an n-
dimensional abstract semantic space in which each 
original term and each original (and any new) document 
are represented as vectors. In SVD a rectangular term-
by-document matrix X is decomposed into the product 
of three other matrices W, S, and PT as shown below: 

PSWX T
K =  (9) 

Where W is a orthonormal matrix and its rows 
correspond to the rows of X, but it has m columns 
corresponding to new, specially derived variables such 
that there is no correlation between any two columns; 
i.e., each is linearly independent of the others. P is an 
orthonormal matrix and has columns corresponding to 
the original columns but m rows composed of derived 
singular vectors. The third matrix S is an m by m 
diagonal matrix with non-zero entries (called singular 
values) only along one central diagonal. A large 
singular value indicates a large effect of this dimension 
on the sum squared error of the approximation. The 
role of these singular values is to relate the scale of the 

factors in the other two matrices to each other such that 
when the three components are matrix multiplied, the 
original matrix is reconstructed. 

After the decomposition by SVD, the k most 
important dimensions (those with the highest singular 
values in S) are selected as shown in (10). All other 
factors are omitted, i.e., the other singular values in the 
diagonal matrix along with the corresponding singular 
vectors of the other two matrices are deleted. The 
reduced dimensionality solution then generates a vector 
of n real values to represent each document. The 
reduced matrix ideally represents the important and 
reliable patterns underlying the data in X. It 
corresponds to a least-squares best approximation to 
the original matrix X [22]. 

PSWX T
KKKK =  (10) 

The Xk matrix should now contain the major 
associational structure in the matrix and has left out the 
noise. In this reduced model, the overall pattern of term 
usage determines how close the documents will be 
located, regardless of the precise words in the 
documents [23]. 

The Semi-Discrete Matrix Decomposition (SDD) 
is similar to the SVD, in that the original matrix is 
decomposed into three matrices  [24] as shown in the 
following equation: 

PSWX T
KKKK =  (11) 

Where matrices Wk and Pk
T contain entries from 

the set -1, 0 and 1 [21].  
3. Naïve Bayes Learning: The SVD and SDD 

transformed frequency or occurrence tables of the 
keywords are used for calculating P(vj) & P(wk|vj) 
values separately according to the equations 
mentioned in the Naïve Bayes section. 

 
Estimating Domain Relevancy value (DR-value):  
The following steps are taken to calculate DR-value of 
a potential reusable Component: 
1. Extraction of features from query Component: 

Features are extracted from the potential reusable 
component; FV is formed and FV is mapped 
according to occurrence matrix’s keyword list. 

2. Perform Similarity Analysis: Similarity analysis 
between FV of the potential Reusable Component 
and the FV of different domains is performed and 
the similarity vector tells the relevancy level with 
existing domains. Here assumption is taken that the 
input software might belong to a number of 
domains with different extent. 



J. Computer Sci., 3 (5): 266-273, 2007 
 

 270

In SVD based technique, the query component’s 
similarity with the other components in the repository 
is measured by calculating the cosine between the 
vectors, xk and a query vector, qk as shown below:  

AqS T ~~
=  (12) 

Where PSA T
KK

α−= 1~
     (13) 

And the query vector is projected into the same k-
dimensional space [20] by: 

SWqq KK
T α=

~
 (14) 

The performance of queries generally improves as 
k increases, but will decrease past a threshold. It is 
possible for an SVD based system to locate terms 
which do not even appear in a document. Documents 
which are located in a similar part of the concept space 
(i.e. which have a similar meaning) are retrieved, rather 
than only matching keywords. By using a concept 
space, following problems can be solved. 

1. Polysemy, or the problem that most words have 
more than one meaning, and that meaning is 
obtained from the word’s context. 

2. Synonymy, or the problem that there are many 
ways of describing the same object. The presence 
of synonyms tends to decrease the Recall 
performance of Information Retrieval systems [22]. 

In the SDD based technique, the similarity ‘S’  [21] 
between a document and query vector can be calculated 
as:    AqS T ~~

=      (15) 

Where   PSA T
KK

α−= 1~
    (16) 

And the query vector is projected into the same k-
dimensional space by:  

qWSq T
KK

α=
~

 (17) 
In this study, the value of the splitting parameter α 

in equation has left at the default 0 
3. SVD/SDD with Naïve Bayes Evaluation: The 

performance of the Naïve Bayes Approach is also 
monitored for classifying the query software 
components while considering the P(vj) & P(wk|vj) 
values of the previous section. The results are recorded 
in terms of Precision, Recall and F-Measure values as 
discussed in the nest section.  
 

EVALUATION OF DEVELOPED SYSTEM 
It is tried to evaluate the system in terms of 

Precision and Recall criteria. Let S be a set of all 
software systems contained in a repository. Precision 
and Recall are defined in (18)-(21). 

 

Precision = 
||

)(
S

sprecisionSs soft∑ ε    (18) 

Where  
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And 
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||
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Where Cactual(s) is a set of clusters containing 
software “s”, generated by our software and CIdeal(s) is 
a set of clusters containing input software “s”, 
determined manually by the Domain Experts. Using 
Precision and Recall values F-value is calculated as a 
measure of performance evaluation i.e. 

F-Value =  
rp

pr
+

2
     (22) 

Where, p is the Precision and r is the Recall of the 
system.  
 

IMPLEMENTATION AND RESULTS 
 
As a software implementation of the discussed concept, 
a deployable Component Object Model (COM) based 
Component, which is Microsoft's binary standard for 
object interoperability, is developed. The developed 
component’s objects can be accessible through Visual 
Basic, C++, or any other language that supports COM. 
A sample data from various Reusable Repositories of 
‘C’ components is collected and the program is run for 
the 63 components belonging to six categories or 
domains (that can be grouped in three main 
domains/categories) and frequency table is formed with 
2942 extracted keywords. 

As evidenced from table 1, the Naïve Bayes 
evaluation phase results show 74.4186% Accuracy, 
0.1705 Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE) in classifying the software 
components. 
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Fig. 1: Snapshot of Calculated P(z |q) values  

 
 
Table 1: Evaluation Phase Statistics of Naïve Bayes   

Evaluation Phase Statistics 
Algorithm 

Accuracy (%) MAE RMSE 

Naïve Bayes 74.4186 0.1705 0.413 

 
The Training phase of the PLSA is run and P(w|z) 

is calculated in from of frequency matrix. Thereafter, 
query components are used and P(z|q) is calculated, as 
shown in Fig. 1. The figure shows different aspect or 
concept or unobserved latent variable levels found in 
the software components and these values gives 
indication of the DR-values of the software component. 

 
Table 2: Detailed results of PLSA based Similarity Measure   

Algorithm Class 
Type Precisi-on Reca

ll 

F-
Measur

e 

Accu-
racy 
(%) 

Class 1 0.6364 0.70
00 0.6667 

Class 2 0.8000 0.66
67 0.7273 

PLSA 
Based 

Similarity 
Measure Class 3 0.7059 0.80

00 0.7500 

72.09 

 
Similarity analysis is performed on the P(z |q) and 

the query software components are clustered in 
different clusters according to their latent variable 
values. The results show 72.09% Accuracy for the 
correct classification of query components. The 
detailed class-wise results are shown in Table 2. 

 
 

 
Fig. 2: Snapshot of Occurrence Matrix formed after the 

SVD decomposition 

 

  
 
Fig. 3: Snapshot of Occurrence Matrix formed after the 
SDD decomposition 
 

When the SVD and SDD Similarity Measure based 
Domain-Relevancy module is run to determine DR-
value of the query software component then the results 
of shows 62.4 % Accuracy in both cases as shown in 
table 3 with best F-Measure value of 0.7097, but the 
space complexity of SDD is less as compared to SVD 
technique. 
 
Table 3: Detailed Results of SVD and SDD Based Similarity 
Measures   

Algorithm Class 
Type 

Precisi-
on Recall F-

Measure 
%      Acc-

uracy 

Class 1 0.7500 0.3000 0.4286 

Class 2 0.8462 0.6111 0.7097 

SVD 
Transform 

and 
Similarity 
Measure Class 3 0.5385 0.9333 0.6829 

62.4 

Class 1 0.7500 0.3000 0.4286 

Class 
2 

0.846
2 

0.611
1 0.7097 

SDD 
Transform 

and 
Similarity 
Measure Class 

3 
0.538

5 
0.933

3 0.6829 

62.4 

 
In the hybrid scheme of SVD/SDD with Naïve 

Bayes Classification is applied, the SVD with Naive 
based scheme shows better results as compared to its 
counterpart SDD with Naïve Bayes scheme as shown 
in Table 4. 
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Table 4: Detailed Results of SVD and SDD Based Similarity 
Evaluation Phase Statistics 

Scheme 
Accuracy % MAE RMSE 

SVD 
Transformation 

with Naïve Bayes 
Classification 

76.7442 0.155 0.3937 

SDD 
Transformation 

with Naïve Bayes 
Classification 

74.4186 0.1705 0.413 

 
The detailed results of the SVD Transformation 

with Naïve Bayes Classification results are shown in 
table 5 with 76.7442 % Accuracy, 0.833 best Precision 
and 0.889,  0.889 best Recall and 0.842 best F-Measure 
values. 
 
Table 5: Detailed results of SVD Transformation with Naïve Bayes      

scheme 
Class 
Type Precision Recall F-Measure Accuracy 

(%) 
Class 1 0.636 0.7 0.667 

Class 2 0.8 0.889 0.842 

Class 3 0.833 0.667 0.741 

76.7442 
 

 
 

CONCLUSION 
 
The PLSA based software categorization approach 
provides better results than purely LSA based retrieval 
techniques in terms of Precision and Recall but its time 
complexity is too high. At the same level of dimension 
the categorization results of the SDD are similar to that 
of results of SVD technique, but SDD produced 
Precision rates similar to SVD with less storage. 
However the SDD decomposition requires more time to 
decompose the original matrix., and requires a higher 
dimension than SVD. It is found that the SDD provided 
a significantly higher average Precision than the SVD if 
the same query time was required. In order to match the 
SDD query speed, a much lower dimension must be 
used for the SVD. The pure and hybrid Naïve Bayes 
approach is found better performer than the PLSA and 
LSA based approaches.  In the hybrid approaches the 
SVD Transformation with Naïve Bayes scheme has 
outperformed all other approaches and shows better 
results than the existing approach  (LSA) being used by 
some open source code repositories e.g. Sourceforge. 
The categorization results are close to the manual 
analysis, used to be performed by the 
programmers/repository managers. Hence, the 
developed tool can be also be utilised for the automatic 

categorization of software components and domain-
relevancy of software components. Ultimately, this kind 
of automation may improve the productivity and quality 
of software development. 
 

REFERENCES 
 
1. Smith, E., A. Al-Yasiri and M. Merabti, 1998. A 

Multi-Tiered Classification Scheme For 
Component Retrieval. Euromicro Conference, 
24(2): 882 – 889. 

2. Basili, V. R., 1989. Software Development: A 
Paradigm for the Future. Proc. COMPAC ‘89,  Los 
Alamitos, Calif.: IEEE CS Press, pp: 471-485. 

3. Boehm, B. W., 1988. A Spiral Model of Software 
Development and Enhancement. IEEE Computer, 
21(5): 61- 72. 

4. Griss, M. L. and M. Wosser, 1995. Making reuse 
work at Hewlett-Packard. IEEE Software, 12(1): 
105 - 107. 

5. Succi, G., C. Uhrik and M. Ronchetti, 1996. 
Reusability and Portability of Logic Programming. 
Journal of Programming Languages Design, 
Chapman & Hall, 4(2): 101-114. 

6. Boehm, B., 1999. Managing Software Productivity 
and Reuse. IEEE Computer, 32(9): 111 - 113. 

7. Joos, R., 1994. Software Reuse at Motorola. IEEE 
Software, 11(5): 42-47. 

8. Lim, W., 1994. Effects of Reuse on Quality, 
Productivity, and Economics. IEEE Software, 
11(5):  23-30. 

9. Ahrens, J. D. and N. S. Prywes, 1995. Transition to 
a legacy- and reuse-based software life cycle. IEEE 
Computer, 8(10):  27 - 36. 

10. Caldiera, G. and V. R. Basili, 1991. Identifying and 
Qualifying Reusable Software Components. IEEE 
Computer, pp .61-70. 

11. Tracz, W., 1991. A Conceptual Model for 
Megaprogramming. SIGSOFT Software 
Engineering Notes, 16(3):  36-45. 

12. Poulin, J. S., 1997. Measuring Software Reuse–
Principles, Practices and Economic Models, 
Addison-Wesley Publishers.  

13. Price, Margaretha W., S. A. Demurjian and D. M. 
Needham, 1997. A Reusability Measurement 
Framework and Tool For Ada 95. Conference on 
TRI-Ada '97. 



J. Computer Sci., 3 (5): 266-273, 2007 
 

 273

14. Kawaguchi, S., P. K. Garg, M. Matsushita and K. 
Inoue, 2003. Automatic categorization algorithm 
for evolvable software archive Software Evolution. 
Sixth International Workshop on Principles of 
Software Evolution (IWPSE'03), pp: 195 – 200. 

15. Kawaguchi, S., P. K. Garg, M. Matsushita and K. 
Inoue, 2004. MUDABlue: an automatic 
categorization system for open source repositories. 
11th  Asia-Pacific Software Engineering 
Conference (2004), pp: 184 – 193. 

16. Mitchell, T., 1997. Machine Learning. McGraw 
Hill Publishers, 2nd Ed. 

17. Hofmann T., 1999. Probabilistic latent semantic 
indexing.  Proc. of  SIGIR'99. 

18. Gildea, D. and T. Hofmann, 1999. Topic Based 
Language Models Using EM. 6th  European 
Conference On Speech Communication and 
Technology (Eurospeech'99, 1999), pp: 2167-2170. 

19. Berry, M., S.T. Dumais  and  G. W. O'Brien, 1995. 
Using Linear Algebra For Intelligent Information 
Retrieval. SIAM:  Review, 37(4): 573-595. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20. Deerwester, S., S. T. Dumais,  G. W. Furnas, T. K. 
Landauer  and R. Harshman, 1990. Indexing By 
Latent Semantic Analysis. Journal of the American 
Society For Information Science, 41: 391-407.  

21. Kolda, T., 1997. Limited-Memory Matrix Methods 
with Applications.  Ph.D. thesis, University of 
Maryland at College Park, Applied Mathematics 
Program (1997). 

22. Deerwester, S., S. T. Dumais, G. W.  Furnas, T. K. 
Landauer and R. Harshman, 1990. Indexing By 
Latent Semantic Analysis. Journal of the American 
Society For Information Science, 41: 391-407.  

23. Dumais, S. T., 1992. LSI meets TREC: A status 
report. Text Retrieval Conference, pp: 137-152. 

24. Kise, K., M. Junker, A. Dengel and K. Matsumoto,  
2001. Experimental evaluation of passage-based 
document retrieval. 6th International Conference 
on Document Analysis and Recognition, pp: 592-
596. 

 
 
  


