
Journal of Computer Science 2 (6): 535-541, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Markus Aleksy, Department of Information Systems, University of Mannheim, Germany
535

MEDiator: A Tool for Automatic Management of Event Domains

Markus Aleksy, Lisa Köblitz and Martin Schader

Department of Information Systems, University of Mannheim
Schloss, D-68131 Mannheim, Germany

Abstract: In this study, we describe our software component MEDiator. Our development is based on
OMG’s Management of Event Domains specification. It allows the efficient management and
simplified operation of different CORBA Notification Services running concurrently. After a brief
introduction into the specifications of the Notification Service and the Management of Event Domains,
we describe their architecture and discuss the most important interfaces. Following, we review the
shortcomings of the current specification and delineate our approach to solving the problems that result
from these deficiencies.

Key words: CORBAservices, CORBA, event domains

INTRODUCTION

 The Common Object Request Broker Architecture
(CORBA) Standard[1] defined by the Object
Management Group (OMG) is widely popular in the
area of distributed, object-oriented applications. In
addition to the independence of employed hardware
architecture, operating system and programming
language, this is mainly a consequence of the
specification of an interoperable system architecture
that governs information exchange between
implementations based upon products of different
providers.
 To describe the interfaces of classes offering
services, the OMG introduced the Interface Definition
Language (IDL). IDL is a purely declarative language;
with its help, the necessary data types and interfaces,
together with their attributes, operations and exceptions,
are defined. No algorithmic details are implemented,
however. CORBA’s programming language
independence is based on the IDL. Only an IDL
compiler translates the interface definitions into a
concrete programming language.
 The Object Request Broker (ORB) is the
fundamental component for communication in
distributed CORBA applications. In order to aid
application developers during their work, the OMG has,
furthermore, standardized a number of system-related
services, the CORBAservices. These services extend the
basic functionality of the ORB.
 For example, with the Event Service[2], which
realizes the Publisher-Subscriber design pattern[3],
CORBA was extended by an asynchronous, decoupled
communication mode. In this context, different roles,
namely the Publisher and the Consumer, as well as two
different message models, the Push and the Pull model,

were defined. Furthermore, the standard differentiates a
typed from an untyped model. The core of the
specification is the Event Channel, which acts as a
mediator between the publishers and the consumers. By
specifying the CORBA Notification Service (CNS)[4],
which extends CORBA’s Event Service, many
necessary extensions, for example, the possibility to
filter events, were later added. This specification,
however, still contained several weaknesses. Problems
such as coordinating the collaboration of several CNSs
running in parallel were left to the developers although
such questions are of essential importance for the
scalability or fault tolerance of a distributed system.
Moreover, some of the CNSs’ processes, e.g.,
connecting several event channels, are rather complex.
 In order to correct the deficiencies just mentioned,
the OMG published the Management of Event Domains
(MED) specification[5]. MED is a supplement to the
proper service specification and makes design of the
CNSs’ processes much more user-friendly.
 An implementation of the currently available
version 1.0 of the MED specification raises a
considerable number of problems since the standard
contains various flaws. Nevertheless, we decided to
realize the specification in our MEDiator project.

The architecture of the med specification: When
joining several event channels and linking different
clients with these event channels, a rather elaborate
topology can evolve very rapidly, the management of
which can become extremely complex. By creating an
Event Domain, even complex topologies can be
administered conveniently.
 The purpose of an event domain is to manage one
or more groups of interconnected event channels. These
event channels can be created through already existing
implementations of the CNSs that might be running in

J. Computer Sci., 2 (6): 535-541, 2006

 536

parallel on different hosts. This would entail the
considerable advantage that existing programs using the
CNSs’ event channels can be extended to employ event
domains without any program modifications.
 In analogy to the structure of the CNS, the MED
specification defines IDL interfaces for untyped event
domains that manage generic, untyped event channels.
Furthermore, IDL interfaces for typed event domains
that can manage untyped as well as typed event
channels are provided. Moreover, the specification
contains IDL interfaces for Event Log Domains
managing untyped and typed event channels and Logs
that are defined in the Telecom Log Service
specification[6].

The IDL interfaces EventDomainFactory and
EventDomain: The interface EventDomain-
Factory specifies operations for creating and
managing untyped event domains.
 Event domains supporting the CNSs’ untyped event
channels are specified with the IDL interface
EventDomain. Clients, i.e., Suppliers or Consumers,
wanting to register with an event domain first have to
connect to an event channel of that event domain.
 In order to group together event channels or to
connect a client to an event channel, proxy objects are
used; these are based upon IDL interfaces specified in
the CNSs. If an event channel’s proxy supplier is
connected to the proxy consumer of another event
channel, then the first event channel is called Supplier
Channel and the other is the Consumer Channel. A
connection between two event channels can already be
set up by solely utilizing the CNSs’ IDL interfaces. This
approach, however, is quite tedious and needs a number
of operation invocations: with the help of a
ConsumerAdmin object of the supplier channel, a
proxy supplier is constructed and with the help of a
SupplierAdmin object of the consumer channel, one
obtains a proxy consumer. Subsequently, the proxy
consumer and the proxy supplier have to be connected
to the supplier channel and the consumer channel,
respectively. In the Management of Event Domains
approach, these steps are combined into one single
operation.
 Before two event channels can be connected, they
both have to be registered with the event domain and
need to have obtained a unique ID. The connection
itself has a specific data structure that contains the IDs
of the event channels, the “ClientType” and the
“NotificationStyle”. The ClientType
determines whether the connection is to be used for
events of type Any, Structured, or Sequence;
whereas, the NotificationStyle indicates
whether the two channels will communicate using a
push or a pull method. An event channel that has been

registered with an event domain can be associated with
an arbitrary number of other event channels or clients of
the event domain.
 By generating connections, a topology of event
channels is created. This corresponds to a directed
graph where each event channel registered with the
event domain is a vertex (or node) and each connection
is an edge of the graph. The graph can be of arbitrary
complexity; it can contain cycles or diamond shapes,
meaning that the same event may reach a vertex in the
graph by more than one path. Within that graph,
suppliers can send events to consumers. When a
supplier uses the event channel with which it is
registered to send an event, the event is not only
delivered to the consumers of that event channel but
also to all the event channels that are connected to it.
The reason is that the proxy supplier of the supplier
channel plays the supplier role for the consumer channel
and vice versa, the proxy consumer of the consumer
channel plays the consumer role for the supplier
channel.
 Before creating an event domain, it should be
considered whether cycles or diamonds in the directed
graph are admissible or not. Note that cycles may result
in the unpleasant consequence that events might loop
endlessly through the graph and that, in topologies
containing diamonds, a consumer may receive the same
event more than once. It is possible to prevent such
behavior by setting the Quality of Service (QoS)
properties CycleDetection and Diamond-
Detection appropriately. If, for example, the
CycleDetection value is set to ForbidCycles,
then an attempt to establish a connection between two
event channels that would introduce a cycle will raise a
CycleCreationForbidden exception.
 In an event domain, information on the event types
provided by suppliers, as well the event types, in which
the consumers are interested, can be stored. Each event
channel contains a local database that provides
information on the event types that are being offered or
subscribed. In the CNS, a mechanism is defined that
enables a supplier to inform all consumers on the event
types that it will be propagating in the future. Here, the
supplier has to not only manage communication
completely, but the event channel is subsequently
responsible for communicating the information to each
consumer. The supplier merely informs its proxy
consumer whereupon the event channel informs all the
consumers connected to it. If a connection of this event
channel to other channels exists, the information will
also be passed to all the consumers of these event
channels; information concerning the event types can
therefore be communicated to each of the consumers in
the event domain. Analogously to this

J. Computer Sci., 2 (6): 535-541, 2006

 537

“subscription_change” mechanism, an “offer_change”
mechanism is built into the CNS, which enables a
consumer to inform suppliers that it is interested in
certain kinds of event types.

The IDL interfaces TypedEventDomainFactory
and TypedEventDomain: The TypedEvent-

DomainFactory interface specifies operations for
creating and managing typed event domains.
 The IDL interface TypedEventDomain is a
subinterface of the EventDomain interface and thus,
inherits all functionality from an untyped event domain.
In addition to untyped communication, a typed event
domain also supports a typed communication mode.
 All the operations of an untyped event domain, for
example, registration of a client with an untyped event
channel, are extended for typed event channels and for
clients needing to use typed events.
 If a typed connection between two typed event
channels has to be formed, both event channels must
have been previously registered with the typed event
domain. The typed connection itself has its own,
specific data structure that consists of the IDs of the
event channels, the NotificationStyle (push or
pull) and the name of the interface the channels will use
to interact.

The IDL Interfaces EventLogDomainFactory
and EventLogDomain: The IDL interface Event-
LogDomainFactory specifies operations for
creating and managing event log domains.
 An event log domain maintains one or more
topologies of interconnected event channels and logs,
where each event channel and event log may be capable
of supporting both typed and untyped communication.
Logs are objects that implement the IDL interface
NotifyLog or TypedNotifyLog, respectively.
The EventLogDomain is a subinterface of the IDL
interface TypedEventDomain, which, in turn,
inherits from the EventDomain interface. Therefore,
an event log domain is a specific typed event domain
and inherits all the functionality of a typed event
domain, for example, adding or removing typed or
untyped event channels from a domain. In addition, an
event log domain defines operations for managing typed
or untyped logs, which are described in the Telecom
Log Service[7].
Critical assessment of the specification: It is the MED
specification’s goal to provide the definition of a
simplified management structure for different CNS

event channels. The MED architecture enables
developers to reuse and enhance existing
implementations based on the CNS. For example, when
relying solely on the CNS, six operations have to be
invoked to connect a client to an event channel; the
MED specification defines IDL interfaces that establish
such a connection with a single operation invocation. In
the same way, connections between event channels can
be easily installed.
 According to the CNSs’ rules, QoS properties that
are set on the event domain level should be on a
hierarchically higher level than QoS properties set on
the level of event channels. If, for example, on event
domain level the QoS property Order Policy was set to
the value FifoOrder, then any event channel registered
with the event domain must send events according to
the FIFO mode. However, since this hierarchy can only
be supported by new implementations of the CNS,
observing the hierarchy rules is sacrificed in favor of
compatibility. By doing this, the general concept of
QoS properties is broken.
 The default values set for the QoS properties
CycleDetection and DiamondDetection allow
cycles as well as diamonds. This does not seem to be
particularly appropriate as it is better to avoid cycles
and diamonds in order to prevent circling or multiple
deliveries of events, a point that is repeatedly
underlined in the specification. Potential problems are
discussed in the specification; however, no example
where the admittance of cycles within an event domain
would have any advantage is mentioned. The only
conceivable reason why, for example, diamonds should
be allowed is that in distributed systems, one can always
argue with the failure of one of the participating hosts.
If various paths exist, transmission reliability can be
increased. It has to be noted, however, that the number
of deliveries per event and therefore network traffic,
will grow proportionally with the number of diamonds.
In order to prevent unintentional network load, the
default values should disallow cycles and diamonds.

 In general, the current specification does not yet
appear to be a conscientious piece of work. Another
example: an operation get_typed_connection,
which would be the counterpart of the
EventDomain’s operation get_connection, is
missing in the IDL specification of interface
TypedEventDomain. The obvious flaws of the
specification, which we will discuss in more detail in
the following section, are even more serious.

J. Computer Sci., 2 (6): 535-541, 2006

 538

Fig. 1: UML diagram of MEDiator

Deficiencies of the specification: Currently, only
version 1.0 of the MED specification is available.
Several deficiencies are evident, however, in that
version, e.g., it contains several invalid identifiers and
some of the definitions are imprecise or inconsistent.
We can distinguish the following four deficiency
categories:

Errors concerning identifiers: In the MED’s IDL
specification, invalid identifiers are used several times.
This holds, for example, for the connect operations
defined in the IDL interface TypedEventDomain,
which raises the “wrong” type of exception. Errors of
this kind may be detected by thoroughly studying the
different documents; but, the implementation of the
specification is made more difficult.

Imprecise specification of default channels: Under
the current specification, it is provided that one specific
event channel in an event domain is designated to be the
domain’s Default Consumer Channel. In the case that a
consumer is registered without specifying an event
channel ID, it is connected to the default consumer
channel. Likewise, a Default Supplier Channel has to be
identified; this channel will be connected to a supplier
that registers without an event channel ID. According to
the specification, the first event channel that registers
with the event domain is to be used as default consumer
channel and also as default supplier channel.
Furthermore, operations that can be invoked to later
install some other event channel as default supplier
channel or default consumer channel are specified. But,
it is not clarified what should happen when the default
supplier channel or the default consumer channel are
removed from the event domain.

Inconsistencies concerning exception Diamond-
CreationForbidden: In the module CosEvent-
DomainAdmin, the exception DiamondCreation-
Forbidden is defined such that it only contains a
single diamond. In the description of operation

add_connection, however, one finds the following
sentence: “The exception contains as data a sequence
of conflicting paths, each path being a sequence of
channel member identifier.” To that purpose, the type
DiamondSeq, defined in the same IDL interface,
would have to be used and the exception
DiamondCreationForbidden would have to be
defined as: exception DiamondCreation-
Forbidden { DiamondSeq diam; };

Fundamental error in the Event Log Domain
architecture: Probably the most serious error is
contained in the architecture of the event log domain,
which should be able to manage typed as well as
untyped logs. The necessary #include statements,
which read in DsTypedNotifyLogAdmin.idl and
DsNotifyLogAdmin.idl, have the consequence
that a multiple inheritance structure that will be rejected
as erroneous by the IDL compiler is created.

Selected implementation aspects: In our MEDiator
implementation, each of the above-mentioned IDL
interfaces is implemented through a corresponding class
<Interface> Impl.java. Figure 1 shows the
UML class diagram for all implemented classes. The
class EventDomainManagement serves as the basis
for MEDiator. Depending on the command line
parameters, it generates an event domain factory
(EventDomainFactoryImpl), a typed event
domain factory (TypedEventDomainFactory-
Impl), or an event log domain factory
(EventLogDomainFactoryImpl), which is able to
create any number of event domains
(EventDomainImpl), typed event domains (Ty-
pedEventDomainImpl), or event log domains
(EventLogDomainImpl), respectively. In the
following, we describe our implementation and explain
how we solved the problems caused by the
specification’s deficiencies.

Properties of an event domain: At the event domain
level, there are two QoS properties:

EventDomainImpl

+add_channel
+get_all_channels
+add_connection
+get_all_connections
[…]

TypedEventDomainFactoryImpl

+create_typed_event_domain
+get_all_typed_domains
+get_typed_event_domain

EventDomainFactoryImpl

+create_event_domain
+get_all_domains
+get_event_domain

EventLogDomainFactoryImpl

+create_event_log_domain
+get_all_event_log_domains
+get_event_log_domain

EventLogDomainImpl

+add_log
+get_log
[+add_typed_log]
[+get_typed_log]

TypedEventDomainImpl

+add_typed_channel
+get_typed_channel
+add_typed_connection
[...]

1

1

EventDomainManagement 11

1

1

1

1

1

1

*

*

*

J. Computer Sci., 2 (6): 535-541, 2006

 539

CycleDetection und DiamondDetection. If,
during the creation of the event domain, the respective
QoS property is not handed over, the event domain is
assigned the default values, that is, both cycles as well
as diamonds are allowed. In creating an event domain,
not only QoS, but also admin properties can be defined.
In the current specification, however, there are no
admin properties defined on the event domain level.
However, it is conceivable that in the future, for
example, the maximum number of event channels in the
event domain will be defined or that complexity will be
reduced through a limitation of the number of cycles.

Default channels: As already described, it is not
specified exactly what should happen if the default
supplier channel or the default consumer channel
respectively disconnects from the event domain. Since
the first event channel that connects with the event
domain shall be defined as the default supplier channel
and default consumer channel, it is surely the most
intuitive solution that, in the case of disconnecting one
of the default channels, the event channels next in line,
meaning those with the next lowest event channel ID,
should take the place of the disconnected default
channels. Therefore, this solution was implemented.

Using an adjacency matrix: An event domain contains
a group of event channels that can be connected with
each other and that lead to a directed graph whose
vertexes represent the event channels while the edges
represent their connections with each other. There are
two ways of implementing a directed graph: the
representation in an adjacency matrix and the
representation in an adjacency list. The advantage of the
list is its relatively small size with regard to O(|V|+|E|),
with |V| being the number of vertexes and |E| being the
number of edges. An adjacency matrix requires O(|V|2),
allowing, however, an easy calculation of the incidence
that in an adjacency list depends on the arrangement of
vertexes and edges. Although, with respect to the
asymptote, using an adjacency list is equally efficient as
using the matrix, Coreman[8] suggests the use of an
adjacency matrix as long as the number of vertexes is
relatively small and especially for non-weighted graphs,
for overview and saving purposes in general. Since in
the adjacency matrix the connections are saved as
boolean values, each entry requires only one bit.

Event channel IDs and event domain IDs: When
connecting, the event domain assigns an individual,
unique ID to each event channel. Here it was an issue to
decide whether an ID that became available again due
to disconnecting event channels should be reused or
whether a variable should be used that is incremented
during any connecting process. An integer variable that
is initialized with 0 can be incremented up to
2,147,483,647 times. This means that over 2 billion

event channels can be connected to an event domain.
However, since it seems incomprehensible that more
than 1,000 event channels should be connected at the
same time. Assuming that the server that runs the
management of the event domains will not be rebooted
for two years, about 3 million event channels can be
newly connected each day. However, it seems realistic
to assume that the number of event channels within an
event domain will remain in the 2- or 3-digit range.
Assuming that 1,000 new event channels are connected
each day, the implementation could run for more than
5,800 years. In the case that IDs that become available
again shall be reused, this would require saving all free
IDs in a list. During each connection process, this list
has to be searched for the smallest ID. In the worst case,
the result of the search would be that the smallest free
ID would equal a value assigned by the incremented
variable.
 Each event domain is also assigned a unique ID by
the event domain factory that creates it. In this case, for
the reasons discussed above, it is even more worthwhile
to use a variable that is incremented when creating an
event domain.

Cycles: Before connecting two event channels through
the method add_connection, it has to be checked
whether the addition of this connection would cause a
cycle. If cycles are not allowed, the output is the
exemption CycleCreationForbidden, which
consists of a sequence of all event channels that would
have formed the cycle. If cycles are allowed, the
connection is performed.
 A directed graph is called strongly connected if for
all vertexes it holds true that two vertexes always have a
mutual connection. Although an event domain is not
necessarily a strongly connected, directed graph itself, it
can be divided into strongly connected components.
Each strongly connected component equals a group of
event channels that form a cycle or an individual event
channel. This fact can be used in order to identify the
cycles that exist within an event domain. If a new
connection between two event channels shall be
established and cycles are prohibited, it is checked
whether this would create strongly connected
components that consist of more than one individual
event channel. If this is the case, the new connection
would create a cycle and will raise an exception.
 The method get_cycles shall consist of a list of
all of the graph’s cycle sequences. A cycle sequence
consists of the IDs of all event channels forming the
cycle. In order to find all cycles of a directed graph, it is
not enough to find the strongly connected components.
Cycles that are contained within the cycles remain
undetected. In order to find these cycles, each strongly
connected component has to be analyzed with regard to
further cycles. Each connected component that contains
more than two event channels can theoretically contain

J. Computer Sci., 2 (6): 535-541, 2006

 540

additional cycles. One could check now for all
combinations whether it remains a strongly connected
component even after removing one event channel. If
this is the case, another cycle exists. This process would
have to be continued until only individual event
channels remain.
 The brute force method for finding cycles is to
search all combinations of event channels for cycles.
The number of search runs potentially increases with
the number of event channels, leading to an extremely
long runtime. By using strongly connected components,
multiple combinations can be excluded from the search,
leading to a shorter runtime. However, even this
improved solution represents a significant effort.
Assuming 100 event channels form a strongly
connected component, in the worst case, 100!-times
double in-depth searches had to be conducted until all
cycles would be identified. It is very questionable as to
whether the use of the method get_cycles justifies
this effort since only relatively few situations can be
imagined in which cycles could be desirable.

Diamonds: According to the specifications, a diamond
exists within each event domain if there is more than
one ways of getting from one event domain to another.
If diamonds are not desired, it has to be checked before
each connection whether a diamond would be created.
If this is the case, the exception
DiamondCreationForbidden will be raised,
containing several sequences that each represents a
possible path. If diamonds are allowed to be formed, the
connection is established in any case.
 The method get_diamonds shall deliver a list
consisting of all diamond sequences within the event
domain. A diamond sequence consists of the IDs of all
event channels that form the path from a start vertex to
a target vertex. If there is more than one possibility how
to send an event from Event Channel 1 to Event
Channel 2, all possibilities must be output in a sequence
form.
 In order to find all diamonds of an event domain, a
tree for the path from each starting vertex to each target
vertex is created displaying the alternate paths. If this
tree has branches, a diamond exists.

Subscription and offer channels: The method
get_subscription_channels expects an event
channel ID as a parameter and should provide a list that
includes the event channel IDs of all event channels that
can be reached from the event channel that is handed
over as a parameter. An event channel can be reached if
the directed graph includes a path to it.
 If a path exists, meaning that the event channel can
be reached from the event channel that is being handed
over, the event channel that can be reached is a
subscription channel of the event channel that hands it

over. In order to save all the subscription channels of
the event channel handed over as a parameter, an in-
depth search starting from the event channels that hand
over is to be performed. As soon as an event channel is
found, it is included in the list.
 If Event Channel A is a subscription channel of
Event Channel B, it holds true that Event Channel B is
the offer channel of Event Channel A. The method
get_offer_channels is supposed to feed back a
list of all offer channels of the event channel handed
over as a parameter. In order to create this list, an in-
depth search analogously to the method
get_subscription_channels is used. However,
in order to find all offer channels, the in-depth search
has to run through the connections in the opposite
direction. Therefore, before starting the in-depth search,
the adjacency matrix representing the graph is to be
transposed.

Tests: To test the functionalities of the software, the
following test scenario was used among others: with our
MED implementation, an event domain factory is
created. With the help of the class Notification-Server,
which uses the CNS, six event channels are generated
and registered at the event domain. An untyped event
domain is then created by means of the class
Testscenario. No QoS properties are specified
during that process, i.e., the default values are set and
cycles as well as diamonds are admissible. Following,
connections between event channels are constructed
with ClientType "ANY_EVENT" and
NotificationStyle "Pull". Event channel 2 is
appointed as the default supplier channel. One pull
consumer is then connected to the event domain, a
second is registered with event channel 4. Subsequently,
three pull suppliers are registered; one is connected to
event channel 3, one to event channel 5 and the last
supplier is connected to the default supplier channel.
The resulting configuration is shown in Fig. 2.
 Pull consumer 1 now receives events sent by pull
suppliers 1 or 2, since a path exists from event channels
2 and 3, respectively, to event channel 0. Pull consumer
2 receives events triggered by pull supplier 3. Further, it
should be noted that pull consumer 1 will receive events
from pull supplier 1 twice, due to the diamond <20>
and <2310>. Pull consumer 2 will repeatedly receive all
events sent by pull supplier 3 due to the cycle, we
created intentionally.

Default
Consumer
Channel

Default
Supplier
Channel

Event Channel 0 Event Channel 1

Event Channel 2 Event Channel 3

Pull Consumer 1

Pull Supplier 1 Pull Supplier 2

Event Channel 4

Event Channel 5

Pull Supplier 3

Pull Consumer 2
Default
Consumer
Channel

Default
Supplier
Channel

Event Channel 0 Event Channel 1

Event Channel 2 Event Channel 3

Pull Consumer 1

Pull Supplier 1 Pull Supplier 2

Event Channel 4

Event Channel 5

Pull Supplier 3

Pull Consumer 2

Fig. 2: A simple test scenario

J. Computer Sci., 2 (6): 535-541, 2006

 541

Binding heterogeneous message services to
mediator: In the realm of standardized Message-
Oriented Middleware (MOM), Java developers have to
decide in favor of one of two alternative specifications:
CORBA Notification Service (CNS) or Java Message
Service (JMS)[9]. If JMS is selected, development can
be completely carried through in the “Java world.” That
decision may shorten the period of vocational
adjustment and thus, reduce development time and cost.
Should, at a later point in time, the necessity of
integrating existing legacy systems into the current
architecture become obvious, then this task can only be
realized with increased efforts that will make the above
mentioned advantages obsolete. On the other hand,
developers can opt for the CORBA-based solution.
Now, if they later find that integration of legacy systems
is not necessary at all or only needed on a small scale,
then the additional input would have been needless.
Should it turn out that the initial decision has to be
revised, then a bridge between the two messaging
systems can facilitate protection of investment; those
parts of the application that are already finalized could
be utilized further on with the help of the bridge.
 The MEDiator implementation is not limited to
applications relying on different CNSs running
concurrently. In the context of our implementation of a
bridge between CORBA’s Notification Service and the
Java Message Service (JMS)[7] also JMS instances can
make use of the MEDiator’s functionality.

CONCLUSION

 The aim to implement the MED specification in
such a way that the third and highest level of standard
conformity is realized was reached as planned: all
modules of the specification were implemented.
 While doing so, the main problem was the
numerous flaws of the specifications that were listed in
detail. It is surprising that still today only the first
version 1.0 of the specification is available despite the
fact that it was published approximately three years ago.
It is difficult to comprehend why not even the most
significant flaws were corrected and it can only be
assumed that so far no greater need for an
implementation existed. Since our solution shall be
developed using open source technologies, further
problems result from the lack of a completely

implemented, freely available CNS and the lack of the
equally unavailable CORBA Telecom Log Service.
Most CNSs support exclusively an untyped
communication and almost no ORB supplier offers an
implementation of the CORBA Telecom Log Service.
Also, the time-limited trial versions of most suppliers
are limited and contain only selected CORBA Services.
 However, event domains offer a comfortable
extension of the CNS. Numerous methods make the
administration of the often very complex topologies of
event channels easier and allow getting an overview of
the topology quickly. By using QoS properties,
unwanted cycles and alternate paths can be avoided if
necessary. Connecting event channels and connecting
clients to event channels require some effort if CNS
methods are being used. By adding an event domain,
this can comfortably be conducted through only one
method call.
 Although the specification has some flaws at the
moment, the usefulness of event domains is obvious and
convincing. Therefore, it is actually surprising that
within three years almost no supplier extended his
CORBA Notification Service by this comfort.

REFERENCES

1. OMG, 2002. The Common Object Request Broker:

Architecture and Specification Version 3.0. OMG
Technical Document Number 02-12-06.

2. OMG, 2001. Event Service Specification. OMG
Technical Document Number 01-03-01.

3. Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad and M. Stal, 1996. Pattern-Oriented
Software Architectur-A System of Patterns.
Chichester, John Wiley & Sons.

4. OMG, 2002. Notification Service Specification
Version 1.0.1. OMG Tech. Doc. No. 02-08-04.

5. OMG, 2001. Management of Event Domains Specification 1.0.

6. OMG, 2003. Telecom Log Service Spec. 1.1.2.
7. Aleksy, M., M. Schader and A. Schnell, 2003.

Design and implementation of a bridge between
CORBA’s notification service and the Java
Message Service. Proc. of HICSS-36, IEEE

8. Cormen, T.H., C.E. Leiserson and D.L. Rivest,
2000. Introduction to Algorithms. Cambridge, MIT Press.

9. Sun Microsystems Inc., 2002. Java Message Ser-
vice Version 1.1.

