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Abstract: This study discusses how to maintain discovered sequential patterns when some information 
is deleted from a sequence database. A new algorithm, called MA_D (Maintenance Algorithm when 
Deleting some information), is presented in order to deal with the maintenance of sequential patterns 
mining resulted from the updating of database and the algorithm makes full use of the information 
obtained from previous mining results to cut down the cost of finding new sequential patterns in an 
updated database. Our experimental analysis shows that the new algorithm is more efficient. 
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INTRODUCTION 

 Data mining is to extract previously unknown and 
potentially useful information or knowledge from 
database. Sequential pattern mining, which discovers 
frequent patterns in a sequence database, is an 
important issue among the various data mining 
problems. Sequential pattern was first introduced by 
Agrawal and Srikant[1] and since its introduction, there 
have been many researches on efficient mining 
techniques and algorithms, extensions of sequential 
pattern mining method and its applications. 
 In general, sequential pattern mining algorithms 
can be sorted into two classes: 
1. Apriori-based[2] candidate generation and test 
philosophy, with GSP[3] (Generalized Sequential Pattern 
mining algorithm) and SPADE[4] as its representative. 
GSP firstly discovers frequent 1-sequences and then 
generates candidate (k+1)-sequences from the sets of 
frequent k-sequences. With SPADE algorithm, all the 
frequent sequences and their negative borders build up 
a sequence lattice. When the incremental data arrive, 
the incremental parts are scanned and the sequence 
lattice is updated and then we can determine that which 
parts in the original database should be scanned 
according to the sequence lattice and incremental data. 
Here, GSP algorithm adopts horizontal format to mine 
sequential patterns, while SPADE algorithm adopts 
vertical format. Subsequently, some scholars presented 
FAST[5] algorithm for incremental updating of 
sequential patterns mining. The algorithm can be used 
to solve the incremental updating problem when the 
minimum support threshold changes and the sequence 
database remains invariable. 
2. Projection-based pattern growth method, with 
Freespan[6] and Prefixspan[7] algorithms as its 
representative. The two algorithms apply a 
divide-and-conquer strategy to generate many smaller 

projected databases of the original database and then 
the frequent sequences are mined in each projected 
databases by exploring local frequent patterns. 
 The existing algorithms discuss the problems that 
how to mine sequential patterns quickly and how to 
maintain the discovered sequential patterns. So far, the 
research on incremental updating of sequential pattern 
mining has been focusing on two aspects: on the one 
hand, when new transactions and new data-sequences 
are appended to the original database, how to deal with 
the incremental updating of sequential pattern mining; 
on the other hand, when the minimum support threshold 
changes and the original database doesn’t change, how 
to deal with the maintenance problem of sequential 
pattern mining. But in the fields of Electronic 
Commerce and Web usage mining, we often delete 
some information from sequence database, in order to 
save storage space or because some information is not 
interesting any longer or has become invalid. The 
incremental updating of sequential pattern mining in 
this circumstance has been paid little attention in 
previous studies. 
 In this study, we investigate the issue and develop a 
new algorithm, called MA_D, to deal with the problem 
that when some information is deleted from a sequence 
database, how to maintain the discovered sequential 
patterns. Our algorithm utilizes the information 
obtained from prior mining processes and stores the sets 
of discovered frequent sequence in the original database 
for further mining. Meanwhile, it adopts a new method 
to generate the sets of candidate sequence, which cuts 
down the size of candidate sets in some extent. 
 
Problem definition: Let I={i1, i2 , …, in} be a set of all 
items. An itemset is a non-empty set of items. A 
sequence is an ordered list of itemsets. A sequence is 
denoted by<s1,s 2,…,sl>, where sj is an itemset, i.e., 
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sj ⊆ I for 1�j�l. sj is also called an element of the 
sequence and denoted as (x1x2…xm), where xk∈I for 
1�k�m. The number of instances of items in a sequence 
is called the length of the sequence. A sequence with 
length l is called a l-sequence. A sequence a 
=<a1,a2,…,an>is called a subsequence of 
b=<b1,b2,…,bm> and b a super sequence of a, denoted 
as a ⊆ b, if there exist integers 1�j1 j2 … jn�m 
such that a1 ⊆ bj1 , a2 ⊆ bj2 , … , an ⊆ bjn.  
 A sequence database D is a set of tuples sid, s , 
where sid is a sequence-id and s is a sequence. A tuple

sid, s is said to contain a sequence a, if a is a 
subsequence of s, i.e., a ⊆ s. The number of tuples in a 
sequence database D containing sequence a is called the 
support of a, denoted as sup(a). 
 Given a sequence database D and some user 
specified minimum support min_sup, a sequence a is a 
sequential pattern in D if sup(a)� min_sup. The 
sequential pattern mining problem is to find the 
complete set of sequential pattern with respect to D and 
min_sup. 
 When some information is deleted from an original 
sequence database, some formerly discovered 
sequential patterns may become invalid and some new 
frequent patterns may appear in the resulting updated 
database. The incremental updating of sequential 
pattern mining is to discover all the frequent sequences 
in the updated database with respect to the same 
minimum support threshold. When the database is 
updated, the incremental updating method must utilize 
previously discovered information to avoid re-mining 
the whole updated database from scratch. The objective 
of maintaining and updating sequential patterns is to 
respond to each mining quickly when some information 
is deleted from a sequence database and to minimize 
the overall runtime for the whole process accordingly. 
 
The MA_D algorithm: Let DB be an original sequence 
database, dd be the database consisting of deleted 
information (dd ⊂ DB), DB-dd be the updated sequence 
database, s be the user specified minimum support 
threshold, D be the size of DB, d be the number of 
deleted data-sequences in DB, �kLk be the sets of 
frequent k-sequence in DB, �kFk be the sets of frequent 
k-sequence in DB-dd, C1 be the sets of candidate 
1-sequence in DB. 
 
An overview: When some information is deleted from 
an original database, the incremental updating problem 
of sequential pattern mining can be considered into the 
following two cases: 
* Only some transactions (but not data-sequences) 

are deleted from the sequence database, the 
minimum support count remains constant. 

 Because some transactions are deleted, the support 

count of some sequences that contain these deleted 
items may diminish and not satisfy the minimum 
support count. They might become infrequent 
sequences. In this case, we can deal with it easily by 
deleting the infrequent sequences from the old set of 
sequential patterns. The method can be described as 
follows: Scanning the updated database DB-dd only 
once, we can obtain the support count of the sequences 
in �kLk. And then, infrequent sequences are filtered out 
from �kLk and the frequent ones remain. In this case, it 
is obvious that we can obtain the set of new sequential 
patterns without any mining operations. 
* When some transactions and data-sequences are 

deleted from the original database, the size of the 
database will become small, which results in 
smaller minimum support threshold (The minimum 
support count will be s*(D-d)). Besides some 
formerly frequent sequences have become 
infrequent ones, new frequent sequences may 
appear. 

 For the case that the formerly frequent sequences 
become infrequent ones in DB-dd, we first scan the 
updated database DB-dd once and obtain the new 
support count of the originally old frequent sequences 
in �kLk. After that, the sequences that don’t satisfy the 
new support count s*(D-d) will be filtered from �kLk 
and the frequent sequences still will be preserved. This 
case is the same as above mentioned. 
 It is a vital issue that how to discover all the new 
frequent sequences in DB-dd. Here, in order to solve 
the problem, we take GSP (Generalized Sequential 
Pattern) algorithm for example to analyze the general 
method used for finding frequent sequences. GSP 
algorithm is in general seen as a breadth-first traversal 
algorithm, it discovers all the frequent sequences by 
making multiple passes over the database. At the 1st 
pass, GSP algorithm discovers all the frequent 
1-sequences; at the kth pass, it generates the set of 
potentially frequent k-sequences (Ck) from the set of 
frequent (k-1)-sequences (usually called candidates) 
and then scans the database to compute the support of 
each candidate sequence and discover the frequent 
k-sequences. The process iterates until no more new 
frequent sequences are generated. 
 Based on the above discussion, we shall conclude 
that three kinds of k-sequences appear at the kth pass: 
∗ Set of frequent k-sequences (Lk) obtained from 

prior mining process; 
∗ α Candidate sequences obtained from candidate 

k-sequences above mentioned (Ck) minus Lk, i.e., 
Ck -Lk; 

∗ β Candidate sequences obtained from all the 
k-sequences minus Lk and Ck -Lk; 

 To the three kinds of k-sequences above mentioned, 
we discuss the generation of new frequent sequences, 
respectively. 
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 With the minimum support count, i.e., s*(D-d), we 
scan the updated database DB-dd once and obtain the 
new support count of the sequences in Lk. And then, the 
infrequent sequences in Lk will be filtered out. That is to 
say, no new frequent sequences are generated from Lk; 
∗ α Naturally, Ck -Lk should be scanned, compared 

and filtered as candidate sequences; 
∗ β Because of new minimum support count 

(s*(D-d)), the formerly old candidate 
(k-1)-sequences may become frequent ones, which 
will result in new candidate k-sequences 
generation; 

 When some information is deleted from a sequence 
database, the incremental updating problem of 
sequential pattern mining lies in how to obtain new 
candidate sequences from the set of sequences in the 
third case above mentioned. 
 
The generation of new candidate sequences: In order 
to find new frequent sequences, we must find the set of 
candidate sequences containing these new frequent 
sequences. This study adopts a new candidate sets 
generation method depicted as follows. 
 First, scanning the updated sequence database 
DB-dd once, we can count the support of the new 
candidate 1-sequences, denoted by NC1, which are not 
contained in L1. Obviously, the new set of candidate 
1-sequences can be written as NC1=C1-L1, thus the new 
frequent 1-sequences, denoted by NL1, is 
NL1={x|x�NC1^x.sup�s* D-d }. The new frequent 
1-sequences NL1 and the originally old frequent 
1-sequences L1 make up all the frequent 1-sequences, 
denoted by F1, in DB-dd, i.e., F1 NL1�L1, obviously, 
NL1�L1 ∅ . 
 Let us now consider the problem how to seek for 
the set of frequent k-sequences Fk when k�2. In order to 
improve the efficiency of incremental mining, we 
should try to reduce the number of the candidate 
sequences. Take k=2 for example, because of F1

NL1�L1 and NL1�L1 ∅ , according to a basic 
Apriori[2] property: “Any subsequences of a frequent 
sequence must be frequent sequences.”, the new 
candidate 2-sequences NC2 are generated by the 
sequences in NL1 or generated by a sequence from NL1 
and a sequence from L1(This part of NC2 can be labeled 
as NCk

2). Another part of NC2 can be denoted by C2

L2(labeled as NCk
1). It is obvious that the two part of 

NC2 (NCk
1 and NC k

2) is mutually exclusive. Scanning 
the updated database DB dd once for counting the 
support of the sequences in NC2 and then choosing the 
frequent sequences, we can obtain the new frequent 
2-sequences,denoted by NL2. The updated sequential 
patterns F2 NL2�L2. When k�3, we execute above 
operations iteratively, until Fk-1 ∅ . 
 The incremental updating algorithm of sequential 
pattern mining (MA_D algorithm). Based on above 

discussion, we shall now depict the MA_D algorithm as 
follows: 
 
Algorithm MA_D 
Input: DB the original database, �kLk the set of 
frequent k-sequences in DB, s the minimum support 
threshold, D the size of DB, dd the deleted database and 
d the number of deleted data-sequences, C1 the set of all 
the 1-sequences in DB. 
 
Output: The set �k Fk of all frequent sequences in 
DB-dd. 
 
Method 
Step 1: Scanning the updated sequence database DB-dd 
only once, we can count the new support of the 
sequences in �kLk. And then, infrequent sequences are 
filtered out from �kLk and the frequent ones remain. 
 
Step 2: Scanning the updated sequence database once 
again, we can find new frequent 1-sequences NL1, thus 
new frequent 1-sequences and formerly old frequent 
1-sequences form all the frequent 1-sequences, i.e., F1

NL1�L1. 
 
Step 3: Seeking for new frequent k-sequences NLk 
when k�2. NLk and formerly old frequent k-sequences 
Lk form all the frequent k-sequences in DB-dd, i.e., Fk

NLk�Lk. This step iterates until no more new frequent 
sequences generate. 
 Our algorithm makes full use of the information 
obtained from prior mining processes. In the entire 
mining process, we only need to scan the updated 
sequence database k passes (Here, k means that the 
length of the longest sequence pattern in NLk). We 
adopt a new candidate generation method to decrease 
the size of candidate sequences and improve the 
efficiency of sequential pattern mining. 
 

RESULTS 
 The two algorithms are implemented in Java 
language and tested on a Pentium IV-2.4G 
Windows-XP system with 512MB of main memory and 
JBuilder 8.0 as the Java execution environment. To 
make the time measurements more reliable, no other 
application is running on the machine while the 
experiments are running. The datasets are maintained in 
main memory during the algorithms processing, 
avoiding hard disk accesses. During the execution 
processes, the datasets are stored and operated in a data 
structure, called Vector, in Java language. And each 
element in the Vector data structure is a data-sequence 
in the synthetic dataset. 
 The dataset for our experiments is generated using 
the standard synthetic data set generator from IBM 
Almaden[8]. The data set generator has been used in 
most studies on sequential pattern mining and it  
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Fig. 1: Performance comparison on the updated dataset 

Update_Dataset (MA_D and GSP) 
 
generates datasets that imitate real-world transactions, 
where customers tend to make a sequence of 
transactions involving a set of items. Sequence and 
transaction sizes are clustered around a mean and some 
of them may have larger sizes. Note that a sequence 
may have repeated transactions, but a transaction 
cannot have repeated items. Each data-sequence in the 
synthetic dataset is stored in the nested Vector data 
structure. With this data structure, we can judge 
whether a sequence is contained in a data-sequence and 
then the support of the sequence is counted. Based on 
the support of the sequence, we can further estimate 
whether the sequence is frequent or not. 
 In our synthetic dataset, the number of items is set 
to 1, 000 and there are 10, 000 sequences in the dataset. 
The average number of elements in a sequence is set to 
8. The average number of items within elements is set 
to 8. The average length of maximal patterns is set to 8 
and maximal frequent transactions set to 8. These 
values were chosen in order to follow closely the 
parameters usually chosen in other studies. After some 
transactions and sequences are randomly deleted from 
the initial synthetic dataset, we can obtain the updated 
dataset Update_Dataset. 
 Firstly, we use GSP algorithm to mine sequential 
patterns with different minimum support threshold on 
the initial synthetic dataset. The mining results, i.e., all 
the frequent k-sequences are initially saved in the 
Vector data structure in the main memory and then 
outputted to the hard disk memory in a random access 
file format to be used for further incremental mining. 
Then, incremental mining is performed over the 
updated dataset. MA_D algorithm utilizes the results 
obtained in the prior mining process to mine sequential 
patterns over the updated dataset Update_Dataset with 
corresponding minimum support threshold, whereas 
GSP algorithm mines sequential patterns over 
Update_Dataset from scratch. 
 Figure 1 shows the experiment conducted on the 
updated dataset Update_Dataset using different 
minimum support thresholds. The label “MA_D” 
corresponds to the MA_D algorithm while “GSP” 
stands for GSP used for mining the updated dataset 
from scratch.  

 Figure 1 clearly indicates that the performance gap 
between the two algorithms increases with decreasing 
minimum support. We can observe that MA_D is faster 
than running GSP from scratch. It can also be noticed 
that GSP algorithm provides the worst performance 
when the support is lower. The main reason is that 
when the support threshold is lower, GSP must generate 
numerous candidate sequence sets. The experimental 
result shows that MA_D outperforms GSP in significant 
magnitude.  
 

CONCLUSION 
 
 We discuss the incremental updating problem of 
sequential pattern mining when some information is 
deleted from a sequence database. A new algorithm, 
called MA_D, is presented for the incremental updating 
of sequential pattern mining. The algorithm makes full 
use of the set of sequential patterns obtained from the 
prior mining processes, improves the efficiency of 
sequential pattern mining and cuts down the execution 
time. The performed experiments show that MA_D 
enhances GSP by several orders of magnitude for 
incremental updating of sequential pattern mining. 
 However, the multiple passes on the database could 
be a problem in the MA_D algorithm. Further work may 
include the problem that how to reduce the passes on 
the database. 
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