
Journal of Computer Science 2 (1): 86-91, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Seung-Kyu Park, Graduate school of information and communication, Ajou University, South Korea

86

On Recipe Based Service Composition in Ubiquitous Smart Spaces

Junaid Ahsenali Chowdary, 1Seung-Kyu Park and 2Suk-Kyo Hong

1Graduate School of Information and Communication
2Department of Electrical and Computer Engineering, Ajou University, South Korea

Abstract: We present a recipe based service composition scheme in smart spaces. We discuss real time problems of
highly synchronized and user customizable processes with the help of an example. On-the-fly Quality of Service
(QoS) shows up as a major issue in such environment. Furthermore the QoS of a dynamically composed service
depends upon the aggregate QoS of its developing components. The dynamic composition of a service is done
through the recipe file which is composed by service provider, it is like the control extension that checks the latest
contest of the system from Context Servers and then generates the parameters for required services. Service
Composition Manager is the entity that reserves the services from service pool and generates self management
services. We setup context servers for context exchange and synchronicity of various processes. The generated
service further takes the context from individual devices present in the area of influence and the effective use of
context information helps us divide the complex jobs functionality into many simpler jobs on the bases of free time
slots available per device. Each device performs its role and reports back to the context aware server and waits for
new instruction in the next time slot. The principle objective is the presentation of system requirements of high level
of QoS, required in delegating human centric ubiquitous applications. In the end we demonstrate our scheme with
the help of an example and discuss its feasibility with the help of our model.

Key words: Recipe based service composition, component based development, ubiquitous systems, autonomic systems

INTRODUCTION

 The vision of omnipresent ubiquitous technology is to
provide “off-the-desktop” computing that emphasizes on
embedding the interface in whole physical world in such a
way that the user feels seamless service delivery at anytime
and anywhere fashion[1-3]. Building on top of the ubiquitous
infrastructure i.e. OSGi ®[4], the Service Oriented Platform
(SOP) is considered to be strong candidate for future
ubiquitous networks[5]. All such services that reside on a
platform can combine to make applications that directly
interact with the users[6]. Ubiquitous networks provide
services to various devices such as cellular phones, PDAs,
laptop computers and many others. That is why they have to
manage heterogeneity at high scale. Due to these
contemplations, the quick application development is very
tough. Atomized home automation solutions were not
serving the vision of future community level networks. So it
was important to expand the control and increase the
usability in ubiquitous society slogan [7].
 We simulate parts of the system to check the validity of
our system to test the functional feasibility. Using Session
Initiation Protocol (SIP) leverage us from many mobility
management and device authentication issues[8] that makes it
an “on the fly” solution. The target area of the application is
ubiquitous smart homes.

Overview and architecture: Here, we present an overview
and architecture of the system. The components are defined
considering the requirements of the system and
maintaining

the original layout of present kitchen environment. Figure 1
shows the service architecture of ubiquitous application
generated through service integration. The domestic gateway
manager is the managing entity present on the gateway and
its job is to regulate the services that are being used through a
gateway. The framework provides the operational platform
to the services to negotiate with the devices, protocols and
among the services themselves. These two constitute the
platform. The active profile manager runs throughout the
application process time and it monitors the whole system
and reports to the manager about the changes happening in
the dynamic system. It is responsible for maintaining the log
files that are used later for reactive actions taken by the
management system of the application. The use of resource
model based approach is very useful for autonomic reactive
actions. The recipe manager, interpreter, actuator unit, pot
manager, grocery manager and application manager shown
in Fig. 1 are the core components of the system. We call
them the service stack. In the scheme we propose, the service
stack includes those services that are directly involved in the
application development process. There is a service
Composition Manager that manages the composition of the
management service. It takes the services from the service
pool and the latest context from the context servers and
composes the Management Services. Service Composition
Manager produces the ability of Self Management as
management services are developed but Service SCM serves
as the bridge between the two paradigms. The details about
them are given later.

J. Computer Sci., 2 (1): 86-91, 2006

 87

Fig. 1: Service architecture

Fig. 2: Control flow architecture

 The cooking application runs on top of the entire
infrastructure laid and it development scheme is developed
by service provider, we call this as a Recipe -file in this study,
which is responsible for its advertisement too. There are
some interfaces exposed by every service. The Recipe-file
contains the interfaces needed for the target application
development. Whenever this Recipe-file is downloaded and
invoked at some service gateway level it checks all the
services present and matches the interfaces required, gets
registered for the use of the target application and after
gathering all the services needed, the new application is
advertised to the other components of the network e.g.
remote managing gateway, neighboring residential gateways
etc.
 We present a ubiquitous cooking application that is
developed through the propose scheme. The control flow
architecture of the application in various time slots is shown
in Fig. 2. It is shown how the control is passed to other
components and at what pattern. The remote user connects to
the home server and the control manipulation takes him to
cooking server. The cooking server is the point of entrance
for our scenario. At this moment the request verification is

done for the determination of the exact specifications. The
Actuator unit, Recipe-look up agents and Context scanning
start working thereafter. The conversion of the recipe into the
instruction format with reference to the existing Context is
done at the Recipe-dress up manager. Thereafter, the visible
preparation starts. The Context Server, Actuator Unit and
Active Profile Manager becomes the active parts of the
system. Jobs are assigned to different devices according to
the assigned slots available per device per unit time.
 We try to restrict the interaction according to the
scenario of the application under consideration. It can be
broadened (for dealing with the exceptions) but our purpose
in this study is to keep the scenario simple.
Recipe manager: The recipe manager is a part of the service
that contains the whole record of the recipe pool in XML
format. The service provider is responsible for recipe
formation. An XML parser parses the whole Recipe-file and
inference engine allots the jobs to individual devices by
keeping the available slots of that device in context and the
nature of job. The benefit of keeping the recipe in the XML
format is to obtain ease in transportation of the data when
and where it is needed. It can be directly fed to the machine
instruction translator unit or recipe interpreter. It saves time
and provides efficiency to the system the remote user
requests the dish the interface is shown in Fig. 6. The dish
name can be in the form of a pre-filled items list that the
cooking server provides to the remote user. In Fig. 6 the
recipe lookup button checks the availability of the dish and
its contents. If the user wants to specify the recipe or the
contents destination through the insurance of some third
party, he can do so on this interface. The jobs are divided into
time slots and during those time slots the system activates
many threads and monitors the performance of each device.
The manager can download updates and new recipes which
can also be located on user request recipes. After all the
inputs are prepared, the system gets busy for the specified
time to make the dish as requested. The remote user is
connected to the server using Session Initiation Protocol
(SIP)[8]. For connectivity, each device is SIP enabled.
According to the hierarchy, the remote user gets connected to
the home server that has SIP agent and also the Context
Server. All the remote hosts get connected to the Context
Server via the SIP service. For session initiation one device
becomes a client and the other one becomes a SIP server.
 Figure 3 shows the overall scenario of a remote user and
his connectivity to the home server. The remote user pages
the proxy server by requesting for a session establishment.
When established, it requests the status service to search for
availability of the cooking server. If the cooking server is
busy, the user gets (a) ‘System Busy’ response otherwise he
gets connected and interacts with the context aware server as
shown in Fig. 3. The remote user pages the proxy server that
is present at the home gateway and gets connected after
Trying and Ringing. Before connecting the user, the proxy
server INVITES the SIP service in the service bundle of the
Context Aware Server that is allocated inside the kitchen
server. After this initial handshaking, the remote user gets
connected to the

J. Computer Sci., 2 (1): 86-91, 2006

 88

Fig. 3: SIP for remote user connectivity
kitchen server and interacts with the application. The
prototype for the user connectivity is a service that has been
designed to run on an iPAQ® using the Jeode JVM™,
although it should work with any other PersonalJava™
compliant JVM. This service waits for an iPAQ-alert
message to be posted to the event heap and then displays the
text attribute of the message in a popup window. If further
events are posted before the popup window has been closed,
these will be displayed in sequence after the window has
been closed.
Actuator unit: The piece wise actuator unit is considered
feasible for the kind of a scenario we have. The support of
hardware automation is needed in various time slots and
various jobs can be assigned to one piece of hardware in two
adjacent time slots. We propose to divide the actuator unit
into two. One is the software decision making and automatic
low level code generation and the second one includes the
communication with the hardware infrastructure.
 Figure 5 is model architecture of a ubiquitous kitchen.
The shelves on the right side contain the grocery chambers.
On the left side the pots chambers are shown and in the
middle of that the stove, a smoke collector and a place for
robotic arm are shown. A conveyer belt is shown at the left
bottom side where the pot is placed and then is moved to the
table along with the cooked food in it. The collector tray is
placed between the chambers and the stove. That collector
tray collects the grocery items and pots from their respective
chambers and puts them into either pot on stove or for some
further process i.e. chopping, mixing, blending etc. then
injects them into the main process. We have a robotic arm
present over the collector tray. The purpose of the arm is to
place the pots in the right spots i.e. on the stove, moving it
away from stove and placing a new one on it etc. The entire
infrastructure includes the actuator unit.
 It may not be a good idea to have the devices attached to
the actuator unit, working in a liner feedback control model.
A quasi linear system that can make those devices run in
various time slots, under varying conditions is needed. We
propose the piece-wise control feedback system. It can be
said that we can achieve the desired amount of precision

required from the Actuator unit to carry out the mechanical
tasks[9]. A high level of precision is required so that higher
level of Quality of Service is maintained. Lucibello[9]
discussed piecewise control systems with learning capability.
Rantzer and Johnsen[10] proposed the piecewise linear
quadratic optimal control. Their simulation results have[9,10]
shown that the error factors reduces considerably and
consequently as more control over the system is attained and
that is our objective using them in our system. In the
following passage we consider a control system following
piece- wise feedback control model.
 Using the scheme Lucibello proposed[9], the quasi-linear
systems through an appropriate state extension and the use of
an iterative learning algorithm make it is possible to track a
piece-wise continuous output trajectory minimizing a
suitable norm of the error. So we conclude that the desired
amount of accuracy can be obtained provided that we gather
the context of the environment and provide it to the context
server. The Context server makes sure that the robotic arm
and other parts of the actuator unit are precise enough to
carry out the instructions. The instructions are distributed
piecewise and feedback is gathered for the future
improvements.

 4

5
1

2

3

4

5

8
7

6

Page, Cooking request (CR)

Paging (PR),
acknowledgement
response

CR1

Ack1

CR2Ack2

CR

Recipe state, Ready

RMR

RMU

MU
�Fi �Ii

�Fj

�Ij

User
Remote Host
Home Manager
Home server
Cooking server
Actuator
CA Manager
Recipe Manager

RMR
- Recipe Messaging
Request
MR
- Managed Recipe
RMu
- Recipe Makeup
F- Feedback, Instruction

1- 2�i=1
i=� �j=1

j=� F(i,j)
(Feedback)
2- 2�i=1

i=� �j=1
j=�I(i,j)

(Instructions)
3- 2�i=1

i=� �j=1
j=�U(i,j)

(Uncertainty)

1

2

3

4

5

8
7

6

Page, Cooking request (CR)

Paging (PR),
acknowledgement
response

CR1

Ack1

CR2Ack2

CR

Recipe state, Ready

RMR

RMU

MU
�Fi �Ii

�Fj

�Ij

User
Remote Host
Home Manager
Home server
Cooking server
Actuator
CA Manager
Recipe Manager

RMR
- Recipe Messaging
Request
MR
- Managed Recipe
RMu
- Recipe Makeup
F- Feedback, Instruction

1- 2�i=1
i=� �j=1

j=� F(i,j)
(Feedback)
2- 2�i=1

i=� �j=1
j=�I(i,j)

(Instructions)
3- 2�i=1

i=� �j=1
j=�U(i,j)

(Uncertainty)

Fig. 4: Automata model for integrated application

Recipe dress-up manager: After the recipe is stored in the
recipe knowledge base, there is a need to translate it into
executable instructions so that the actuator unit may start
working the preparation process of the food. The context of
the environment is very important at this stage. Knowledge
of the resources is related to how many, what kinds of
devices and pans we have and the current status of the
groceries. The recipe dress up manager is the entity that
translates the recipe in XML format into machine
instructions. It is done when we have the recipe template
generated by recipe dress up manager and then the planning
unit of the dress up manager allocates the sub tasks against
the time slots available with each device. First it should be
determined whether (or not) all the hardware is ready to start

J. Computer Sci., 2 (1): 86-91, 2006

 89

the job in which we rely in the context manager.
 The context manager keeps track of every item in the
kitchen (functionality shown in Fig. 4). The (1) shows the
time taken for feedback cycles, (2) shows the instructions
allocations and (3) shows the amount of uncertainty involved
in the whole process. Whenever there is some need to start a
new job, the context manager is queried about the
ingredients and their resources required. The planning
module formulates the roadmap table and reserves the
resources for that job.

Table 1: Job allocation to devices in time slots
Device ID Time Slot Instruction
C001455D 001589GHJ DGHJ003 C001455D; Consumer
C001456D 001589GHJ DGHJ013 001455 Device
C001457D 001589GHJ DGHJ005 001589GHJ; 001589th
C001458D 001589GHJ DGHJ001 Second in General
C001459D 001589GHJ DGHJ007 Hour for Jack (Jack
C001455D 001590GHJ DGHJ004 is the name of the job)
C001456D 001590GHJ DGHJ014 DGHJ003; Device
C001457D 001590GHJ DGHJ006 General Hardware
 Number Jack 003

 All the communication to the devices is done via
context manager. After requesting adequate resources from
context manager, the dress-up manager prepares the job
allocation tables as shown in Table 1. In those tables the jobs
of all the system are assigned with reference to each time slot.
Every time slot contains information of each and every
device in contact. There can be two states of each device, e.g.
1- device in context and 2- device out of context. Every
attached device is sent the instructions in each time slot. The
sample instructions are shown in Table 1.
 The tags shown in the Table 1 reflects a scheme that we
use to allot the ID’s to each activity that is carried out as a
result of the instruction generated as a result of recipe dress
up process. Many micro instructions of this type are
generated. Many of those instructions are assumed to be
related with a device containing a specific context e.g. a
device that can check the temperature of the room. Now for
that device there is a queue of instructions in different time
slots.
 The allocation of these tasks to that particular
temperature checking device depends upon the free time
available with that device and of course keeping the mobility
factor into consideration also. During the job in process time
there is a provisioning agent, the provisioning agent is the
one that is responsible for determining the future availability
of the time slot in the context of that device. A monitoring
service is provided so that the instructions are in a queue and
no micro instruction is missed, In case of execution failure or
device leaving the area, the same responsibility is assigned to
some other device for the same task. Here we assume that
there is all type of devices present in the kitchen, at least
those who are mandatory in the normal kitchen environment.
Context aware server: Network resource availability varies
with time not only due to dynamic demand from the users
but also dynamic channel conditions. A residential gateway
needs to dynamically assess the availability of system
resources and allocate them accordingly to meet QoS

requirements of supported applications[11]. The context aware
server is a mini gateway to access the devices in the kitchen
environment. It works the other way around too by devices
reporting their latest context. Another responsibility of the
Context server is that they participate in the recipe dress-up
process.
 When the recipe is prepared, keeping the context of all
the devices ready to participate in a new process and user
preferences, the context server presents a copy of the latest
context of devices so that the whole process can be
accomplished with maximum efficiency. The message
passing nature of various modules of the application and
tight time slots marking are mandatory for high level of
Quality of Service (QoS). The presence of an entity handling
the context is important in this scenario. Since the probability
is very high that the components installed in the kitchen
come from different vendors. The autonomic self
configuration plays a major role in such environments. After
the device discovery process its resources are added in the
resource pool that is in the form of knowledge base. For this
the UPnP™ support is important and self configuration
demands the ubiquitous driver access service that may
enable a system to be detected and attached and that can
make device work seamlessly. A device attached to the
network is desirable to contain the following characteristics.

Fig. 5: A model ubiquitous kitchen environment

 Many of these depend upon the vendor but the more the
probability of presence of these features into the devices is,
the more efficient the network will be.

* Discovery of other devices on the network. The number of

hand-over and take-over happening
* Discovery of the new interfaces and search of their support

present for the network on the vendor site or at some other
location.

* Auto-assignment of Ubiquitous ID to new devices.
* Profile management of each device coming in and handing

over the profile to the new gateway if device leaving the
network.

* Self-provisioning and providing of data to other devices to
set their state based on addition of new devices to the
network.

 Based on these requirements we explored various
alternatives for discovery and initialization. While JINI™ is

J. Computer Sci., 2 (1): 86-91, 2006

 90

an attractive proposition, the UPnP™ suite of protocols
appears to be more intuitive to use.
 It is obvious that suitable “Device Control Protocols”
(DCP’s) would have to be defined for the various
components of the application. This would allow various
vendors to communicate with each other while still allowing
for vendor differentiation and value addition. These features
(addressability and discovery) fit to our scenario to assign
Ubiquitous ID to the devices and self configuration features
in the network. Once discovery has been performed,
UPnP™ allows for the exchange of device description in an
XML based format which includes URL’s for device control.
This mechanism can be used by the various devices in
ubiquitous kitchen to describe them and obtain a description
of other devices on the network. This would allow the newly
added device to initialize itself with network specific
parameters. In addition to a suitable discovery and
initialization protocol the controller needs to access interfaces
on the devices to accomplish a task.

Fig. 6: Recipe request and lookup interface

Fig. 7: The simulation results of grocery item (µ) verses time

slots (t). (The performance curve shows linearity
showing uniform flow out from chamber after
continuous refills). The variation in the simulation
shows the different value of �=1/2q and �

 This can be completed by passing an appropriate
message to the device. A suitable abstraction for this is the
device control interfaces as described by UPnP™. This
allows for the device interfaces being invoked by sending
SOAP messages over the network. In the absence of a
message passing and event notification mechanism the
device management and synchronization of the whole
process will be very difficult or nearly impossible. That is

why we need some event notification message passing
architecture so that all the devices that are involved in the
active operation could be synchronized

o

u = 2gh

2A
t =

u
a 2g(h -

2gh

o

u
=

2g
h

2A
t=

u
a

2g
(h

-
2g

h

Fig. 8: Internal architecture of grocery chamber

and in ’ready to perform’ state. This lowers the delay in the
process and increases the efficiency.
Grocery manager: A lot of research has been done and
going on concerning this issue of grocery management[12,13].
For managing the grocery items we have a grocery
managing mechanism. The grocery is stored in the chambers
shown on the right side of Fig. 5. A chamber has some area A
and height h. The area of the aperture is a and the amount of
item coming out is u. The structure of each chamber is
shown in Fig. 8. Now according to Torricelli model we can
predict the amount of grocery item coming out from the
chamber. Torricelli model is based on two physical concepts.
 First is Bernoulli relationship between pressure p,
density and speed for the matter along a stream line

 21
= .

2
 up σ� �∆ � �

� �
 (1)

 The second is the relationship between changes in
pressure over the height column and gravity (acceleration g),
density and the height h of the column

() = .p pgh∆ (2)

 Combining (1) and (2) gives a relationship between
height of the column above the hole and the speed at which it
spews forth, u is equal to square root of 2gh. The volume of
grocery item lost from the bucket must equal the flux
through the bucket’s hole (with area a) and using the fact that
(for a chamber with regular sides and constant cross section
in height) the relationship becomes

.� �� �= = =� � � �
� � � �

od[Ah+V]dV
ua

dt dt
dhA
dt (3)

 From the relationships mentioned, the following
formulae help in estimating and thus controlling the amount
of grocery item flowing in and out of the grocery chamber.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
u (mg)

t
(m

s)

J. Computer Sci., 2 (1): 86-91, 2006

 91

When some quantity of grocery item is drown out from the
chamber, �u is the change in quantity and u is the amount
coming out. When some amount of grocery item is needed,
instructions are sent to the aperture. The time t in which the
aperture was open has a direct relationship with the quantity
drown out from the chamber, we can say that t is the function
of change in amount of the grocery coming out. So

2

2 ,

2

 = -

o

a g
h th

A
 (4)

and the aggregate height h of n number of chambers is,
2

2
.

21

 = -

o

i n a gii th ii
Ai i

 h
=

=
� (5)

 It gives the relation between the height of the grocery
item present in the chamber and the rate of change in the
height of the column ho and

2 2
= = ,

 2
o o

empty
a

A Ah ht
g a g

� � � �
� � � �
� � � �
� � � �

 (6)

m

1 m

 2 2
= = ,

 2

j m
mm oo m

empty
j m ma

AA hht
g a g

=

=

� �� �
� �� �
� �� �

� � � �
� (7)

 Where, tempty is the amount of time required for a grocery
chamber with area A, rate of change of grocery column ho , a
as the area of the aperture and g as gravitational acceleration.

In time t′ and
1 m

j m

empty
j

t
=

=
� is the time taken by m number of

chambers to get empty.

 2
 = 2 - ,

2o

a g
u g th A

� 	� �
′
 �� �� �
 �� ��

 (8)

'

1

2
[2 ()]

2
k

k o o

k

k

k

a g
u g h t

A

=∞

=

= −� (9)

 Where, u is the amount of grocery item coming out

from the chamber and
1

k

k

k

u
=∞

=
� is the aggregate amount of

grocery
items coming out from o number of chambers in time t from
chambers of height h, area A and gravitational acceleration g.
The following is the expression for two parallel quasi-linear
control systems. We show the inter process flow error control
and mechanical error expressions along with the two
indigenous process expressions (derived from eq. 9).

'

1 1

'

2
[2 ()]

2

21
[2 ()]

2 2

k

k j o k

k

k

k j o j

j

j k

j k

a g
u g h t

A

a g
q g h t

A
ψ θ −

= ∞ = ∞

= =
= − +

+ + +

� �

CONCLUSION
 In this study we present a scheme for application
development in ubiquitous environments. We discuss the
scenario with an example. The ubiquitous services integrate
to form new applications and those applications interact
directly with users. Previously it was considered that the
services in the service oriented environments will interact
with the user directly[6,11]. However we propose that the
applications developed through service integration serves the
preferences of the users in a better way by keeping the
preferences in mind and at the same time keep on monitoring
the resources available.

ACKNOWLEDGEMENT
This research is supported by the Ubiquitous Computing

and Network Project, the Ministry of Information and
Communication (MIC) 21st Century Frontier R&D Program
in Korea.

REFERENCES
1. Junaid Ahsen Ali Chowdary, Won-Sik Yoon, Jai-Hoon

Kim and We-Duke Cho, 2004. U- Kitchen: application
scenario. Proc. WSTFEUS, pp: 169-171.

2. McDonald, D.W., 2003. Ubiquitous recommendation
systems. Computer, 36: 111-112.

3. Hedberg, S.R., 2000. After desktop computing: A
progress report on smart environments research.
Intelligent Systems, IEEE. 15: 7-9.

4. Open Service Gateway Initiative, www.osgi.org
<http://www.osgi.org>.

5. Takemoto, M., H. Sunaga, K. Tanaka, H. Matsumura and
E. Shinohara, 2002. The ubiquitous service-oriented
network (USON) - An approach for a ubiquitous world
based on P2P technology. Proc. P2P 2002, pp: 17-21.

6. Yu, M., A. Taleb-Bendiab, D. Reilly and Omar, 2003.
Ubiquitous service interoperation through polyarchical
middleware. Proc. IEEE/WIC’ 03, 2003, pp: 662-665.

7. Ricci, A. and A. Omicini, 2003. Supporting coordination
in open computational systems with TuCSon. Proc. WET
ICE 2003 pp: 365-370.

8. Stan Moyer, Dave Marples and Simon Tsang, 2001. A
protocol for wide-area secure network appliance
communication. Commun. Mag., IEEE., 39: 52-59.

9. Lucibello, P., 1998. A learning algorithm for improved
hybrid force control of robot arms. Systems, Man and
Cybernetics, Part A, IEEE Trans., 28: 241-244.

10. Rantzer, A. and M. Johansson, 2000. Piecewise linear
quadratic optimal control. Automatic Control, IEEE
Trans., 45: 629-637.

11. Bansal, D., J.Q. Bao and W.C. Lee, 2003. QoS-enabled
residential gateway architecture. Commun. Mag., IEEE.,
41: 83-89.

12. Kourouthanassis, P., L. Koukara, C. Lazaris and K.
Thiveos, 2001. Last-mile supply chain management:
MyGROCER Innovative Business and Technology
Framework. Proc. 17th Intl. Logistics Cong. Logistics’ 01,
pp: 264-270.

13. Asthana, A., M. Cravatts and P. Krzyzanowski, 1994. An
indoor wireless system for personalized shopping
assistance. Proc. Mobile Computing Systems and
Applications’ 94, pp: 69-79.

