
Journal of Computer Science 2 (8): 665-671, 2006
ISSN 1549-3636
© Science Publications 2006

Corresponding Author: Saleh, Oqeili, PhD, Al-Balqa Applied University, Jordan
665

Mathematical Attacks on RSA Cryptosystem

1Imad Khaled Salah, 2Abdullah Darwish and 3Saleh Oqeili

1University of Jordan, Jordan
2Royal Scientific Society, Jordan

3Amman Arab University for Graduate Studies, (sabbatical leave from Al Balqa Applied University),
Jordan

Abstract: In this paper some of the most common attacks against Rivest, Shamir, and Adleman (RSA)
cryptosystem are presented. We describe the integer factoring attacks, attacks on the underlying
mathematical function, as well as attacks that exploit details in implementations of the algorithm.
Algorithms for each type of attacks are developed and analyzed by their complexity, memory
requirements and area of usage.

Key words: RSA, cryptography, cryptanalysis, attack, factorization, low-exponent, one-way function

INTRODUCTION

 While cryptography is the science concerned with
the design of ciphers, cryptanalysis is the related study
of breaking ciphers. We begin by describing a
simplified version of RSA encryption. Let N = p*q be
the product of two large primes of the same size. Let e,
d be two integers satisfying e*d�1 mod Ø(N) where
Ø(N) = (p-1)*(q-1) is the Euler’s totient function of N.
We call N the RSA modulus, e the encryption
exponent, and d the decryption exponent. The pair (N,e)
is the public key which is used to encrypt messages.
The pair (N,d) is called the private key and is known
only to the recipient of encrypted messages.
 A message is an integer M, to encrypt M, one
computes C = Me mod N. To decrypt the ciphertext C,
the legitimate receiver computes Cd mod N.
 In an encryption scheme, the main objective of the
attacker is to recover the plaintext m from the related
cipher text. If he/she is successful, we say he/she has
broken the system. In the case of digital signature, the
goal of the attacker is to forge signatures. A more
ambitious attack is to recover the private key d. If
achieved, the attacker can now decrypt all cipher texts
and forge signatures at will. In this case the only
solution is to revocation of the key.
 This research gives a brief description of the main
attacks against RSA cryptosystem. Some of integer
factoring attacks, attacks on the underlying
mathematical function and attacks which exploit
implementation are presented. This study superiors
from others by writing simple algorithms and analysis
for each attack. Some of these attacks apply only to the
encryption scheme, some result in the private key
recovery[1-3].

Integer Factoring Attacks: The problem of integer
factorization is one of the oldest in number theory and

the adverts of computers have simulated considerable
progress in recent years. However, the security of many
cryptographic techniques depends upon the
intractability of the Integer Factorization Problem
(IFP). The security of RSA cryptosystem is initially
related to the IFP. If an adversary can factor the public
modulus, N into its two prime factors, p and q, he can
efficiently calculate the private exponent.
 Factoring algorithms comes in two parts: special
purpose and general purpose algorithms. The efficiency
of special purpose depends on the unknown factors,
whereas the efficiency of the latter depends on the
number to be factored. Special purpose algorithms are
best for factoring numbers with small factors, but the
numbers used for the modulus in the RSA do not have
any small factors. Therefore, general purpose factoring
algorithms are the more important ones in the context
of cryptographic systems and their security. Table 1
summarizes the running time for integer factoring
algorithms. The first four rows are special purpose
algorithm, and last rows are general purpose
algorithms.
 The notation o(1) denotes a function of N that
approaches 0 as n →�, p denotes the smallest prime
factor of N, and Euler’s constant e=2.718.

Table 1: Factoring algorithms running time

Pollard’s Rho algorithm O(p)

Pollard’s p-1 algorithm O(p~) where p~

is the largest prime factor of p-1.
Pollard’s p+1 algorithm O(p~) where p~

is the largest prime factor of p+1.
Elliptic Curve method (ECM) O(e(1+o(1)) (2ln p

lnln p)1/2)
Quadratic Sieve (Q.S.) O(e(1+o(1)) (ln N ln

ln N)1/2)
Number Filed Sieve (NFS) O(e(1.92+o(1))(ln

N)1/3(ln ln N)2/3)

J. Computer Sci. 2 (8): 665-671, 2006

 666

Wiener’s Attack: To reduce the work load of the
exponentiation, one may wish to use a small value of
private key rather than a random value[4]. Since modular
exponentiation takes time linear in log (private key), a
small private key can improve performance by at least a
factor of 10 (for 1024 bits modulus). For instance, if a
smart card is used to sign messages, it will have to
compute exponentiations Cd mod N, where C is a cipher
text, d is private key and N is RSA modulus. If the card
has limited computing power, a relatively small value
of d would be handy.
In this section, we present an attack, due to Wiener [4],
that succeeds in computing the secret decryption
exponent under certain conditions.

Theorem 1: Let N=p*q with q < p< 2*q, let d <
1/3*N0.25. Given public key (N,e) with e*d�1 mod
Ø(N). Attacker can efficiently recover d.

Proof: The proof is using continued fractions
technique. Since d is calculated in equation e*d�1 mod
Ø(N), it follows that there is an integer k such that e*d-
k*Ø(N)=1. Therefore, we have that:

Ø(N)*
1

Ø(N) dd
ke =− .

Since N=p*q>q2, we have that q< N , hence:

0<N-Ø(N)=p+q-1<2*q+q-1<3* N . Now, we see that

Nd
Nkde

d
k

N
e

*
** −=− =

Nd

k
Nd

Nk
Nd

Nk

*

*3
*
**3

*
)Ø(N)(*1 <<−+

.

Since k<d, we have that 3*k<3*d<N0.25, and hence

25.0*

1

Ndd
k

N
e <− .

Finally, since 3*d<N0.25, we have that

2*3

1

dd
k

N
e <−

 As note from mathematical proof there are at most
log N fractions

d
k with d < N approximately

N
e so

tightly, and they can be obtained by computing the log
N convergents of the continued fraction expansion of

N
e .

Algorithm: (Wiener’s attack).
Input:a public key (N,e),a continued fractions of
N/e:[q1,q2,…,qm].
Output:a non-trivial factors p and q of N.

Algorithm:
Set c0=1, c1=1, d0=0, d1=1, i=1;

while i<=m do

Calculate z=(ci*e-1)/di ;
If z is an integer then
Let p and q be the roots of the equation: x2-(N-
z+1)x+N=0;
If p and q are positive integers then return (p,q);
i=i+1;
ci=qi*ci-1+ci-2;
di=qi*di-1+di-2;
return “failure”;
End Algorithm (Wiener’s attack).

 Note that this attack is efficient and practical, and
thus is a concern only if the private key d is chosen to
be small relative to N. For example, if N is a 1024 bits
number, then d must be at least 256 bits long in order to
prevent Wiener’s attack. Wiener proposed[4] certain
techniques that avoid his attack The first technique is to
use a large encryption exponent, say e~=e+c*Ø(N) for
some large c. For a large enough e~, the factor k in the
proof is so large the Wiener’s attack can not be
mounted, regardless of how small d is.
 A second technique uses the Chinese Remainder
Theorem (CRT) to speed up decryption, even if d is not
small. Let d be a large decryption exponent such that
both dp=d mod p-1 and dq=d mod q-1 are small. Then,
can decrypt a given cipher text C as follows. Compute
mp=Cdp mod p and mq=Cdq mod q, and use the CRT to
obtain the unique solution m modulo N=p*q of the two
equations m=mp mod p and m=mq mod q. The point is
that although dp and dq are small, d can be chosen to
resist Wiener’s attack.
 Boneh and Durfee[5] show that as long as d<N0.292,
an attacker can efficiently recover d from (N,e).

Low Public Exponent Attacks: A user of the RSA
cryptosystem may wish reducing encryption or
signature-verification, it is customary to use a small
public exponent e. The common choices of a public
exponent e are 3 or 216+1. When the value 216+1 is
used, signature verification requires 17 multiplications,
as opposed to roughly 1000 when a random e<=Ø(N) is
used. If the public exponent is small and the plaintext m
is very short, then the RSA function may be easy invert.
Unlike Wiener’s attack, attacks that apply when a small
e is used are far from a total break. In this section, we
explain some of these attacks and show how they work.

Hastad Broadcasting Attack
Theorem 2: Suppose N1,N2,…,Nk are relatively prime
integers and set Nmin=minimum (Ni). Let gi(x) ∈ZNi[x]
be k polynomials of maximum degree d. Suppose there
exists a unique m < Nmin satisfying: gi(m)=0 mod Ni for
all i ∈{0,…,k}. Furthermore, suppose k>d, there is an
efficient algorithm which given (Ni,gi(x)) for all i,
computes m.
Proof: The mathematical proof can be found in[6].

J. Computer Sci. 2 (8): 665-671, 2006

 667

In other words, if three parties participating in the same
system encrypt the same message m using the same
public exponent e=3, although perhaps different
modulus n1,n2, and n3, then one can easily compute m
from the three cipher texts:
c1=m3 mod n1
c2=m3 mod n2
c3=m3 mod n3
Using CRT one can compute the unique solution C=m3
mod n1*n2*n3=m3. Hence, one can compute m from C
by ordinary root extraction.

Algorithm: (Hastad Broadcasting Attack)
Input:a system of cipher texts equations with different
modulus.
Output: an original message m.

Algorithm:
For simplicity choose e=3.
Given the following equations:
c1=m3 mod n1
c2=m3 mod n2

ci=m3 mod ni

compute N=n1*n2*…*ni

compute Mi=N/ni, for i=1,2,…
compute yi�mi

-1 mod ni, for i=1,2,…
compute X=(c1*M1*y1+c2*M2*y2+…+ci*Mi*yi) mod
N.
Compute original message m=X1/3.

End Algorithm (Hastad Broadcasting attack).

 Hasted shows[6] that small public exponents can be
dangerous when the same plaintext is sent to many
different recipients, (i.e.) this attack works in efficient
manner where public exponent e is small. To foil this
attack, we can use larger exponents or send not exactly
the same message by adding a time-stamp, for example,
this latter solution does not always prevent the recovery
of messages. Suppose that the messages are linearly
related: mi=�i*m+�i mod ni, where �i and �i are known
constants. The corresponding cipher texts are ci=mi

ei
mod ni. In this case, we have:

Corollary 1: In the RSA cryptosystem, a set of k
linearly related messages encrypted with public
encryption keys ei and RSA-moduli ni can be recovered
if k>e*(e+1)/2 and ni>2(e+1)*(e+2)/4 (e+1)e+1 , where
e=max(ei).
 Table 2 summarizes the number of messages
required in the RSA cryptosystem to mount successful
Hastad’s attack. Note that, the “-“ means that the RSA
system is not defined for this value of e.
 Hastad’s attack depends on CRT step to recover
original message, so it needs O((logN)2) bit operations

in total, where N=∏
=

k

i
in

1

.

Table 2: Basic Hasted's attack
E No. of messages
2 -
3 7
4 -
5 16
7 29
33 562

Franklin-Reiter Related Messages Atack[7]
Theorem 3: Set e=3, and let (N,e) be an RSA public
key. Let m1!=m2 ∈ZN satisfy m1=f(m2) mod N for
some linear polynomial f=a*x+b ∈ ZN[x] with b!=0.
Then, given (N,e,c1,c2,f), attacker can recover m1, m2 in
time quadratic in log N.

Proof: Using an arbitrary e (rather than restricting to
e=3). Since c1=m1

e mod N, we know that m2 is a root of
the polynomial g1(x)=f(x)e-c1 ∈ ZN[x]. Similarly, m2 is
a root of g2(x)=xe-c2 ∈ ZN[x]. The linear factor x-m2

divides both polynomials.
 Therefore, attacker calculates the greatest common
divisor (gcd) of g1 and g2 , if the gcd turns out to be
linear, m2 is found. The gcd can be computed in
quadratic time in e and log N. Coppersmith[7] describes
two methods to recover the plaintext m: Direct method
and gcd method. Here, we write a Direct method steps
and the latter method can be found in[8].

Algorithm: (Franklin-Reiter attack).
Input: Two ciphertexts c1 and c2, and f(m) such that:
f(m)=a*m+b.
Output: an original message m.

Algorithm:
Calculate f=b*(c2+2*a3*c1-b

3) mod N.
Calculate g=a*(c2-a

3*c1+2*b3) mod N.
Find m such that g*m�f mod N using Extended
Euclidean Algorithm.
End Algorithm (Franklin-Reiter attack).

 Franklin-Reiter identified a new attack against
RSA with public exponent e=3. If two messages differ
only from a known fixed value � and are RSA
encrypted under the same RSA modulus N, then it is
possible to recover both of them. This situation occurs
quite after, as for example, Letters sent to different
addresses, Texts differing only from their date of
compilation, Retransmission of a message with a new
ID number due to an error.
 Furthermore, Coppersmith[7] showed that if �
(difference between the two messages) is unknown,
then m1 and m2 can sometimes be recovered. In
particular, this means that adding a random padding to
the messages being encrypted does not always prevent
the recovery of messages. It is estimated that, for RSA,
this attack applies with a public encryption exponent e
up to 32 bits. When e=3 the attack can be mounted as
long as the pad length is less than 1/9th the message

J. Computer Sci. 2 (8): 665-671, 2006

 668

length, so, In general the related messages attack can be
mounted if and only if the padding length is less than

2e

N
 where (N,e) is a RSA public key. Table 3 shows

this result.

Table 3: Random padding � tolerated for modulus N
E N (in bits)
 512 1024
3 56 113
5 20 40
7 10 20

 The above attack takes O((log N)2) time to
calculate a gcd between two polynomials, for e >3 the
attack takes time quadratic in e. Consequently, it can be
applied only when a small public exponent e is used.
For a large e the work in computing the gcd is
prohibitive.

Partial Key Exposure attack
Theorem 4: Let N=p*q be an n-bit RSA modulus, let
1<=e, d<=Ø(N) satisfy e*d�1 mod Ø(N). There is an
algorithm that given the n/4 Least Significant Bits
(LSB) of d computes all of d in polynomial time in n
and e.

Proof: The proof of above theorem 4 is not provided
here, it can be found in[9].

Algorithm: (Partial Key Exposure attack).
Input: a public key (N,e), let d0=n/4 LSB of d.
Output: a private exponent d.

Algorithm:
e*d0=1+k*(N-s+1) (mod 2n/4).
Test a candidate value of k, 1<=k<=e.
Solve p2-s*p+N=0 (mod 2n/4).
Find p0=p (mod 2n/4).
Find q0 such that p0*q0=N (mod 2n/4).
Find x, y in polynomial f(x,y)=(r*x+p0)*(r*y-q0)-N,
where r= 2n/4.
Calculate Ø(N)=(r*x+p0-1)*(r*y+q0-1).
Computes d in e*d-k*Ø(N)=1.
End Algorithm (Partial Key Exposure attack).

 Like other methods for cracking RSA, this
algorithm is effective under certain circumstances,
when e is large this attack will fail.
 One sees that the running time of this algorithm is
most dependent on the first and last steps. The first step
is solving a couple modular equations, the final step is
actually factoring N, so the expected time for this attack
is linear in O(e*log e). One searches for randomness in
order to locate private keys in large volumes of data,
such as the hard disk filling system, it should be clear
how important the safe storage of the RSA private key
is perhaps the best solutions is the use of tamper-

resistant hardware modulus or tokens, in which the
private key is securely stored and the private operation
is performed.

Homomorphic Attacks: The inherent homomorphic
structure of the RSA enables to mount some attacks.
Let m1 and m2 be two plaintext messages, and let c1 and
c2 be their respective the RSA encryptions. Observe
that: (m1*m2)

e
�m1

e*m2
e
�c1*c2 (mod N), this is called

homomorphic property of RSA. In this section, we
produce some attacks depend on this property of RSA.

Chosen Cipher text Atack: Given (N,e) as RSA public
key, and cipher text c, then choose a cipher text and
look at the plaintext, then repeat until they have figured
out how to decrypt any message.

Algorithm: (Chosen Cipher text attack).
Input: a public key (N,e), and cipher text c.
Output: an original message m.

Algorithm:
Choose an integer randomly r less than N.
Compute three roots (x,y,z) as follows:
2.1. x=re mod N.
2.2. y=x*c mod N.
2.3. z�r-1 mod N.
Send y to victim.
Victim computes u=yd mod N, then send u to attacker.
Attacker recovers original message m=z*u mod N.
End Algorithm (Chosen Cipher text attack).

 Usually, a Chosen Cipher text attack is based on
the theoretical assumption that the attacker has access
to a decryption device that returns the complete
decryption for a Chosen Cipher text. Hence, if a public
key cryptosystem is susceptible to a Chosen Cipher text
attack, which often is considered to be only a
theoretical weakness.
 Chosen Cipher text attack requires more
decryptions with each candidate key to identify the
expected clear text statistics. In public key
cryptosystems, it suffices to know the victim’s public
key, since the attacker can generate by himself the
required clear text / cipher text pairs.

 The main problem an applying this technique to the
RSA scheme is that each modular exponentiations is
very expensive, and, its time complexity grows
cubically with the size N of the modulus. If we have to
try about u possible substrings as candidate
values for the decryption exponent d, we get a total
complexity of O(u*N3), which is polynomial but
impractical.

Common Modulus Attack: Let c1=me1 mod N, c2=me2
mod N be the cipher texts corresponding to message m,

J. Computer Sci. 2 (8): 665-671, 2006

 669

where gcd(e1,e2)=1, then attacker recovers original
message m=c1

a*c2
b mod N for e1*a+e2*b=1.

Algorithm: (Common Modulus attack)
Input: A modulus N, e1, e2, and two cipher texts c1 and
c2, where gcd(e1,e2)=1.
Output: an original message m.

Algorithm: Find a, b such that: e1*a+e2*b=1, using
Extended Euclidean Algorithm.
Computes original message m=c1

a*c2
b mod N.

End Algorithm (Common Modulus attack).

 A Common Modulus attack can be used to recover
the plaintext when the same message is encrypted to
two RSA keys that use the same modulus. This
algorithm works if and only if message sends with the
same modulus and relatively prime encryption
exponents. The main task of Common Modulus attack
algorithm is computing a and b such that e1*a+e2*b=1,
this process needs O((log k)2), where k is maximum
size of a or b.

Davida’s Attack[10]: If the attacker can get access to
the bin of victim, then he/she will be able to recover the
original plaintext if the transformation is done in a
clever way.

Algorithm: (Davida’s attack)
Input: a public key(N,e), and a cipher text c.
Output: An original message m.

Algorithm: Attacker intercepts the cipher text c, and
replaces it by c~=c*ke mod N, where k is a random
number.
Victim receives c~ and computes m~=c~d mod N, since
the message m~ is meaningless it will be discarded.
If attacker can get access to m~, he/she van recover
original message m by computing m~*k-1

�c~d*k-1
�cd
�m

mod N.
End Algorithm (Davida’s attack).

 Davida’s attack[10] is one kind of Garbage-man-in-
the-middle attacks. The basic idea of these attacks relies
on the possibility to get access to the bin of the
recipient. In fact, if the cryptanalyst intercepts,
transforms and re-sends a cipher text, then the
corresponding plaintext will be meaningless when the
authorized receiver will decrypt it, if the attacker can
get access to this discard, he/she will be able to recover
the original plaintext if the transformation is done in a
clever way. In many situations, we can get access to the
discards, as for example, Bad implementation of
software or bad architectures, Negligent Secretaries,
Recovering of previously deleted message by a tool like
the <restore> command in Windows.
 Note that, the last step of Davida’s attack relies on
the homomorphic nature of RSA, the running time of

Davida’s attack depends on this step which takes O((log
N)2) time to calculate modular inverse, where N is RSA
modulus.
RSA Digital Signature Attacks: A digital signature of
a message is a number dependent on some secret
known to the signer, and additionally on the content of
the message being signed.
 In a digital signers environment the goal of an
attacker is to forge signatures: that is, produce
signatures which will be accepted as those of some
other entity. In this section, we present two attacks
against RSA digital signature scheme, the first is
Blinding attack (or Chosen-Message attack) which is
depending on homomorphic nature of RSA, the second
is Lenstra’s attach which is can applicable on all
Chinese Remaindering based cryptosystems.

Blinding Attack:
Theorem 5: Given (N,e) as RSA public key, and
message m, then it can recover an original signature s
of message m as: s=((m*re)d)*r-1 mod N, where r is a
random number such that 0<r<N-1.

Proof: Since gcd(r,e)=1, then by , there is u,v such that:
r*u+e*v=1.
So, d=d*(r*u+e*v)=d*r*u+v since e*d�1 mod Ø(N).
Hence, signature s�md

�md*r*u*mv
�(md*r)u*mv

�s-u*mv
mod N.

Algorithm: (Blinding attack).
Input: A public key (N,e), and a message m.
Output: An original signature of message m.

Algorithm:
Choose a random number r, such that 0<r<N-1 and
gcd(e,r)=1;
Compute m~=m*re mod N, send m~ to victim;
Victim computes s~=m~d mod N, send s~ to attacker;
Attacker computes the original signature s of message
m as s~*r-1 mod N;
End Algorithm (Blinding attack).

 Let d victim’s private key and (N,e) be his
corresponding public key. Suppose an adversary wants
victim’s signature on a message m, being no fool,
victim refuses to sign m. Attacker can try the following:
he/she picks a random r such that gcd(e,r)=1 and sets
m~=m*re mod N, then asks victim to sign the random
message m~. Victim may be willing to provide his
signature s~ on the innocent looking m~. But recall that
s~=m~d mod N, attacker now simply compute s=s~*r-1
mod N and obtains victim’s signature s on the original
message m. This technique, called Blinding because it
enables attacker to obtain a valid signature on a
message of his choice by asking victim to sign a
random “blinded” message. Victim has no information
as to what message he is actually signing.

J. Computer Sci. 2 (8): 665-671, 2006

 670

 Since most signature schemes apply a one-way
hash function to the message m, the attack is not a
serious concern. Although a useful property of the RSA
needed for implementing anonymous digital cash (cash
that can be used to purchase goods, but does not reveal
the identity of the person making the purchase). Let x
be a size of public exponent e, and y is a size of
modulus N, then time necessary for this attack is
O(x*y2).

Lenstra’s Attack[11]: Theorem 6. The secret factors p
and q of the public modulus N can be recovered when
the faulty signature is known.

Proof: the proof does not provide here , it can be found
in[11].

Algorithm (Lenstra’s attack)
Input: A public key (N,e), message m, and CRT
signature system.
Output: A factors p and q of N.
Algorithm: A CRT signature system consists of the
following steps:
Compute dp=d mod (p-1), dq=d mod (q-1);
Compute mp=m mod p, mq=m mod q;
Compute sp=mp

dp mod p, sq=mq
dq mod q;

Calculate the message signature s using CRT technique
by sp and sq.
Then, suppose that an error occurs during the
computation of sp but not during that of sq, but applying
CRT will give the faulty signature s~ for message m.
Attacker computes the secret factor q=gcd(s~e-m mod
N,N).
End Algorithm (Lenstra’s attack).

 In case of computation error, the researchers
showed how to recover the secret factors p and q of the
public modulus N from two signatures of the same
message: a correct one and a faulty one; Lenstra
showed[11] that actually only the faulty signature is
required. Note that some attacks applies to decryption
process, if the attacker has access to the faulty
encryption.
Shamir presented a simple solution to prevent the
previous attack. The signer first chooses a small
random number r relatively prime to N. Then he/she
computes:

srp=md mod Ø(r*p) mod r*p.
srq=md mod Ø(r*q) mod r*q.

if srp=srq mod r, then the computations are assured
correct and s is computed by applying the CRT on srp
mod p and srq mod q.
In fact, Lenstra’s attack is applicable on a the RSA
hardware devices (say smart cards), So, it can be
considered as implementation attack on the RSA
cryptosystem.

Timing attacks: Most of the attacks against RSA we
have seen so far apply to the underlying cryptographic
primitives and parameters. On the other side,
implementation attacks target specific implementation
leaked by the implementation of the RSA function. The
attacks are usually applied against smart cards and
security tokens, and are more effective when the
attacker is in possession of the cryptographic module.
Prevention of implementation attacks is hard, trying to
reduce the amount of information leaked.
 In this section, we present a Timing attacks as a
good example of implementation attacks. In 1996,
Kocher[12] demonstrated that an attacker can determine
a private key by keeping track of how long a computer
takes to decipher messages. Timing attacks are
alarming for two reasons: it comes from a completely
unexpected direction and it is a cipher text only attack.
In order to describe this attack, we need to explain how
Square-and-Multiply exponentiation is carried out. In
order to compute m=Cd mod N for decryption a cipher
text, we show that at stage i, if d[i]=0, then the value m
is not modified. However, if d[i]=1, then we multiply
the previous result by C2*i. The Timing attack uses the
fact that when d[i]=1, an additional multiplication takes
place. Now, assume that an attacker holds a smart card
that decrypts. Then, the attacker asks it to decrypt a
large number of random messages C1,C2,…,Ck ∈ZN
and measures the time Ti that is takes to compute Ci

d
mod N. These timing measurements are now used to
obtain d, one bit at a time. Since d is odd, we know that
d[0]=1. Initially m=C2 mod N. Thus, if d[i]=1, the
smart cards computes the product m=(m*C) mod N;
otherwise, it does not. Let ti be the time that it takes to
compute Ci*Ci

2 where Ci is one of the random
messages that was initially chosen.
 By measuring the correlation between ti and Ti it is
possible for attacker to determine if d[1] equals 1 or 0,
given d[0] and d[1], it is possible to do the same thing
for d[2] and so on.
 In other words, the attacker can determine the
particular sequence of squarings and multiplications
that the program went through. Based on the outcome,
he/she can simply compute the secret exponent d stored
on the card. There are simple countermeasures that can
be used to confuse the Timing attack such as random
delay by adding a random delay to the exponentiation
algorithm.

PREVENTION AND COUNTERMEASURE

 Years of cryptanalysis of RSA have provided us
some very clever attacks, and although no devastating
attack has ever been found, there are a number of issues
users and developers alike must be aware when
working with RSA. Points that deserve special attention
are: key size, properties of parameters (primes,
exponents) and encoding details.

J. Computer Sci. 2 (8): 665-671, 2006

 671

 Factoring modulus N: given the best factoring
methods, no one should use a 512-bit modulus for
security. An organization that is willing to invest
several million in hardware and give a few months to
crack a key could do so. 1024-bit keys are safe at the
moment. However, over the next 20 years, we must
move towards 2048-bit keys. The rate of progress in
number theory and factoring in particular has been
faster than expected.
 Low private exponent attacks: a low private
exponent should never be used. This is bad news for
smart cards. Boneh and Durfee[5] prove that private
exponent must be greater than N0.292.
 Low public exponent attacks: a low public
exponent should not be allowed. There is already a
lesson we can learn, sending related messages is
dangerous.
 Homomorphic attacks: the remedy is simple; the
attacker should never be able to obtain the raw
decryption of an arbitrary value. Another lesson is that
the use of the same cryptosystem for decryption and
signature is definitively not a good practice.
 RSA Digital Signature attacks: always destroy
encrypted messages, especially ones that look like
garbage. You never know when you are being attacked.
Also, never sign any random messages.
 Implementation attacks: illustrates that a study of
the underlying mathematical structure is not enough.

CONCLUSION

 The RSA cryptosystem is the “de-facto” standard
for Public-key encryption and signature worldwide. We
survey, present, and analyze the most common against
RSA attacks. Integer factoring methods, attacks on the
underlying mathematical function, as well as attacks the
exploit details in implementations of the algorithm are
presented. It was shown that no attack algorithm can
break RSA cryptosystem in efficient manner. Most
attacks appear to be result of misuse of the system or
bad choice of parameters. Analysis of the known
attacks shows that RSA has not been proven to be
unbreakable, but having survived a great deal of
cryptanalytic security over the last twenty years.

REFERENCES

1. Boneh, D., 1999. Twenty years of attacks on the

RSA Cryptosystem. Notices of the AMS, 46: 2003-
2013.

2. Joye, M., 1997. Security Analysis of RSA-type
Cryptosystems. Ph.D. Thesis, University of
Catholiqu de Louvain.

3. Killean, R., 2004. RSA: Hacking and Cracking.
(n.d.) Retrieved Oct. 2004, from
http://www.members.tripord.com\irish_ronan\rsa.h
tml

4. Wiener, M., 1990. Cryptanalysis of short RSA
secret exponents. Proc. IEEE, 36: 553-558.

5. Boneh, D. and G. Durfee, 1999. Cryptanalysis of
RSA with private key less than N0.292. Proc.
Eurocrypt’99, 1592: 1-11.

6. Hastad J., 1986. On using RSA with Low Exponent
in a Public-Key Network. Advances in Cryptology,
218: 404-408.

8. Menezes, A., P. van Oorschot and S. Vanstone,
1996. Handbook of Applied Cryptography. CRC
Press.

7. Coppersmith D., M. Franklin, J. Patarin and M.
Reiter, 1996. Low Exponent RSA with Related
messages. Advances in Cryptology, 1070: 1-9.

9. Boneh, D., G. Durfee and Y. Frankel, 1998. An
attack on RSA given a small fraction of the private
key bits. Proc. Asiacrypt’98, 1514: 25-34.

10. Davida G., 1982. Chosen Signature Cryptanalysis
of the RSA (MIT) Public-Key Cryptosystem.
Technical Report TR-CS-82-2, University of
Wisconsin.

11. Lenstra, A., 1996. Memo on RSA signature
generation in the presence of faults.

12. Kocher, P., 1996. Timing attacks on
implementations of Diffie-Hellman, RSA, DSS and
other systems. Advances in Cryptology, 1109:
104-113.

