
Journal of Computer Science 2 (11): 815-823, 2006
ISSN1549-3636
© 2006 Science Publications

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079,
succ. Centre-ville, Montréal, Qué., Canada H3C 3A7, Tel: (514) 340-4711 Ext. 4685,
Fax: (514) 340-4658

815

Separation of the Control Plane and Forwarding Plane in Next-Generation Routers

Rachid Nait Takourout, Samuel Pierre, Laurent Marchand

Department of Computer Engineering, École Polytechnique de Montréal
C.P. 6079, succ. Centre-ville, Montréal, Qué., Canada H3C 3A7

Abstract: Ever since the Internet appeared, network elements, such as routers, have been enhanced
with much functionality. They tend to increasingly integrate more services, such as support and
security mechanisms, which ensure Quality of Service. Similarly, processor performance continues to
increase rapidly. Thus, these two types of evolution trigger the concept of separating the Control plane
and the Forwarding plane in network elements.This study addresses the separation of the control plane
and the forwarding plane in Next-Generation Routers. XML syntax is used to model, on the one hand,
the suitable elements of the control plane and the forwarding plane. Implementation and prototyping
results indicate that this syntax type for modeling provides a flexible platform, which is truly able to
manage the heterogeneity of the material implementing the Forwarding Plane.

Key words: Software-programmable router, ForCES, control plane, forwarding plane, TIPC

INTRODUCTION

 Ever since the emergence of the Internet, network
elements such as routers have been enhanced with
many functionalities. They tend to increasingly
integrate more services, such as support and security
mechanisms to ensure Quality of Service. Similarly,
processor performance continues to increase rapidly.
Thus, these two types of evolution brought about the
concept of separating the Control plane and the
Forwarding plane in network elements. Moreover, the
development of the new Network Processor technology
which is able to treat packets while maintaining high
performance levels and remaining programmable
provides further support for this separation. However,
this new networking area requires the development of a
completely new architecture. Several organizations,
such as the IETF, have shown an interest in this
separation and a number of people are working to
define the requirements and specifications of these
incipient concepts.
 This article presents a scalable and
heterogeneously compliant solution to ensure the
configuration management of elements within a
network. This introduction presents the concepts related
to network processor technology, the architecture
proposed by ForCES, the IETF working group,
Forwarding and Control Element Separation and some
related technologies which offer potential solutions to
manage the problem.

Network processor technology: The concept of
separating the Control Plane and the Forwarding Plane
could seem abstract and far from the routers’ reality.

However, the evolution of routers offers concrete
support for the separation. The two most represented
router hardware architectures are, on the one hand, the
software router based on a general purpose processor
and on the other hand, the router based on ASIC
processor (Application-Specific Integrated Circuit).
Although, the first architecture provides a highly
programmable structure, its performance remains
inadequate. In fact, it is based on general purpose
processors which are inadequate for network
operations. Although the ASIC-based architecture
provides a high level of performance when
implementing network specific functionalities, its
architecture remains expensive and minimally
programmable.
 The network processor architecture[1] has evolved
from the aforementioned architectures. It is a
compromise between the ASIC based and general
purpose processor based architectures. In fact, a
processor network is used to handle packets at wire
speeds, while implementing a set of functions of
Quality of Service, encryption, etc. The main attraction
to this kind of processor comes from the
implementation of these functions. Indeed, the
processor network implements only part of the protocol
stacks used in the node; only those which require direct
data access and leave the more complex management to
a standard processor. This type of processor has a
material architecture characterized by:
* several processors, thus allowing the possibility of

parallel processing;
* material entities specialized for network

operations;
* fast memory access;

J. Computer Sci., 2 (11): 815-823, 2006

 816

* fast peripheral network access;
* general purpose processor access.
 Since this technology is rather recent (the first
marketed network processors became available in
1999), the lack of standards raises management and
cohabitation problems for various types of network
processors. More precisely, the need for flexibility in
the evolution of the Control Plane and Forwarding
Plane requires the creation of a true interface between
these two planes which is powerful and able to manage
the heterogeneity of the material implementing the
Forwarding Plane.

ForCES Architecture: The ForCES working group
proposes specific requirements which define a new
scalable architecture in order to enhance the separation
of the Control and the Forwarding Planes. It introduces
logical entities presented in the draft IETF forces
requirements[2] as:
* Forwarding Element (FE): A logical entity that

implements the ForCES protocol. FEs use the
underlying hardware to provide per-packet
processing and handling as directed/controlled by a
CE via the ForCES protocol.

* Control Element (CE): A logical entity that
implements the ForCES protocol and uses it to
instruct one or more FEs how to process packets.
CEs handle functionality such as the execution of
control and signaling protocols.

* Pre-Association Phase: The period when the
management entities determine which FE and CE
should be separated from the same network
element.

* Post-Association Phase: The period when a CE
knows how to control an FE and vice versa,
including the CE-FE connection time.

* FE Manager: A logical entity that operates during
the pre-association phase and is responsible for
determining with which CE(s) an FE should
communicate. An FE manager may use anything
from static configuration to a pre-association phase
protocol (see below) to determine which CE(s) to
use. However this is currently out the ForCES
working group’s scope.

* CE Manager: A logical entity that operates during
the pre-association phase and is responsible for
determining with which FE(s) a CE should
communicate.

 Moreover, the Protocol Element (PE) term is
relative to a CE or an FE. Figure 1 illustrates this
architecture employing two CEs and two FEs.

Reliability and configuration problems: The main
purpose of this study focuses on two elements. The first
one concerns the reliability of the ForCES architecture.
The second one deals with the configuration problem
during the pre-association phase. This section addresses
the first issue.

CE 1 CE 2

Control Plane

FE 1 FE 2

Forwarding Plane

CE
Manager

FE
Manager

Network

Fig. 1: Network element architecture example

 According to the ForCES working group, the
architecture reliability requirements are[3]:
* Scalability: The architecture must be able to

support hundreds, at least, of FEs and tens of
thousands of ports.

* Dynamical Association: The architecture must
allow CEs and FEs to join and leave network
elements dynamically.

* CE Redundancy: The architecture must support
mechanisms for CE redundancy and CE failovers,
including abilities to detect any loss of association.

 Given these requirements, it becomes necessary to
design a solution equipped with an underlying protocol
to ensure reliable communication.
 As for the second problem, notice that the ForCES
architecture must provide a high compliance between
CEs and FEs. In fact, they introduce the concept of the
FE Model[4] that defines the inside behavior of an FE.
This model is subdivided into two elements. The first
one is the Capability Model that represents the packet
manipulation as logical blocks. The second one, named
the State Model, defines the FE’s current configuration.

Separation related technologies: This section presents
two technologies used to solve the problem: the
Telecom Inter Process Communication protocol
(TIPC)[5] and the eXtensible Markup Language
(XML)[6].
 TIPC is a message oriented communication service
specially designed for cluster environments. It provides
complete location transparency for intra-cluster
messaging, using the concept of logical addressing with
an internal address translation table. It is particularly
suitable for systems where short, real-time critical
transactions are performed. TIPC maintains a Quality of
Service level which guarantees that messages cannot be
lost or duplicated and that the message queue cannot be
disturbed.
 TIPC has the particularity of being easily portable.
In fact, it defines its links to the network under a
generic form called bearers that could be Ethernet,

J. Computer Sci., 2 (11): 815-823, 2006

 817

ATM, InfiniBand amongst others. Moreover, bearers
can be supported simultaneously and in multiple
instances. This heterogeneous multi-homing property is
further improved by employing a mechanism for
transparent and disturbance-free link changeovers in
case of bearer failure.
 TIPC introduces the concept of having a port name
to support logical addressing. The port name, an
address composed of two 32-bit integers, is the
permanent address used to establish a TIPC
communication. The first integer, called ‘type’,
identifies the type of service provided by a server and
the second one, called ‘instance’, allows users to
determine different instances of the same ‘type’. This
architecture provides a mechanism to partition the
server’s services by introducing the concept of a port
name sequence that contains a ‘type’, both a lower and
an upper instance. Figure 2 illustrates such address
types. In fact, there are three TIPC servers: A, A’ and
B. For example, Server A publishes the port name
sequence that indicates that it manages all of the clients
who want to connect with ‘type’ 32456 and all
instances between 0 and 99. In this case, Servers A and
B partition the type of service represented by ‘type’
32436. Moreover, Server A’ publishes the same port
name sequence as Server A. If the client connected to
Server A detects a connection failure, it could try to
reconnect directly using the same port name and in this
case, it would be oriented to Server A’. This example
illustrates the concept of logical addressing that is
similar to CORBA mechanisms, although this type of
mechanism is less flexible than the TIPC interface. In
fact, TIPC uses a programming interface based on BSD
sockets.

Client

sendto (type = 32456
instance = 33)

Server A'

bind (type = 32456
lower = 0

upper = 99)

Server B

bind (type = 32456
lower = 100
upper = 199)

Server A

bind (type = 32456
lower = 0

upper = 99)

Fig. 2 : TIPC Client / Server Communication /

Distributions

 Before formalizing this model for CEs and FEs,
consider the eXtensible Markup Language. XML is a
markup language based on the Standard Generalized
Markup Language (SGML) proposed by the World
Wide Web Consortium (W3C) in 1996. The main
purpose of XML is to dissociate documented data from
its presentation. The markups of XML are extensible
and one’s own markup must be defined for each XML

document followed by an XML Schema or a Document
Type Definition (DTD). To convert an XML document
into a particular format, it must be parsed. There are
two types of XML parsers. The first is one is based on
treeing (based on the DOM API): it parses the
document and creates a representative data structure.
The second one is based on event mechanisms: it parses
the document and launches specific callback functions
for each markup. This type of parser uses the Simple
API for XML (SAX).

Reliability problem: Upon reading the aforementioned
ForCEs architectural requirements notice that
robustness issues are closely related to the management
of the redundancy of CEs and the dynamic management
of PEs. As indicated in the introduction, the network
processor technology could concretize the separation of
the Control and the Forwarding Planes. In fact, FEs are
logical representations of the functionalities of these
processors. However, routers based on this technology
are, in fact, traditional computers connected by a
Backplane or local area network. This aspect enables
users to place themselves within the framework of a
computer cluster for the interconnection between CEs
and FEs. By adopting this assumption, the correlation
between the robustness requirements of ForCES
architecture and the use of TIPC as the communication
protocol becomes salient. The support of various
communication technologies (UDP, ATM, Ethernet,
etc.) and especially the logical addressing within a
cluster makes the TIPC protocol an interesting solution
when designing a robust architecture. Hence, this
communication protocol will be used for the remainder
of this article. This decision triggers a modification to
certain aspects of the FACT protocol.
 From a conceptual point of view, TIPC was used as
protocol subjacent to the FACT protocol. Thus, each
CE behaves as a TIPC server whose addressing
(actually a port name) is inscribed on the entire cluster
and each FE behaves symmetrically as a client. Using
port names for addressing significantly simplifies the
management of redundancy from the FE point of view.
Each CE is associated with a given ‘type’ within the
meaning of a port name, as well as a lower limit and
higher threshold which are fixed for all of the port
names published within the cluster. This choice is
justified by the resulting addressing transparency.
 Take, for example, a CE with a port name whose
type is 17777. An FE becomes active and establishes a
TIPC connection with this type. Then, the same
operation is performed with another CE with the same
port name. If an unspecified breakdown occurs during
the first CE, the FE will be notified of the connection
loss/failure by means of the TIPC protocol (when using
TIPC with Ethernet for example, failures are detected
within 1.5 seconds) and it will be able to attempt to
reconnect itself with the same type 17777 as before. In
this case, it will be detected automatically when it

J. Computer Sci., 2 (11): 815-823, 2006

 818

communicates with the second CE. The use of TIPC as
medium allows for the simpliication of a real
architecture due to the redundancy management and the
connection failure detection finds itself subjacent to the
ForCES architecture. Moreover TIPC is a robust
protocol, widely used over the past ten years. Although
the FACT protocol ensures an explicit management of
communication breakdowns through the use of timers,
this type of mechanism is no longer necessary, as
shown in the previous example, when TIPC is used. As
FACT Heartbeat-type messages are no longer
necessary, they will not be implemented.
 The above example shows the contribution of TIPC
with respect to the FACT protocol and the post-
association phase. From the perspective of improving
architecture robustness, it was decided to use TIPC for
the pre-association phase. This choice was justified in
two ways: the addressing event by the Managers and
the configuration of the PE addresses. To manage the
addressing of the Managers, the CE Managers and FE
Managers are assigned two generic addresses known by
all PEs. This enables PEs to become active with the
ability to directly connect themselves to their respective
Managers. In fact, the Managers will simply be the
TIPC server and all of the PEs of the clients in order to
simplify the pre-association phase and configuration.
Moreover, this choice leads us to use the same
redundancy process seen for CEs for the Managers in
order to ensure the robustness of the pre-association
phase. To illustrate this perspective, one can imagine
that the first CE Manager becomes active and thus
publishes the generic port name of the CE Managers.
Then, a second CE Manager supplements the same step.
The first will be responsible for managing all PE pre-
associations. However, if the first one experiences a
breakdown, the second to publish the same port name
will already be able to ensure the role of managing all
PE connections in a transparent and automatic way.
 Although TIPC simplifies addressing, there
remains an interrogation about the configuration of CE-
FE pairings of the FACT protocol. As indicated by the
ForCES working group, the configurations should be
manual before a PE becomes active. Moreover, a
network element must be able to manage hundreds of
FEs and their configurations would thus quickly
become problematic. However, TIPC offers a solution
to the network element configuration problems. Indeed,
the CE Managers will be assigned a new responsibility:
the assignment of port names to all CEs. During the
pre-association phase, the CE Managers will thus have
to provide a port name for each new CE to ensure
maximal coherence of the post-association phase.

Modeling and pre-association phase: Treating the
modeling problem of the pre-association phase requires
an explicit study of the requirements of this phase. To
do so, it is necessary to first reconsider the function of
the pre-association phase: pairing the CEs and FEs.

Indeed, the CE-FE comparison requires that these
Managers know their functional structures. This section
addresses the formalization of the CE-CE Manager and
the FE-FE Manager and interaction by means of a
representation in XML of the characteristics of each
one. Let’s examine the chronological evolution of the
interaction between a CE and a CE Manager. This is a
four-step process:
1. First, the CE signals its existence to the CE

Manager. The CE Manager authenticates the CE
and processes its request.

2. The CE Manager provides the CE with an
identifier, called the CE-Id. Indeed, its attribution
is not explicitly defined within the architectural
framework suggested by the ForCES group.

3. The CE specifies its needs and restrictions
(processing capacity, for example) to determine
whether these services are available from FEs
associated with the network elements and then
receives the downstream from the CE Manager.
However, the representation of its needs is
particularly problematic. To solve this problem,
IETF forces’ requirements were further analyzed[2].
The types of switching functions implemented
within an FE seem to indicate a simple declaration
of the needs of CEs in this same format. Thus, it is
assumed that a DTD can fulfill the needs (however,
it is the CE which decides whether to work with
the proposed FE or to violate the post-association
phase mechanisms). However, it has its limitations
such as the number of FEs each CE can manage.
This model is called CE Specification.

 Each DTD includes six major types of functional
needs that can be expressed by the EC: (1) the port type
that must be present, for example, an Ethernet interface;
(2) the type of routing network, which can be an IP
version 4 or 6; (3) the type of Quality of Service if the
CE works within an IntServ or DiffServ architecture;
(4) the type of encapsulation; (5) the type of security (in
an access router, IPSec functions are necessary) and
finally; (6) the type of functionalities provided by the
manufacturers (only if FEs recognize them). To
illustrate this approach, consider the example below
which formalizes the needs of a CE in this XML
document:

<CESpecification>
 <maxFE>3</maxFE>
 <EncapType>XML</ EncapType >
 <FailOver>Enable</ FailOver >
 <FunctionList size="2">
 <Function>
 <Port>
 <PortNb>2</PortNb>
 <PortTypeList size="1">
 <PortType>Ethernet</PortType>
 </PortTypeList>
 </Port>
 </Function>
 <Function>
 <QoS>

J. Computer Sci., 2 (11): 815-823, 2006

 819

 <QoSTypeList size="1">
 <QoSType>DiffServ</QoSType>
 </QoSTypeList>
 </QoS>
 </Function>
 </FunctionList>
 </CESpecification>

 Note that this CE can only treat three FEs
simultaneously, that it requires two Ethernet interfaces
and that in addition, it uses DiffServ architecture for the
border of a field. That makes it possible for the CE
Manager to connect it to two FEs which can fulfill these
requirements.
4. After this step, an event-based phase can be

initiated. Indeed, once the three previous steps are
supplemented, the CE Manager must know in
which of three states the CE happens to be (i.e.
active, inactive or standby state). Such information
is thus exchanged transmitted via event messages
to update the CE Manager. Two cases can be
considered. The first corresponds simply to an
inactivation of the CE for an unspecified reason
during a normal operation. In this case, sending an
asynchronous message suffices to ensure the
follow-up with the CE Manager. The second case
refers to a breakdown of the CE or a connection
failure. The management of this kind of event can
pass naturally through the use of periodic messages
at a defined frequency. Given the specifications
indicated in the section addressing the robustness
of the ForCES protocol, this paper proposes the use
of the TIPC protocol to detect this kind of event.
This decomposition of the potential behavior of
CE-CE Manager relations will be the base used
while continuing to model the pre-association
phase.

 The same approach will be used for the interactions
between FEs and the FE Manager. However, the
modeling problem is different. In fact, the FE must
provide its capacity to its FE Manager. In this case, an
XML presentation of the FE Model proposed by
the ForCES working group will be used. The
capacity is represented by a list of Logical Block
(LB) markups and the State Model by a list of markup
Links:

<FEModel>
 <CapabilityModel>
 <LBList size="9" >
 <LB>…</LB>
 </LBList>
 </CapabilityModel>
 <StateModel>
 <LinkList size="9">
 <Link>…</Link>
 </LinkList>
 </StateModel>
</FEModel>

 A handle and a type of functions are associated
with each logical block. In this example, a DiffServ
Meter:

<LB>
 <Handle>4</Handle>
 <Type>
 <DS_Meter>
 <MeterType>
 <Dir>In</Dir>
 <MeterCap>simpleTB</MeterCap>
 <HandleFail>5</HandleFail>
 </MeterType>
 </DS_Meter>
 </Type>
 </LB>

 The Link markup indicates the handles of a logical
block that are directly connected:

 <Link>
 <DownLBHandle>3</DownLBHandle>
 <UpLBHandle>8</UpLBHandle>
 </Link>

 CE CE Manager

MODEL

MODEL_ACK

EVENT_INACTIVE_ACK

MODEL_ACK

EVENT_LEAVE_ACK

EVENT_LEAVE

INIT_ACC

INIT_REJ

INIT_CE

EVENT_INACT IVE

P
H
A
S
E

1

P
H
A
SE

2

P
H
A
SE

3

Fig. 3 : CE-CE Manager interactions

 Figure 3 summarizes this new proposition. Of
course, the same schema is obtained for the FE-FE
Manager.
 As for the interactions between the CE Manager
and the FE Manager, a symmetric model whose event-
based phase is composed of messages that contain the
list of PE models is proposed. In fact, if an FE becomes
inactive, the FE Manager has to send an updated list of
FEs (and FE Models) to the CE Manager. This scenario
is depicted in Fig. 4.
 These diagrams illustrate the newly proposed
protocol which is based on the header represented in
Fig. 5.

J. Computer Sci., 2 (11): 815-823, 2006

 820

P
H
A
S
E

2

P
H
A
S
E

1

CE Manager FE Manager

INIT_ACC

INIT _REJ

LIST_ACK

EVENT_LEAVE_ACK

EVENT_LEAVE

INIT_MANAGER

LIST

P
H
A
S
E

3

Fig. 4: CE Manager - FE Manager interactions

Version MsgType Length

5
bits

11
bits

16
bits

Identifier F OffSet

Fig. 5: PAP header

 The pre-association protocol (PAP) header contains
the type of message such as ‘INIT_CE’ in Fig. 3 and a
fragmentation mechanism such as IPv4.

RESULTS

Proposed adaptation for implementation: The main
purpose of this new proposal is to develop an
interoperable and reliable architecture. For validation
purposes, a simple prototype was used to represent the
separation between the Control Plane and the
Forwarding Plane. Hence, the architecture was
modified in four ways to simplify the experiment:
* Structural Adaptation: The dichotomy between the

CE Manager and the FE Manager corresponds to
the finest granularity in the management of the
PEs. However, in this implementation, it was
decided to merge these entities.

* Modeling Adaptation: Only the Capability section
of the FE Model was used to encapsulate the
MODEL messages of the pre-association phase
protocol. In fact, the state model is more specific
than the post-association phase.

Manager
BackUp

CE 2 CE 3
BackUp

Control
Plane

FE 1 FE 2

Forwarding
Plane

Manager

CE 1

Control
Plane

Machine 1

Machine 2

Ethernet
Link

100 Mbs

Fig. 6: Testing architecture

* Medium Adaptation: TIPC was selected as the

communication medium for the entire architecture.
Hence, each CE is a TIPC server thread and each
FE is a TIPC client. The Manager entity is
responsible for distributing the CE address inside
the network element. Moreover, redundancy
support was provided by giving the same address
to two TIPC servers, so the Manager attributes an
address to a CE in a judicious way in order to
manage redundancy in the network element.

* Security Adaptation: To reach the objectives of this
implementation, efforts were made to show the
validity of these concepts. However, it is assumed
that this work is conducted in a secure computer
cluster and security problems are considered to be
somewhat elusive. In this implementation however,
in order to show that additional security
mechanisms can easily be implemented, if, for
example, the computer cluster becomes broader
and requires more than one hop between machines.
IPSec[7] technology was thus selected for the ease
of its use as it acts upon the level three of OSI and
is transparent for the roadbases. Although IPSec is
hindered by its intrinsic complexity (using IKE),
the ESP mechanism in Transport mode was
selected for this implementation as it enables the
use of a coding mechanism which is flexible with
respect to the selection of the algorithm, but also
due to its transparency compared to other platforms
which are currently available.

Implementation environment and realization: In
order to test this proposal, a two-machine architecture

J. Computer Sci., 2 (11): 815-823, 2006

 821

was selected. Both machines use a Linux OS with a
2.4.18-3 kernel. To simulate the Control Plane and
Forwarding Plane, a software platform developed by
Intel© was used. Both machines were inter-connected
via an Ethernet 100 Mb/s. Figure 6 presents this testing
architecture.
 In order to further specify the architecture, it is
necessary to note that both computers were laptops.
Machine 1 was equipped with a 733 MHz Celeron
processor and Machine 2 a 500 MHz Pentium III. In
fact, two types of tests were carried out. The first
consisted of a functional test designed to assess the
robustness and flexibility of this new architecture. The
second series consisted of a benchmark of the
architecture which was composed of three cases: Case
1, Case 2 and Case 3.

Functional tests: The purpose of the functional tests
was to ensure that this architecture would support the
stated functionalities of redundancy and survivability.
Moreover, it is necessary to check that the management
of CE addressing remains coherent from this approach.
Thus, they were split up into two cases. The first is a
study of the survivability of these concepts:

Sub-Case 1
Step 1: On Machine 2, the first Manager is launched. Then, on the
same machine, a CE is launched. This CE’s XML model indicates
that it supports redundancy and requires Quality of DiffServ Service
functionalities.
Step 2: On Machine 1, two CEs are launched. The first is the CE
which manages redundancy and requires the same functionalities as
the CE in Step 1. The second is a CE which requires IPv4
functionalities. Then, two FEs are launched in the same way. The first
provides support for DiffServ conditioning functions whereas the
second implements the IPv4 forwarder.
Step 3: A second Manager from Machine 1 is launched.
Step 4: Each FE sends a Join Request FACT message to connect
itself to its CE.
Step 5: The Ethernet connection between the two machines is
severed.

 The second sub-case is designed to verify the
platform behaviors in case an FE would not succeed in
finding the CE where the connection must return to
after the pre-association phase. In fact, it is a functional
check of Step 2 of the pre-association protocol, so, only
Machine 2 will be used to carry out the following steps:

Sub-Case 2
Step 1: A Manager is launched on Machine 2.
Step 2: The AFE implementing DiffServ presented in Step 2 Sub-
Case 1 is launched.
Step 3: An FE is forced to try to send a Join Request FACT message.
Step 4: A CE whose XML modeling requires DiffServ Quality of
Service functionalities is launched on Machine 2.

 In the first sub-case, the Manager attributes an
identifier and a port name to all CEs to launch their
TIPC server. In this sub-case, what is most important is
the notice that the Manager provides CE 1 and CE 3
with the same port name in order to ensure redundancy.

In fact, these CEs have the same CE Specifications.
Another important point in this sub-case pertains to the
moment where the connection between the two
machines is severed: notice that the new Manager
automatically starts up a new pre-association phase for
all of the PE machines. The FE 1 that was connected to
the CE 1, connects itself to the CE 3 which acts as a
backup CE for CE 1.
 Sub-case 2 shows that the event-based phase is
entirely operational. In fact, the Manager receives the
EVENT_INACTIVE message from the FE that does
not have a CE and sends a new MODEL_ACK message
when the corresponding CE becomes available.

Performance evaluation: The first case of these
benchmark series must measure the time necessary to
ensure the automatic reconnection of CEs and FEs in
case of a breakdown between Machines 1 and 2. The
second case was designed to assess the performance of
this new architecture under various TIPC
configurations. However, the most significant
component of these tests aims to measure the impact of
using IPSec to ensure the security of the architecture.
The last case aims to measure the difference in
performance between XML data encapsulation and the
binary encapsulation with language C structures[8].

Case 1: This test included the structure of the
functional test but only using the CE 1 and 3, FE 1 and
both Managers. Although the preceding test illustrated
the architecture, the required connection recovery time
must be calculated.
 First of all, communication was initiated between
CEs and FEs and with the Manager. Then, the
connection was severed just as with the functional test;
however, for this test, a timer was used to calculate the
time required to reconnect the CE 3 and FE 1 with the
Safeguard Manager and to supplement the new pre-
association phase. Then, the required time was
increased for the FE to initiate a new Join Request type
message for the CE 3 which is the safeguard CE for CE
1 and to receive the Join Response type message
indicating that the connection has been effective.
 The time required to conclude the pre-association
phase is 65 milliseconds for the CE and 54 milliseconds
for the FE. The connection recovery time for the FE
with the safeguard CE equals 54 milliseconds. These
results are illustrated in Fig. 7.
 Note that the reconnection time for the FACT
protocol is identical, whereas the time it took to
conclude the phase starting from pre-association
depends on the size of the XML documents modeled on
each element, but also on the processing capacity of the
machine on which the Manager is implemented.

Case 2: This test addresses the weight of the security
connection between CEs and FEs. To supplement this
test, once again, the functional CE 1 and FE 1 tests

J. Computer Sci., 2 (11): 815-823, 2006

 822

FE
FACT

FE
PAP

CE
PAP

0

10000

20000

30000

40000

50000

60000

70000
tim

e
(m

ic
ro

se
co

nd
)

Fig. 7: Reconnection time for PAP and FACT

protocols

were used. Then, the time required between the CE
indication and reception of a delivery acknowledgement
of the creation of a DiffServ structure used for the
functional test was measured. To do so, this experiment
was carried out 20 times, first using TIPC messages
directly encapsulated on Ethernet screens, then UDP
datagrams and finally with UDP and IPSec. The results
of these experiments appear in Table 1.

Table 1: DiffServ structure: creation time
 Average Time (ms) S.D.
TIPC over Ethernet 12 3
TIPC over UDP 970 260
TIPC over UDP & IPSec 1268 263

 The analysis of these results shows a significant
difference in the performance time between the use of
Ethernet and UDP. This difference seems to be due to a
dysfunction of the UDP adaptation layer of TIPC under
Linux, since this problem does not arise with other
operating systems. Moreover, this issue could be due to
a bad implementation of the UDP stack in the Linux
kernel 2.4.x although it should be corrected with the
2.6.x version. Regarding the UDP and UDP with IPSec
performance discrepancy, note that there is a 30%
decrease in performance. This result highlights the fact
that additional security mechanisms increase the cost.
Nevertheless, in this case, 30% is deemed acceptable.

Case 3:
 This last benchmark test was designed to assess the
impact of the selection of XML to model the data
structure necessary for the FACT protocol. Hence,
timers were used to compare the time required to send
and receive a delivery acknowledgement for 500
Configure Logic Component type messages with each
one encapsulating 50 add routes for a IPv4 routing
table. In fact, a single machine was used. On this
machine, the CE, an FE as well as a Manager were
implemented. The results presented in Table 2 show the
time required by these series of operations and presents
the data in a binary way (with the C structures
languages encapsulated directly in the messages) and in
the XML structure.
 It is clear that better ratio of add route per second
was for the binary encapsulation. Just as for the
addition of security functionalities, flexibility involves

Table 2: Add route performance with binary and XML data
presentation

 Average Time Add Route
 (µs) per Second
Binary Encapsulation 29592 92100
XML Encapsulation 216020 11605

compromising performance. Similar results were also
obtained when a similar test on the number of add route
per second in the form of XML documents was carried
out, although two machines equipped with 2 GHz
Pentium IV processors were used for this test.
However, during this test, a ratio of 42000 add routes
per second was obtained. This shows a clear correlation
between the performance of the XML parser and the
processing capabilities of the machines used.

CONCLUSION

 The research objective of this paper was to design
an evolutionary and flexible solution to separate the
Control Plane and the Forwarding Plane. Hence, at first,
a synthesis of the proposals made by the IETF was
presented. The necessary analysis conducted by the
ForCES work group yielded a focus on two significant
issues: robustness and modeling. Thus, a combination
of the combined use of the TIPC protocol as a
communication support within the network element was
proposed and XML was the language selected for data
modeling and the pre- and post-association phases. It is
significant that the analyses were conducted within a
computer cluster. The choice of XML proved to be
relevant when one considers the evolution of separation
between the Control and the Forwarding Planes. The
communication between these two planes is an essential
concern for the future of this architecture. To validate
this approach, a series of test cases were set up. These
cases were simple yet they represented the importance
of flexibility and robustness required by this separation
well. The results obtained indicate that the
functionalities of this architecture are conclusive.
Moreover, two relevant concepts could be suggested to
the ForCES working group: the first on the pre-
association phase[9] and the second on XML modeling
of FEs and CEs[10].
 The main limitation observed in this study
concerns the performance loss due to the use of the
XML language to encode the data structures of the
FACT protocol. First of all, note that the performance
of the XML parsers is strongly coupled with the
calculation capacities of the machines, but also that the
flexibility options imply a reduction of performance. In
addition, consider that in the architecture of the ForCES
working group, the framework of the responsibilities of
the CE and FE Managers are solely restricted to
propose mailing lists to PEs. In this investigation, their
responsibilities were more numerous but they were the
only logical entities to have a global vision of the
network element and could configure it in an optimal

J. Computer Sci., 2 (11): 815-823, 2006

 823

way. However, FACT connections are left to the
responsibility of the CEs which can either accept or
refuse them. This fact reveals another limitation
concerning the proposed architecture. It would be
necessary to define the Managers responsibilities in the
ForCES architecture in a more precisely to ensure
enhanced cohesion in the pre-association protocol as
well as for the remainder of the concepts.

ACKNOWLEDGEMENTS

 The authors would like to thank Jon Maloy and all
of the LMC Ericsson Research Canada staff for their
contributions to this paper.

REFERENCES

1. Spalink, T., S. Karlin, L. Peterson and Y. Gottlieb,

2001. Building a robust software-based router
using network processors. ACM SIGOPS
Operating Systems Review, Banff, Canada, 35:
216-229.

2. Khosravi, H. and T. Anderson, 2003. Requirements
for separation of IP control and forwarding, draft-
ietf-forces-requirements-10.txt.

3. Yang, L., R. Dantu, T. Anderson and R. Gopal,
2003. ForCES architectural framework, draft-ietf-
forces-framework-06.txt.

4. Yang, L., J. Halpern, R. Gopal and A. DeKok,
2003. ForCES forwarding element functional
model, draft-yang-forces-model-02.txt.

5. TIPC, http://tipc.sourceforge.net, August 2003.
6. Bray, T., J. Paoli, C.M. Sperberg-McQueen and E.

Maler, 2000. Extensible Markup Language (XML)
1.0. Second Edn. http://www.w3.org/TR/REC-
xml.

7. Kent, S. and R. Atkinson, 1998. Security
architecture for the internet protocol. RFC 2402.

8. Network Processing Forum,
http://www.npforum.org, August 2003

9. Nait, R.T., 2003. ForCES pre association phase
protocol (PAP). draft-nait-forces-pap-00.txt.

10. Nait, R.T., 2003. ForCES XML based model for
control and forward element separation. draft-nait-
forces-xml-model-00.txt.

