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Abstract: This study introduces a method for generating a particular permutation P of a given size N 
out of N! permutations from a given key. This method computes a unique permutation for a specific 
size since it takes the same key; therefore, the same permutation can be computed each time the same 
key and size are applied. The name of random permutation comes from the fact that the probability of 
getting this permutation is 1 out of N! possible permutations. Beside that, the permutation can not be 
guessed because of its generating method that is depending completely on a given key and size. 
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INTRODUCTION 

 
 A permutation, also called an "arrangement 
number" or "order," is a rearrangement of the elements 
of an ordered list S into a one-to-one correspondence 
with S itself. The number of permutations on a set of n 
elements is given by n! (n factorial)[1,2]. 
 For example, there are 3! = 3x2x1 = 6 permutations 
of {1,2,3}. These permutations are: {1,2,3} , {1,3,2}, 
{2,1,3} , {2,3,1} , {3,1,2}, and {3,2,1}. 
 A list of length n can be tested to see if it is a 
permutation of 1, ..., n using the command 
PermutationQ[list] in the Mathematica  add-on package 
DiscreteMath`Combinatorica`[3] . 
 Sedgewick[4] summarizes a number of algorithms 
for generating permutations, and identifies the 
minimum change permutation algorithm of Heap[5] to 
be generally the fastest[6]. Ives[7] gave four new 
algorithms for permutation enumeration. Johnson[8] 
gave another method of enumerating permutations.  
 A random permutation is a permutation containing 
a fixed number n of a random selection from a given set 
of elements. There are two main algorithms for 
constructing random permutations. The first constructs 
a vector of random real numbers and uses them as keys 
to records containing the integers 1 to n. The second 
starts with an arbitrary permutation and then exchanges 
the ith element with a randomly selected one from the 
first i elements for i = 1, ..., n[6,9]. Schemes for 
generating permutations and for numbering permutation 
have been developed over the years[10-12]. Campbell[13] 
gave a simple numbering scheme for calculating the 
permutation. Hussain[14] gave a method for generating 
permutation from string of bits. 
 
The proposed method: Key Based Random 
Permutation (KBRP) is a method that can generate one 
permutation of size n out of n! permutations. This  

permutation is generated from certain key 
(alphanumeric string) by considering all the elements of 
this given key in the generation process. The 
permutation is stored in one-dimensional array of size 
equal to the permutation size (N). The process involves 
three consecutive steps: init(), eliminate(), and fill(). 
First step, init(),  is to initialize array of size n with 
elements from the given key, by taking the ASCII code 
of each element in the key and storing them in the array 
consecutively. To complete all elements of the array, 
we add elements to the array by adding two consecutive 
values of the array until all the elements of the array are 
set to values. Finally, all values are set to the range 1 to 
N by applying the mode operation. 
 The second step, eliminate(), is to get rid of 
repeated values by replacing them with value of zero 
and keep only one value out of these repeated values. 
Last step, fill(), is to replace all zero values with 
nonzero values in the range 1 to N which are not exist 
in the array. The resulted array now represents the 
permutation.   
 
Step1: init() 
 Initialization step can be shown as follows: 
Let 
K: key (string of alphanumeric) of size S 
P: array holds permutation with values 1 to N 
N: array size 
A[i] = K[i]  for i=1 to S 
P[i] = P[i] + P[i+1]  for i=1 to S-1 
P[S] = A[1] 
While (S < N) 
 j = S+1 
 For( i = 1 to S-1 ) 
  For( k = i to S-1 && j � N ) 
   P[i] = P[i] + P[k+1] 
   j++ 
P[i] = P[i] MOD N          for i = 1 to N 
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Step2: eliminate() 
 In this step, array P contains N values. Repetition 
for some values maybe exists; therefore, the repeated 
values are examined and replaced with zero. Only one 
value out of the repeated values is kept in P. now P has 
only distinct values in the range 1 to N and some zero 
values are appeared in P. Missing values in the range 1 
to N that are not exist in P will be substituted by the 
zero elements. This process is shown in the following 
algorithm: 
Let 
L: left of array P 
R: right of array P 
For all values where  L < R 
 P[i] = 0    if P[L] = P[i]     for i = L+1 to R 
 P[j] = 0    if P[R] = P[j]     for j = R-1 to L+1 
 Increment L by 1 
 Decrement R by 1 
 
Step3: fill() 
 The final step, fill(), is to replace any zero value in 
P by a value in the range 1 to N which is not exist in P. 
All zero values will be replaced through a sequence of 
one value from the left side of P and one value from the 
right side of P and repeating this sequence until all zero 
values are gone. The resulted array now contains all 
distinct values in the range 1 to N which represents the 
permutation stored in P. This process is shown in the 
following algorithm: 
Let 
A: array contains missing values in P 
m: number of missing values in A 
i = 0 
while ( i < m ) 
 j = N 
 while( P[i] != 0 && j > 0 ) 
  decrement j 
 if( j > 0 ) 
  P[j] = A[i] 
  increment i 
 k = 1 
 while( P[k] != 0 && k � N  ) 
  increment k 
 if( k <= N ) 
  P[k] = A[i] 
  increment i 
 
An illustrative example: To illustrate the three steps of 
the process of KBRP, let us take the following 
example: 
KEY: computer 
Permutation size: 12 
step1, fill() works as follows 
array P holds first the ASCII code of the input 
 
99 111 109 112 117 116 101 114  

 
 Then values will be changed to the following 
 
210 220 221 229 233 217 215 99 4 30 431 439 443

 
Finally, P will hold the following values 
 

6 4 5 1 5 1 11 3 10 11 7 11 

 
 In step2, the repeated values are examined and 
replaced with zero and this is done by the function 
eliminate(). Now P looks like 
 

6 4 5 1 0 0 0 3 10 0 7 11 

 
 Finally, the function fill() replaces all zero values 
with the missing values in P in order to get the final 
permutation P. 
 

6 4 5 1 8 2 9 3 10 12 7 11 

 
Application: Permutation is used for encryption. Shiho 
and Serge[15] stated that block cipher can be considered 
as an instance of a random permutation over a message 
block space. In block cipher, permutation is used to 
rearrange a message block. This permutation needs to 
be random and secret. I have built the method KBRP 
that provides randomness and secrecy. Randomness is 
available since producing the permutation is completely 
depending on the secret key and each key generate one 
permutation for a given permutation size. Secrecy of 
permutation is comprised in the generating way. 
Permutation is used in block cipher as a mapping 
function that maps the elements of a message block in 
its original position into a new position.. For example, a 
permutation, P, of size 4 has four elements P[1], P[2], 
P[3], and P[4] whose vales are 3,4,1, and 2 
respectively. Any message block M of size 4 can be 
rearranged according to the permutation P. this 
mapping is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Mapping message M with permutation P 
 
 Mapping reflects the relation between original 
position and destination position of the message block. 
This   relation  should  be  weak  for  the  reason  of  the  
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difficulty of knowing or guessing the mapping 
(permutation). For this reason, I propose a test for the 
generated permutation and the sequence set one to 
block size (original positions of message block). This 
test is the correlation coefficient test (ρ), whose 
accepted values are |ρ| < 0.5; otherwise, the 
permutation can be easily changed by making a one 
right shift and then compute new correlation. Right 
shift continues until we get the proper correlation value. 
Fig. 2 shows the mapping for the permutation generated 
in our illustrative example, P, and then we make one 
right shift to get a new permutation, P1. These 
permutations are 
 
P 

6 4 5 1 8 2 9 3 10 12 7 11 

 
P1 

11 6 4 5 1 8 2 9 3 10 12 7 

   
Correlations for P and P1 are 0.587413 and 0.20979 
respectively. 
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Fig. 2: Mapping two permutations into original position 
 

CONCLUSION 
 
 This study introduced a new approach for 
generating permutation. This approach depends on 
using a specific key and size in order to cover the 
randomness and secrecy properties for permutation. 
This approach is intended to use permutation in block 
cipher; therefore, it is suggested that a statistical test 
can be used to consider the permutation for the block 
cipher. The weak correlation coefficient reflects the 
weak relation between the original position of an 
element in a message block and the destination 
position. In this paper the new "KBPR" method is 
applied with the key "computer" and size = 4.  
 
 
 
 
 
 
 

The correlation test showed a value greater than 0.5; 
therefore, the permutation was changed by making a 
one right shift to obtain a new one. The modified 
permutation was tested and the correlation becomes less 
than 0.5 which is considered as a weak relation.  
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