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Abstract: Ever since the Internet appeared, network elements, such as routers, have been enhanced 
with much functionality. They tend to increasingly integrate more services, such as support and 
security mechanisms, which ensure Quality of Service. Similarly, processor performance continues to 
increase rapidly. Thus, these two types of evolution trigger the concept of separating the Control plane 
and the Forwarding plane in network elements.This study addresses the separation of the control plane 
and the forwarding plane in Next-Generation Routers. XML syntax is used to model, on the one hand, 
the suitable elements of the control plane and the forwarding plane. Implementation and prototyping 
results indicate that this syntax type for modeling provides a flexible platform, which is truly able to 
manage the heterogeneity of the material implementing the Forwarding Plane. 
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INTRODUCTION 

 
 Ever since the emergence of the Internet, network 
elements such as routers have been enhanced with 
many functionalities. They tend to increasingly 
integrate more services, such as support and security 
mechanisms to ensure Quality of Service. Similarly, 
processor performance continues to increase rapidly. 
Thus, these two types of evolution brought about the 
concept of separating the Control plane and the 
Forwarding plane in network elements. Moreover, the 
development of the new Network Processor technology 
which is able to treat packets while maintaining high 
performance levels and remaining programmable 
provides further support for this separation. However, 
this new networking area requires the development of a 
completely new architecture. Several organizations, 
such as the IETF, have shown an interest in this 
separation and a number of people are working to 
define the requirements and specifications of these 
incipient concepts.  
 This article presents a scalable and 
heterogeneously compliant solution to ensure the 
configuration management of elements within a 
network. This introduction presents the concepts related 
to network processor technology, the architecture 
proposed by ForCES, the IETF working group, 
Forwarding and Control Element Separation and some 
related technologies which offer potential solutions to 
manage the problem. 
 
Network processor technology: The concept of 
separating the Control Plane and the Forwarding Plane 
could seem abstract and far from the routers’ reality. 

However, the evolution of routers offers concrete 
support for the separation. The two most represented 
router hardware architectures are, on the one hand, the 
software router based on a general purpose processor 
and on the other hand, the router based on ASIC 
processor (Application-Specific Integrated Circuit). 
Although, the first architecture provides a highly 
programmable structure, its performance remains 
inadequate. In fact, it is based on general purpose 
processors which are inadequate for network 
operations. Although the ASIC-based architecture 
provides a high level of performance when 
implementing network specific functionalities, its 
architecture remains expensive and minimally 
programmable. 
 The network processor architecture[1] has evolved 
from the aforementioned architectures. It is a 
compromise between the ASIC based and general 
purpose processor based architectures. In fact, a 
processor network is used to handle packets at wire 
speeds, while implementing a set of functions of 
Quality of Service, encryption, etc. The main attraction 
to this kind of processor comes from the 
implementation of these functions. Indeed, the 
processor network implements only part of the protocol 
stacks used in the node; only those which require direct 
data access and leave the more complex management to 
a standard processor. This type of processor has a 
material architecture characterized by: 
* several processors, thus allowing the possibility of 

parallel processing;  
* material entities specialized for network 

operations; 
* fast memory access; 
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* fast peripheral network access; 
* general purpose processor access.  
 Since this technology is rather recent (the first 
marketed network processors became available in 
1999), the lack of standards raises management and 
cohabitation problems for various types of network 
processors. More precisely, the need for flexibility in 
the evolution of the Control Plane and Forwarding 
Plane requires the creation of a true interface between 
these two planes which is powerful and able to manage 
the heterogeneity of the material implementing the 
Forwarding Plane.  
  
ForCES Architecture: The ForCES working group 
proposes specific requirements which define a new 
scalable architecture in order to enhance the separation 
of the Control and the Forwarding Planes. It introduces 
logical entities presented in the draft IETF forces 
requirements[2] as: 
* Forwarding Element (FE): A logical entity that 

implements the ForCES protocol. FEs use the 
underlying hardware to provide per-packet 
processing and handling as directed/controlled by a 
CE via the ForCES protocol. 

* Control Element (CE): A logical entity that 
implements the ForCES protocol and uses it to 
instruct one or more FEs how to process packets. 
CEs handle functionality such as the execution of 
control and signaling protocols. 

* Pre-Association Phase: The period when the 
management entities determine which FE and CE 
should be separated from the same network 
element. 

* Post-Association Phase: The period when a CE 
knows how to control an FE and vice versa, 
including the CE-FE connection time. 

* FE Manager: A logical entity that operates during 
the pre-association phase and is responsible for 
determining with which CE(s) an FE should 
communicate. An FE manager may use anything 
from static configuration to a pre-association phase 
protocol (see below) to determine which CE(s) to 
use. However this is currently out the ForCES 
working group’s scope. 

* CE Manager: A logical entity that operates during 
the pre-association phase and is responsible for 
determining with which FE(s) a CE should 
communicate.  

 Moreover, the Protocol Element (PE) term is 
relative to a CE or an FE. Figure 1 illustrates this 
architecture employing two CEs and two FEs. 
 
Reliability and configuration problems: The main 
purpose of this study focuses on two elements. The first 
one concerns the reliability of the ForCES architecture. 
The second one deals with the configuration problem 
during the pre-association phase. This section addresses 
the first issue.  

CE 1 CE 2

Control Plane

FE 1 FE 2

Forwarding  Plane

CE
Manager

FE
Manager

Network
 

Fig. 1: Network element architecture example 
 
 According to the ForCES working group, the 
architecture reliability requirements are[3]:  
* Scalability: The architecture must be able to 

support hundreds, at least, of FEs and tens of 
thousands of ports. 

* Dynamical Association: The architecture must 
allow CEs and FEs to join and leave network 
elements dynamically. 

* CE Redundancy: The architecture must support 
mechanisms for CE redundancy and CE failovers, 
including abilities to detect any loss of association.  

 Given these requirements, it becomes necessary to 
design a solution equipped with an underlying protocol 
to ensure reliable communication. 
 As for the second problem, notice that the ForCES 
architecture must provide a high compliance between 
CEs and FEs. In fact, they introduce the concept of the 
FE Model[4] that defines the inside behavior of an FE. 
This model is subdivided into two elements. The first 
one is the Capability Model that represents the packet 
manipulation as logical blocks. The second one, named 
the State Model, defines the FE’s current configuration. 
 
Separation related technologies: This section presents 
two technologies used to solve the problem: the 
Telecom Inter Process Communication protocol 
(TIPC)[5] and the eXtensible Markup Language 
(XML)[6]. 
 TIPC is a message oriented communication service 
specially designed for cluster environments. It provides 
complete location transparency for intra-cluster 
messaging, using the concept of logical addressing with 
an internal address translation table. It is particularly 
suitable for systems where short, real-time critical 
transactions are performed. TIPC maintains a Quality of 
Service level which guarantees that messages cannot be 
lost or duplicated and that the message queue cannot be 
disturbed. 
 TIPC has the particularity of being easily portable. 
In fact, it defines its links to the network under a 
generic form called bearers that could be Ethernet, 
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ATM, InfiniBand amongst others. Moreover, bearers 
can be supported simultaneously and in multiple 
instances. This heterogeneous multi-homing property is 
further improved by employing a mechanism for 
transparent and disturbance-free link changeovers in 
case of bearer failure. 
 TIPC introduces the concept of having a port name 
to support logical addressing. The port name, an 
address composed of two 32-bit integers, is the 
permanent address used to establish a TIPC 
communication. The first integer, called ‘type’, 
identifies the type of service provided by a server and 
the second one, called ‘instance’, allows users to 
determine different instances of the same ‘type’. This 
architecture provides a mechanism to partition the 
server’s services by introducing the concept of a port 
name sequence that contains a ‘type’, both a lower and 
an upper instance. Figure 2 illustrates such address 
types. In fact, there are three TIPC servers: A, A’ and 
B. For example, Server A publishes the port name 
sequence that indicates that it manages all of the clients 
who want to connect with ‘type’ 32456 and all 
instances between 0 and 99. In this case, Servers A and 
B partition the type of service represented by ‘type’ 
32436. Moreover, Server A’ publishes the same port 
name sequence as Server A. If the client connected to 
Server A detects a connection failure, it could try to 
reconnect directly using the same port name and in this 
case, it would be oriented to Server A’. This example 
illustrates the concept of logical addressing that is 
similar to CORBA mechanisms, although this type of 
mechanism is less flexible than the TIPC interface. In 
fact, TIPC uses a programming interface based on BSD 
sockets. 

Client

sendto ( type = 32456
instance = 33 )

Server A'

bind ( type = 32456
lower = 0

upper = 99)

Server B

bind ( type = 32456
lower = 100
upper = 199)

Server A

bind ( type = 32456
lower = 0

upper = 99)

 
Fig. 2 : TIPC Client / Server Communication / 

Distributions 
 
 Before formalizing this model for CEs and FEs, 
consider the eXtensible Markup Language. XML is a 
markup language based on the Standard Generalized 
Markup Language (SGML) proposed by the World 
Wide Web Consortium (W3C) in 1996. The main 
purpose of XML is to dissociate documented data from 
its presentation. The markups of XML are extensible 
and one’s own markup must be defined for each XML 

document followed by an XML Schema or a Document 
Type Definition (DTD). To convert an XML document 
into a particular format, it must be parsed. There are 
two types of XML parsers. The first is one is based on 
treeing (based on the DOM API): it parses the 
document and creates a representative data structure. 
The second one is based on event mechanisms: it parses 
the document and launches specific callback functions 
for each markup. This type of parser uses the Simple 
API for XML (SAX). 
 
Reliability problem: Upon reading the aforementioned 
ForCEs architectural requirements notice that 
robustness issues are closely related to the management 
of the redundancy of CEs and the dynamic management 
of PEs. As indicated in the introduction, the network 
processor technology could concretize the separation of 
the Control and the Forwarding Planes. In fact, FEs are 
logical representations of the functionalities of these 
processors. However, routers based on this technology 
are, in fact, traditional computers connected by a 
Backplane or local area network. This aspect enables 
users to place themselves within the framework of a 
computer cluster for the interconnection between CEs 
and FEs. By adopting this assumption, the correlation 
between the robustness requirements of ForCES 
architecture and the use of TIPC as the communication 
protocol becomes salient. The support of various 
communication technologies (UDP, ATM, Ethernet, 
etc.) and especially the logical addressing within a 
cluster makes the TIPC protocol an interesting solution 
when designing a robust architecture. Hence, this 
communication protocol will be used for the remainder 
of this article. This decision triggers a modification to 
certain aspects of the FACT protocol.  
 From a conceptual point of view, TIPC was used as 
protocol subjacent to the FACT protocol. Thus, each 
CE behaves as a TIPC server whose addressing 
(actually a port name) is inscribed on the entire cluster 
and each FE behaves symmetrically as a client. Using 
port names for addressing significantly simplifies the 
management of redundancy from the FE point of view. 
Each CE is associated with a given ‘type’ within the 
meaning of a port name, as well as a lower limit and 
higher threshold which are fixed for all of the port 
names published within the cluster. This choice is 
justified by the resulting addressing transparency.  
 Take, for example, a CE with a port name whose 
type is 17777. An FE becomes active and establishes a 
TIPC connection with this type. Then, the same 
operation is performed with another CE with the same 
port name. If an unspecified breakdown occurs during 
the first CE, the FE will be notified of the connection 
loss/failure by means of the TIPC protocol (when using 
TIPC with Ethernet for example, failures are detected 
within 1.5 seconds) and it will be able to attempt to 
reconnect itself with the same type 17777 as before. In 
this case, it will be detected automatically when it 
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communicates with the second CE. The use of TIPC as 
medium allows for the simpliication of a real 
architecture due to the redundancy management and the 
connection failure detection finds itself subjacent to the 
ForCES architecture. Moreover TIPC is a robust 
protocol, widely used over the past ten years. Although 
the FACT protocol ensures an explicit management of 
communication breakdowns through the use of timers, 
this type of mechanism is no longer necessary, as 
shown in the previous example, when TIPC is used. As 
FACT Heartbeat-type messages are no longer 
necessary, they will not be implemented. 
 The above example shows the contribution of TIPC 
with respect to the FACT protocol and the post-
association phase. From the perspective of improving 
architecture robustness, it was decided to use TIPC for 
the pre-association phase. This choice was justified in 
two ways: the addressing event by the Managers and 
the configuration of the PE addresses. To manage the 
addressing of the Managers, the CE Managers and FE 
Managers are assigned two generic addresses known by 
all PEs. This enables PEs to become active with the 
ability to directly connect themselves to their respective 
Managers. In fact, the Managers will simply be the 
TIPC server and all of the PEs of the clients in order to 
simplify the pre-association phase and configuration. 
Moreover, this choice leads us to use the same 
redundancy process seen for CEs for the Managers in 
order to ensure the robustness of the pre-association 
phase. To illustrate this perspective, one can imagine 
that the first CE Manager becomes active and thus 
publishes the generic port name of the CE Managers. 
Then, a second CE Manager supplements the same step. 
The first will be responsible for managing all PE pre-
associations. However, if the first one experiences a 
breakdown, the second to publish the same port name 
will already be able to ensure the role of managing all 
PE connections in a transparent and automatic way.  
 Although TIPC simplifies addressing, there 
remains an interrogation about the configuration of CE-
FE pairings of the FACT protocol. As indicated by the 
ForCES working group, the configurations should be 
manual before a PE becomes active. Moreover, a 
network element must be able to manage hundreds of 
FEs and their configurations would thus quickly 
become problematic. However, TIPC offers a solution 
to the network element configuration problems. Indeed, 
the CE Managers will be assigned a new responsibility: 
the assignment of port names to all CEs. During the 
pre-association phase, the CE Managers will thus have 
to provide a port name for each new CE to ensure 
maximal coherence of  the post-association phase.  
 
Modeling and pre-association phase: Treating the 
modeling problem of the pre-association phase requires 
an explicit study of the requirements of this phase. To 
do so, it is necessary to first reconsider the function of 
the pre-association phase: pairing the CEs and FEs. 

Indeed, the CE-FE comparison requires that these 
Managers know their functional structures. This section 
addresses the formalization of the CE-CE Manager and 
the FE-FE Manager and interaction by means of a 
representation in XML of the characteristics of each 
one. Let’s examine the chronological evolution of the 
interaction between a CE and a CE Manager. This is a 
four-step process:  
1. First, the CE signals its existence to the CE 

Manager. The CE Manager authenticates the CE 
and processes its request.  

2. The CE Manager provides the CE with an 
identifier, called the CE-Id. Indeed, its attribution 
is not explicitly defined within the architectural 
framework suggested by the ForCES group.  

3. The CE specifies its needs and restrictions 
(processing capacity, for example) to determine 
whether these services are available from FEs 
associated with the network elements and then 
receives the downstream from the CE Manager. 
However, the representation of its needs is 
particularly problematic. To solve this problem, 
IETF forces’ requirements were further analyzed[2]. 
The types of switching functions implemented 
within an FE seem to indicate a simple declaration 
of the needs of CEs in this same format. Thus, it is 
assumed that a DTD can fulfill the needs (however, 
it is the CE which decides whether to work with 
the proposed FE or to violate the post-association 
phase mechanisms). However, it has its limitations 
such as the number of FEs each CE can manage. 
This model is called CE Specification. 

 Each DTD includes six major types of functional 
needs that can be expressed by the EC: (1) the port type 
that must be present, for example, an Ethernet interface; 
(2) the type of routing network, which can be an IP 
version 4 or 6; (3) the type of Quality of Service if the 
CE works within an IntServ or DiffServ architecture; 
(4) the type of encapsulation; (5) the type of security (in 
an access router, IPSec functions are necessary) and 
finally; (6) the type of functionalities provided by the 
manufacturers (only if FEs recognize them). To 
illustrate this approach, consider the example below 
which formalizes the needs of a CE in this XML 
document:  

 
<CESpecification> 
  <maxFE>3</maxFE> 
  <EncapType>XML</ EncapType >  
  <FailOver>Enable</ FailOver >  
  <FunctionList size="2"> 
   <Function> 
    <Port> 
     <PortNb>2</PortNb>  
     <PortTypeList size="1"> 
      <PortType>Ethernet</PortType> 
     </PortTypeList> 
    </Port> 
   </Function> 
   <Function> 
    <QoS> 
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     <QoSTypeList size="1"> 
      <QoSType>DiffServ</QoSType>  
     </QoSTypeList> 
    </QoS> 
   </Function> 
  </FunctionList> 
 </CESpecification> 
 
 Note that this CE can only treat three FEs 
simultaneously, that it requires two Ethernet interfaces 
and that in addition, it uses DiffServ architecture for the 
border of a field. That makes it possible for the CE 
Manager to connect it to two FEs which can fulfill these 
requirements.  
4. After this step, an event-based phase can be 

initiated. Indeed, once the three previous steps are 
supplemented, the CE Manager must know in 
which of three states the CE happens to be (i.e. 
active, inactive or standby state). Such information 
is thus exchanged transmitted via event messages 
to update the CE Manager. Two cases can be 
considered. The first corresponds simply to an 
inactivation of the CE for an unspecified reason 
during a normal operation. In this case, sending an 
asynchronous message suffices to ensure the 
follow-up with the CE Manager. The second case 
refers to a breakdown of the CE or a connection 
failure. The management of this kind of event can 
pass naturally through the use of periodic messages 
at a defined frequency. Given the specifications 
indicated in the section addressing the robustness 
of the ForCES protocol, this paper proposes the use 
of the TIPC protocol to detect this kind of event. 
This decomposition of the potential behavior of 
CE-CE Manager relations will be the base used 
while continuing to model the pre-association 
phase.  

 The same approach will be used for the interactions 
between FEs and the FE Manager. However, the 
modeling problem is different. In fact, the FE must 
provide its capacity to its FE Manager. In this case, an 
XML   presentation   of   the  FE   Model   proposed by 
the   ForCES   working  group  will  be  used. The 
capacity   is   represented by a list of Logical Block 
(LB) markups and the State Model by a list of markup 
Links: 
 
<FEModel> 
 <CapabilityModel> 
  <LBList size="9" > 
   <LB>…</LB> 
  </LBList> 
 </CapabilityModel> 
 <StateModel> 
  <LinkList size="9"> 
   <Link>…</Link> 
 </LinkList> 
 </StateModel> 
</FEModel> 
 
 A handle and a type of functions are associated 
with each logical block. In this example, a DiffServ 
Meter: 

<LB> 
 <Handle>4</Handle>  
 <Type> 
  <DS_Meter> 
   <MeterType> 
    <Dir>In</Dir>  
    <MeterCap>simpleTB</MeterCap>  
    <HandleFail>5</HandleFail>  
   </MeterType> 
  </DS_Meter> 
 </Type> 
 </LB> 
 
 The Link markup indicates the handles of a logical 
block that are directly connected: 
 
 <Link> 
  <DownLBHandle>3</DownLBHandle>  
  <UpLBHandle>8</UpLBHandle>  
 </Link> 
 

 CE CE Manager

MODEL 

MODEL_ACK 

EVENT_INACTIVE_ACK 

MODEL_ACK 

EVENT_LEAVE_ACK 

EVENT_LEAVE 

INIT_ACC 

INIT_REJ 

INIT_CE 

EVENT_INACT IVE 

P
H
A
S 
E 
 
1 

P
H
A
SE

 
2 

P
H
A
SE

 
3 

 
Fig. 3 : CE-CE Manager interactions 
 
 Figure 3 summarizes this new proposition. Of 
course, the same schema is obtained for the FE-FE 
Manager. 
 As for the interactions between the CE Manager 
and the FE Manager, a symmetric model whose event-
based phase is composed of messages that contain the 
list of PE models is proposed. In fact, if an FE becomes 
inactive, the FE Manager has to send an updated list of 
FEs (and FE Models) to the CE Manager. This scenario 
is depicted in Fig. 4. 
 These diagrams illustrate the newly proposed 
protocol which is based on the header represented in 
Fig. 5. 
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Fig. 4: CE Manager - FE Manager interactions 
 

Version MsgType Length

5
bits

11
bits

16
bits

Identifier F OffSet

 
Fig. 5: PAP header 
 
 The pre-association protocol (PAP) header contains 
the type of message such as ‘INIT_CE’ in Fig. 3 and a 
fragmentation mechanism such as IPv4. 
 

RESULTS 
 
Proposed adaptation for implementation: The main 
purpose of this new proposal is to develop an 
interoperable and reliable architecture. For validation 
purposes, a simple prototype was used to represent the 
separation between the Control Plane and the 
Forwarding Plane. Hence, the architecture was 
modified in four ways to simplify the experiment: 
* Structural Adaptation: The dichotomy between the 

CE Manager and the FE Manager corresponds to 
the finest granularity in the management of the 
PEs. However, in this implementation, it was 
decided to merge these entities. 

* Modeling Adaptation: Only the Capability section 
of the FE Model was used to encapsulate the 
MODEL messages of the pre-association phase 
protocol. In fact, the state model is more specific 
than the post-association phase. 

Manager
BackUp

CE 2 CE 3
BackUp

Control
Plane

FE 1 FE 2

Forwarding
Plane

Manager

CE 1

Control
Plane

Machine 1

Machine 2

Ethernet
Link

100 Mbs

 
Fig. 6: Testing architecture 
 
* Medium Adaptation: TIPC was selected as the 

communication medium for the entire architecture. 
Hence, each CE is a TIPC server thread and each 
FE is a TIPC client. The Manager entity is 
responsible for distributing the CE address inside 
the network element. Moreover, redundancy 
support was provided by giving the same address 
to two TIPC servers, so the Manager attributes an 
address to a CE in a judicious way in order to 
manage redundancy in the network element. 

* Security Adaptation: To reach the objectives of this 
implementation, efforts were made to show the 
validity of these concepts. However, it is assumed 
that this work is conducted in a secure computer 
cluster and security problems are considered to be 
somewhat elusive. In this implementation however, 
in order to show that additional security 
mechanisms can easily be implemented, if, for 
example, the computer cluster becomes broader 
and requires more than one hop between machines. 
IPSec[7] technology was thus selected for the ease 
of its use as it acts upon the level three of OSI and 
is transparent for the roadbases. Although IPSec is 
hindered by its intrinsic complexity (using IKE), 
the ESP mechanism in Transport mode was 
selected for this implementation as it enables the 
use of a coding mechanism which is flexible with 
respect to the selection of the algorithm, but also 
due to its transparency compared to other platforms 
which are currently available. 

 
Implementation environment and realization: In 
order to test this proposal, a two-machine architecture 
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was selected. Both machines use a Linux OS with a 
2.4.18-3 kernel. To simulate the Control Plane and 
Forwarding Plane, a software platform developed by 
Intel© was used. Both machines were inter-connected 
via an Ethernet 100 Mb/s. Figure 6 presents this testing 
architecture. 
 In order to further specify the architecture, it is 
necessary to note that both computers were laptops. 
Machine 1 was equipped with a 733 MHz Celeron 
processor and Machine 2 a 500 MHz Pentium III. In 
fact, two types of tests were carried out. The first 
consisted of a functional test designed to assess the 
robustness and flexibility of this new architecture. The 
second series consisted of a benchmark of the 
architecture which was composed of three cases: Case 
1, Case 2 and Case 3. 
 
Functional tests: The purpose of the functional tests 
was to ensure that this architecture would support the 
stated functionalities of redundancy and survivability. 
Moreover, it is necessary to check that the management 
of CE addressing remains coherent from this approach. 
Thus, they were split up into two cases. The first is a 
study of the survivability of these concepts:  
 
Sub-Case 1 
Step 1: On Machine 2, the first Manager is launched. Then, on the 
same machine, a CE is launched. This CE’s XML model indicates 
that it supports redundancy and requires Quality of DiffServ Service 
functionalities.  
Step 2: On Machine 1, two CEs are launched. The first is the CE 
which manages redundancy and requires the same functionalities as 
the CE in Step 1. The second is a CE which requires IPv4 
functionalities. Then, two FEs are launched in the same way. The first 
provides support for DiffServ conditioning functions whereas the 
second implements the IPv4 forwarder.  
Step 3: A second Manager from Machine 1 is launched. 
Step 4: Each FE sends a  Join Request FACT message to connect 
itself to its CE.  
Step 5: The Ethernet connection between the two machines is 
severed. 

 
 The second sub-case is designed to verify the 
platform behaviors in case an FE would not succeed in 
finding the CE where the connection must return to 
after the pre-association phase. In fact, it is a functional 
check of Step 2 of the pre-association protocol, so, only 
Machine 2 will be used to carry out the following steps:  
 
Sub-Case 2 
Step 1: A Manager is launched on Machine 2.   
Step 2: The AFE implementing DiffServ presented in Step 2 Sub-
Case 1 is launched.  
Step 3: An FE is forced to try to send a Join Request FACT message.  
Step 4: A CE whose XML modeling requires DiffServ Quality of 
Service functionalities  is launched on Machine 2.  

 
 In the first sub-case, the Manager attributes an 
identifier and a port name to all CEs to launch their 
TIPC server. In this sub-case, what is most important is 
the notice that the Manager provides CE 1 and CE 3 
with the same port name in order to ensure redundancy.  

In fact, these CEs have the same CE Specifications. 
Another important point in this sub-case pertains to the 
moment where the connection between the two 
machines is severed: notice that the new Manager 
automatically starts up a new pre-association phase for 
all of the PE machines. The FE 1 that was connected to 
the CE 1, connects itself to the CE 3 which acts as a 
backup CE for CE 1. 
 Sub-case 2 shows that the event-based phase is 
entirely operational. In fact, the Manager receives the 
EVENT_INACTIVE message from the FE that does 
not have a CE and sends a new MODEL_ACK message 
when the corresponding CE becomes available. 
 
Performance evaluation: The first case of these 
benchmark series must measure the time necessary to 
ensure the automatic reconnection of CEs and FEs in 
case of a breakdown between Machines 1 and 2. The 
second case was designed to assess the performance of 
this new architecture under various TIPC 
configurations. However, the most significant 
component of these tests aims to measure the impact of 
using IPSec to ensure the security of the architecture. 
The last case aims to measure the difference in 
performance between XML data encapsulation and the 
binary encapsulation with language C structures[8].  
 
Case 1:  This test included the structure of the 
functional test but only using the CE 1 and 3, FE 1 and 
both Managers. Although the preceding test illustrated 
the architecture, the required connection recovery time 
must be calculated.  
 First of all, communication was initiated between 
CEs and FEs and with the Manager. Then, the 
connection was severed just as with the functional test; 
however, for this test, a timer was used to calculate the 
time required to reconnect the CE 3 and FE 1 with the 
Safeguard Manager and to supplement the new pre-
association phase. Then, the required time was 
increased for the FE to initiate a new Join Request type 
message for the CE 3 which is the safeguard CE for CE 
1 and to receive the Join Response type message 
indicating that the connection has been effective.  
 The time required to conclude the pre-association 
phase is 65 milliseconds for the CE and 54 milliseconds 
for the FE. The connection recovery time for the FE 
with the safeguard CE equals 54 milliseconds. These 
results are illustrated in Fig. 7.  
 Note that the reconnection time for the FACT 
protocol is identical, whereas the time it took to 
conclude the phase starting from pre-association 
depends on the size of the XML documents modeled on 
each element, but also on the processing capacity of the 
machine on which the Manager is implemented. 
 
Case 2: This test addresses the weight of the security 
connection between CEs and FEs. To supplement this 
test, once again, the functional CE 1 and FE 1 tests  
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Fig. 7: Reconnection time for PAP and FACT 

protocols 
 
were used. Then, the time required between the CE 
indication and reception of a delivery acknowledgement 
of the creation of a DiffServ structure used for the 
functional test was measured. To do so, this experiment 
was carried out 20 times, first using TIPC messages 
directly encapsulated on Ethernet screens, then UDP 
datagrams and finally with UDP and IPSec. The results 
of these experiments appear in Table 1. 
 
Table 1: DiffServ structure: creation time 
 Average Time (ms) S.D. 
TIPC over Ethernet 12 3 
TIPC over UDP 970 260 
TIPC over UDP &  IPSec 1268 263 

 
 The analysis of these results shows a significant 
difference in the performance time between the use of 
Ethernet and UDP. This difference seems to be due to a 
dysfunction of the UDP adaptation layer of TIPC under 
Linux, since this problem does not arise with other 
operating systems. Moreover, this issue could be due to 
a bad implementation of the UDP stack in the Linux 
kernel 2.4.x although it should be corrected with the 
2.6.x version. Regarding the UDP and UDP with IPSec 
performance discrepancy, note that there is a 30% 
decrease in performance. This result highlights the fact 
that additional security mechanisms increase the cost. 
Nevertheless, in this case, 30% is deemed acceptable. 
 
Case 3: 
 This last benchmark test was designed to assess the 
impact of the selection of XML to model the data 
structure necessary for the FACT protocol. Hence, 
timers were used to compare the time required to send 
and receive a delivery acknowledgement for 500 
Configure Logic Component type messages with each 
one encapsulating 50 add routes for a IPv4 routing 
table. In fact, a single machine was used. On this 
machine, the CE, an FE as well as a Manager were 
implemented. The results presented in Table 2 show the 
time required by these series of operations and presents 
the data in a binary way (with the C structures 
languages encapsulated directly in the messages) and in 
the XML structure. 
 It is clear that better ratio of add route per second 
was for the binary encapsulation. Just as for the 
addition of security functionalities, flexibility involves  

Table 2: Add route performance with binary and XML data 
presentation 

 Average Time Add Route  
 (µs) per Second 
Binary Encapsulation 29592 92100 
XML Encapsulation 216020 11605 
 
compromising performance. Similar results were also 
obtained when a similar test on the number of add route 
per second in the form of XML documents was carried 
out, although two machines equipped with 2 GHz 
Pentium IV processors were used for this test. 
However, during this test, a ratio of 42000 add routes 
per second was obtained. This shows a clear correlation 
between the performance of the XML parser and the 
processing capabilities of the machines used.  
 

CONCLUSION 
 
 The research objective of this paper was to design 
an evolutionary and flexible solution to separate the 
Control Plane and the Forwarding Plane. Hence, at first, 
a synthesis of the proposals made by the IETF was 
presented. The necessary analysis conducted by the 
ForCES work group yielded a focus on two significant 
issues: robustness and modeling. Thus, a combination 
of the combined use of the TIPC protocol as a 
communication support within the network element was 
proposed and XML was the language selected for data 
modeling and the pre- and post-association phases. It is 
significant that the analyses were conducted within a 
computer cluster. The choice of XML proved to be 
relevant when one considers the evolution of separation 
between the Control and the Forwarding Planes. The 
communication between these two planes is an essential 
concern for the future of this architecture. To validate 
this approach, a series of test cases were set up. These 
cases were simple yet they represented the importance 
of flexibility and robustness required by this separation 
well. The results obtained indicate that the 
functionalities of this architecture are conclusive. 
Moreover, two relevant concepts could be suggested to 
the ForCES working group: the first on the pre-
association phase[9] and the second on XML modeling 
of FEs and CEs[10].  
 The main limitation observed in this study 
concerns the performance loss due to the use of the 
XML language to encode the data structures of the 
FACT protocol. First of all, note that the performance 
of the XML parsers is strongly coupled with the 
calculation capacities of the machines, but also that the 
flexibility options imply a reduction of performance. In 
addition, consider that in the architecture of the ForCES 
working group, the framework of the responsibilities of 
the CE and FE Managers are solely restricted to 
propose mailing lists to PEs. In this investigation, their 
responsibilities were more numerous but they were the 
only logical entities to have a global vision of the 
network element and could configure it in an optimal 
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way. However, FACT connections are left to the 
responsibility of the CEs which can either accept or 
refuse them. This fact reveals another limitation 
concerning the proposed architecture. It would be 
necessary to define the Managers responsibilities in the 
ForCES architecture in a more precisely to ensure 
enhanced cohesion in the pre-association protocol as 
well as for the remainder of the concepts.  
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