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Abstract: Information about the distribution of path-lengths in a Binary Decision Diagrams (BDDs) 
representing Boolean functions is useful in determining the speed of hardware and software 
implementations of the circuit represented by these Boolean functions. This study presents expressions 
produced from an empirical analysis of a representative collection of Boolean functions. The Average 
Path Length (APL) and the Shortest Path Length (SPL) have simple behavior as function of the number 
of variables and the number of terms used in the construction of the Sum of Products (SOPs) in 
Boolean expressions. We present a generic expression that is uniformly adaptable to each curve of 
path-length versus number of terms over all the empirical data. This expression makes it possible to 
estimate the performance characteristics of a circuit without building its BDD. This approach applies to 
any number of variables, number of terms, or variable ordering method. 
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INTRODUCTION 
 
 The use of logic verification and optimization 
algorithms in VLSI CAD systems requires efficient 
representation and manipulation of Boolean functions[1]. 
During the last two decades, BDDs have gained great 
popularity as successful method for the representation 
of Boolean functions[2,3]. The ever-increasing 
complexity of circuit designs is directly related to the 
complexity of parameters that describe the Boolean 
function. Over the years, the number of nodes in a BDD 
became a major concern since it is proportional to the 
complexity of the Boolean circuit[4]. Over the past two 
decades most of the problems in the synthesis, design 
and testing of combinational circuits, have been solved 
using various mathematical methods[5,6]. Researchers in 
this area are actively involved in developing 
mathematical models that predict the number of nodes 
in a BDD in order to predict the complexity of the 
design in terms of the time needed to optimize it and 
verify its logic.  
 Evaluation time is another crucial parameter of the 
circuit complexity and it is proportional to the path 
length of a BDD and one can use BDD structures to 
estimate the evaluation time of the logic function that 
represents a circuit[7,8]. Therefore, minimization of the 
path length can improve the complexity of the circuit 
implementing a Boolean function, which will eventually 
enhance the performance of the final implementation. In 

general the minimization of the path length in Decision 
Diagrams (DDs) is important in database structures, 
pattern recognition, logic simulation and software 
synthesis[7]. The methods proposed for the minimization 
of APL[7-10] reduces the average evaluation time of logic 
functions. Most of these methods are based on either 
Static variable ordering[11,12] or dynamic variable 
ordering techniques[13]. The minimization of APLs leads 
to circuits with smaller depth of paths from the root to 
the terminal node of the BDD. The resulting circuit will 
be optimized for speed on one hand and on the other 
hand the number of very long paths in the BDD will be 
reduced[14]. The minimization of APL is of great 
importance in real time operating system 
applications[10,15,16]. The minimization of the LPL 
(Longest Path Length) and SPL of a BDD can also 
reduce the evaluation time, which is very important for 
Pass Transistor Logic (PTL)[7,17,18]. One of the main 
problems with pass transistor networks is the presence 
of long paths: the delay of a chain of n pass transistors 
is proportional to n2. Inserting buffers can reduce the 
path length, but this increases the silicon area. So the 
minimization of the longest evaluation time will 
improve the performance of the circuit[7,18-20]  
 Analysis of the BDD methods revealed that the 
variable ordering in a given Boolean function plays an 
important role in minimizing the size of the BDD graph 
as well as minimizing the path length[19,10]. One must go 
through a number of simulations to find the suitable 



J. Computer Sci., 2 (3):236-244, 2006 

 237 

variable ordering that leads to the minimum size of the 
BDD and minimum Path Length. In this approach we 
need to create the whole BDD representing the Boolean 
function with the best possible variable ordering. 
Building the whole BDD may lead to some complexity 
in the design process in terms of the time required to 
implement, verify and test the design. It will be useful to 
have a kind of estimation of the BDD complexity prior 
to make decisions on the feasibility of the design[20]. For 
any combinational circuit the only available initial 
information is the Boolean function that represents this 
circuit and the number of its variables. This information 
is usually considered to design and verify circuits using 
well known mathematical methods.  
There has been a lot of research[21-24] done on the 
estimation of combinational and sequential circuit 
parameters from the exact Boolean function describing 
the circuit. What distinguishes this study and prior 
work[20,25-27] by the some of the current authors is the 
use of stochastic technique and estimation of parameters 
from only partial information about the Boolean 
function. 
 It is very hard to perform a comparison without 
having an idea about the path length size for a given 
number of variables. Therefore, it is important to 
develop a mathematical model that predicts the path 
length, knowing the number of variables and the 
number of product terms of the Boolean function 
represented by this BDD.  
 The main objective of this study is to enhance the 
methodologies proposed in[20,25] to estimate the path 
length complexity for the Boolean functions represented 
by the BDD. First, we present experiments that show 
the behaviors of the APL and SPL and then we extract a 
unique mathematical model for produced experimental 
graphs. This study is organized as follows: First is an 
introduction, followed by the necessary terminologies 
and definitions of the BDD and path length. . Later we 
review the previous work done on the estimation of the 
BDD complexity. The proposed method with the 
experimental results followed by the mathematical 
model is given next. Finally the advantages of this 
mathematical model followed by an outline of our 
future developments in this research work and 
conclusion. 
 

PRELIMINARIES 
 
 Basic definitions for BDDs and path length are 
given in[1,3,4,7,10]. In the following we review some of 
these definitions.  
 
Definition 1: A BDD is a directed acyclic graph 
(DAG). The graph has two sink nodes labeled 0 and 1 
representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variable v and has 
two out-edges labeled 1 (or then) and 0 (or else).  

Each non-sink node represents the Boolean function 
corresponding to its edge "1" if v = 1, or the Boolean 
function corresponding to its edge "0" if v = 0. 
Definition 2: An Ordered BDD (OBDD) is a BDD in 
which each variable is encountered no more than once 
in any path and always in the same order along each 
path. 
 
Definition 3: A Reduced OBDD (ROBDD) is an 
OBDD which no nodes have equivalent behavior. 
 
Variable ordering: The size of a BDD is largely 
affected and its variation can be linear or exponential 
depending on the choice of the variable ordering in 
building the BDD. Figure 1 illustrates the effect of the 
variable ordering [R.E. Bryant, 1986] on the size of 
BDDs for the Boolean function (1): 
 

1 2 1 2 3 4 1 3 4f x x x x x x x x x= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅  (1) 

 
 (a) 4321 xxxx    (b) 4231 xxxx  

 
Fig. 1: Effect of the variable ordering on the size of 

BDD 
 
Definition 4: In a BDD, a sequence of edge and nodes 
leading from the root node to a terminal node is called 
Path. The number of non-terminal nodes on the path is 
called the Path Length. 
 
Definition 6: The edge traversing probability, denoted 
by )( 0ieP  (or )( 1ieP ), is the fraction of all 2n 
assignments of values to variables whose path includes 

0ie (or 1ie ), where 0ie (or 1ie ) denotes edge “0” (or the 
edge “1”) directed from away node iV [7,8]. Since all 
paths include the root node, this node is traversed with 
probability 1.00. Since all assignments to values of 
variables are equally likely, we can use the following 
equation (2) to calculate the )( iVP  for the rest of the 
nodes: 

0 1

( )
( ) ( )

2 i i

P vi
P e P e= =  (2) 
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Definition 5: The APL is equal to the sum of the node 
traversing probabilities of the non-terminal nodes[7,10]. 
Node   traversing   probability  denoted  by  )( ivP is the  
fraction of all 2n assignments of values to the variables 
whose path includes node iv . The APL can be expressed 
by the following equation (3): 

1

0

( )
N

i
i

APL P v
−

=

=�  (3) 

Where, N is the number of non-terminal nodes. 
 
Definition 6: The Shortest Path Length (SPL) of a 
BDD denoted by SPL (BDD), is the Length of the 
Shortest Path from the root node to the terminal node. 
 
Example: Consider the BDD graph shown in Fig. 2. In 
this example we will compute the APL and the SPL: 
 

 
 
Fig. 2: Node Traversing Probability in a BDD 
 
The root node )( 0VP is always equal to 1.00.  

01 0( ) ( ) 0.50P V P e= =  

02 1( ) ( ) 0.50P V P e= = . 

03 2( ) ( ) 0.25P V P e= =  

4 21( ) ( ) 0.25P V P e= =  

0 15 4 1( ) ( ) ( ) 0.125 0.25 0.375P V P e P e= + = + =  

Finally  
5

0

( ) 2.875i
I

APL P V
=

= =�  

 

1 2 2LPL Shortest Path Length x x= = → =  
 
Previous work: Here, we provide a brief description of 
the works done in the area of the estimation of BDD 
complexity prior to explaining the proposed method. 

Relation between the size of a boolean function and 
the ROBDD complexity[20]: The complexity of the 
ROBDD mainly depends on the number of nodes 
represented by the ROBDD. Analysis of the complexity 
variation in ROBDDs i.e. the relation between the 
number of product terms and the number of nodes for 
any number of variables is discussed in these works, the 
experimental graph variation reveals that the complexity 
of the ROBDD can be modeled mathematically by 
equation (4). Figure 3 indicates that the mathematical 
model represented by equation (4) provides a very good 
approximation of the ROBDD complexity.  
 

1)( +⋅⋅= ⋅− γβα NPTeNPTNN  (4) 
 Where, NN is the number of nodes that represents 
the complexity of ROBDD, NPT is the number of non-
repeating product terms in the Boolean function,α , β  
and γ  are three constants. Using curve fitting 
techniques, the variations of α, β and γ were 
mathematically modeled and represented by the 
following equations (5), (6) and (7). 

1.51(0.063 )0.9855 NVeα ⋅= ⋅  (5) 
( 0.01551933 )

( 1.2985 )

1.031149

67.2072

NV

NV

e

e

β − ⋅

− ⋅

= ⋅
+ ⋅

 (6) 

( 0.4187691 )

( 1.5072 )

0.962297281

41.9723

NV

NV

e

e

γ − ⋅

− ⋅

= ⋅

+ ⋅
 (7) 

Where, NV is the Number of Variables.  
 

 
 
Fig. 3: Experimental/Equation BDD Complexity for 

10 variables 
 
Behavior of XOR/XNOR Min-term 
Representations[26]: In this work, the complexity 
variation in ROBDD for a specific group of 
XOR/XNOR min-terms is analyzed. A graph that 
represents the ROBDD complexity in terms of number 
of nodes with respect to the number XOR/XNOR  min-
terms  of  the  Boolean function is then plotted and the 
behavior of XOR/XNOR is modeled mathematically by 
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equation (8): Figure 4 show that the mathematical 
model represented by equation (8) provides a good 
approximation of the experimental ROBDD complexity. 

0.52 2( ) 1NN NXMα β β� �= ⋅ − − +� �  (8) 

 Where, NN is the number of nodes that represents 
the complexity of ROBDD, NXM is the number of 
XOR/XNOR min-terms in the Boolean function, β is 
2n-2 with n the number of input variables and α = 
0.605234. 
 

ANALYSIS OF THE COMPLEXITY OF PATH 
LENGTH IN BDDS 

 
Proposed method: An experiment was carried out 
using Colorado University Decision Diagram (CUDD) 
Package[28] to analyze the complexity variation of SPL 
with the number of product terms for any number of 
variables. For each variable count n between 1 and 14 
inclusive and for each term count between 1 and 2n-1, 
100 Boolean functions were randomly generated and 
the APL and SPL average was determined by using 
CUDD package for specific variable ordering 
technique. This process was repeated until the average 
size of the APL and SPL complexities became 1. Then 
the experimental graphs for APL and SPL complexities 
were plotted against the product term count for each 
variable count.  
 

.  
 
Fig. 4: Experimental/Equation ROBDD Complexity 

for XOR/XNOR Min-terms 
 
Experimental analysis for APL and SPL complexity 
variations: Figure 5 and 6 illustrates the APL and SPL 
complexity relation for Boolean functions with product 
terms having n=10 variables using the Symmetric Sift 
reordering technique of the CUDD tool. 
 The graph indicates that the complexity (i.e. size) 
of the path length in general (APL and SPL) increases 
as the number of product terms increases. This is clear 
from the rising edge of the curve shown in Fig. 5 and   
6. At the end of the rising edge in the graph, the size of 

the APL and SPL reaches a maximum 
( 4.5,73.7 ≅≅ SPLAPL  in this case). 

 
 
Fig. 5: APL size variation for 10 variables using the 

symmetric Sift reordering technique 

 
 
Fig. 6: SPL size variation for 10 variables using the 

Symmetric Sift reordering technique 
 
This peak indicates the maximum APL and SPL that 
any Boolean function with 10 variables can produce 
independently of the number of product terms. 
 Apart of that the peak also specifies the number of 
product terms (critical limit) of a Boolean function that 
leads to the maximum number of APL and SPL for any 
Boolean function with 10 variables. The number of 
product terms that leads to the maximum APL and SPL 
is 66 and 50 respectively. If the number of product 
terms increases above the critical limit, as expected, the 
product terms starts to simplify and the BDD will 
reduce, which will reduce both the path lengths (APL 
and SPL) size.  
 The   APL   and   SPL complexity graphs shown in 
Fig. 5 and 6 indicate that as the number of product 
terms increases the complexity of the APL and SPL 
decreases in a slower rate and ultimately reaches 0. 
Figure 6 illustrates that the falling edge of the SPL 
graph behaves a bit different than the other complexity 
graphs shown in Fig 2 and 3, where the decrease is with 
a roll off, to be independent of the variable count. The 
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APL complexity variation graph is fairly similar to the 
Fig. 2, but the roll of is not steeper as the Fig. 2.  
The location and height of the peak and the slope of the 
logarithm of the roll off varied. Reduction of the APL 
and SPL complexity to 0 implies that all the product 
terms simplify to logic 1. A simple algebraic expression 
for these curves was developed, unifying all the cases. 
 

MATHEMATICAL MODEL FOR THE  
PATH LENGTH BEHAVIOR 

 
 Exponentials of rational polynomials fitted the data 
well; but, a theoretical precedent was not apparent. On 
the other hand, )1()1log( ++ tt not only has the 
same basic behavior, but is also implicated in other 
complexity measures, such as Kolmogorov, Tichner, 
Shannon and Lempel-Zif complexity, as well as the 
density of the prime numbers. The generic SPL graph 
has an initial rise, two peaks and roll off to zero, 
suggesting the sum of two formulas, but with horizontal 
and vertical scaling and a little peak shaping. We note 
here that the second peak is not always a peak of the 
curve, but it is a peak of the difference between the 
curve and the best affine approximation in that region. 
The generic APL graph has an initial rise which is 
similar to SPL rise, but with only one peak and a roll off 
to 0. Analyzing all the above factors for the behavior of 
the APL and SPL graphs, the complexity behavior was 
modeled mathematically by the following equations: 

2

1

log ( 1)
1

(log ( 1))

i

i
i

t
t

α

β
=

� �+= � 	+
 �
�  (9) 

 Where, t is the number of product terms in the 
Boolean function. The (mostly) constantsα  and 
β parameters affect the shape of the peak. 
 For the SPL, the 
values 1,7 11 == βα and 102 =α gave a close fit, but 

2β  taking on two distinct values. 32 =β  for 11≤v  

and 52 =β for 12≥v . Eventually the following 
equation (10) was used in order to calculate the 
constant 2β , 
 

2 ( 11.5) 2

1.8
3

[ ] 1ve
β −

� �= +� 	+
 �
 (10) 

 
 It can be inferred from Fig. 6 that the curve has two 
peaks, which needs four scaling parameters to define 
the locations of the peaks (Fig. 7): i.e. ),( 11 yx and 

),( 22 yx . 
For the APL, the alues 1 17, 0.7α β= = and 2 10α = gave 
a close fit, but 2β  also taking on two distinct values. 

2 2.1β =  for 11≤v  and 2 3.5β = for 12v ≥ . 
Eventually the following equation (11) was used in 
order to calculate the constant 2β for APL. 

2 ( 11.5) 2

1.8
0.7 3

[ ] 1ve
β −

� �� �
= +� 	� 	+
 �
 �

 (11) 

 The final behavior of the APL and SPL curve can 
be found by the following single equation (12): 

( )( )�

	
	
	
	

�

�

�
�
�
�




�

+

	
�
�

�


� +

⋅=
=

2
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1log
1
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x
t

x
t

y

α

β
 (12) 

 In this mathematical model, the peaks ),( ii yx for 
both the APL and SPL curves were found by 
performing an empirical fit for each time. Figure 8 and 
9 depict the experimental results obtained for APL and 
SPL using the CUDD package and the theoretical 
results obtained using equation (12). The mathematical 
model represented by equation (12) provides a very 
good estimation for the APL and SPL complexity 
behavior, where the experimental and equational results 
produced a match. Further verification of the 
mathematical model was done for Boolean functions 
with 2 to 15 variables. It can be inferred that the 
experimental and mathematical curves are following a 
similar pattern for any number of variables. Figure 10-
13 illustrates the experimental and mathematical models 
for APL and SPL for variables 8 and 12 respectively. 

 
Fig. 7: Peaks of the SPL complexity behavior 
 

 
 
Fig. 8: Experimental/Equation SPL complexity 

behavior for 10 variables 
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Fig. 9: Experimental/Equation APL Complexity 

behavior for 10 variables 
 

 
 
Fig. 10: Experimental/Equation APL Complexity 

behavior for 8 variables 
 

 
 
Fig. 11: Experimental/Equation APL Complexity 

behavior for 12 variables 

 
 
Fig. 12: Experimental/Equation SPL Complexity 

behavior for 8 variables 
 

 
 
Fig. 13: Experimental/Equation SPL Complexity 

behavior for 12 variables 
 

 
 
Fig. 14: APL Complexity Estimation Error for 10 

variables 
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Fig. 15: SPL Complexity Estimation Error for 10 

variables 
 

 
 
Fig. 16: Effect of the reordering methods for SPL and 

APL Complexity variations 
 
 Figure 14-15 shows the efficiency of the proposed 
mathematical model, which produces complexity 
estimation error for APL and SPL. It can be inferred 
that the mathematical expression was able to match the 
experimental curve with minimum error, which is less 
then 01.0±  for most of the Product terms. 
 
Effect of the reordering methods on path length 
complexity variations: The experiment done earlier 
using the Symmetric Sift CUDD reordering method was 
extended here to understand the relation of Symmetric 
Sift APL and SPL graphs with other reordering 
techniques. It was observed that the relation between 
the graphs follows the same pattern and it varies only on 
the amplitude factor of the curves. 
 By analyzing the effect of the reordering methods 
on the model, equation (12) can be modified with an 
additional amplification factor (µ). The amplification 
factor is 1 for the Symmetric Sift, greater than 1 for 
methods with lower efficiency and less than 1 for 
methods with higher efficiency than the Symmetric Sift. 
Equation (13) represents the mathematical model for the 
APL and SPL for any reordering method. 
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 The amplification factor was calculated and 
depicted in Table 1. Figure 16 shows the comparison 
graphs of the APL and SPL behaviors for Symmetric 
Sift with two of the other CUDD variable ordering 
techniques mainly the Genetic Algorithm and 
Window2. These two graphs show that the efficiency of 
the reordering method has a definite impact on the path 
length complexity; an efficient variables ordering leads 
to a reduced number of nodes, which leads to reduced 
path lengths.  
 
Table 1: Amplification factor (µ) 
Variable Reordering Method Amplification Factor (µ) 
Random 1.024 
Random Pivot 0.998 
Sift 1.001 
Symmetric Sift 1.000 
Symmetric Sift Converge 0.971 
Group Sift 1.006 
Group Sift Converge 0.963 
Window 2 1.085 
Window 3 1.045 
Window 4 1.018 
Window Converge 2 1.058 
Window Converge 3 1.025 
Window Converge 4 0.989 
Annealing 0.945 
Genetic Algorithm 0.942 
Exact 0.942 

 
Advantages: The developed mathematical model 
represented by equation (10), provides some useful 
information on the following, without the need of 
building the BDD. 
1. The complexity behavior of the APL and SPL, 

given the number of product terms of the Boolean 
function 

2. The number of product terms for which the 
maximum possible depth will occur. 

3. The maximum complexity of the APL and SPL of 
Boolean functions for any number of variables. 

 
CONCLUSION AND FUTURE WORK 

 
 Future work includes minimizing the Complexity 
estimation error of the match and to develop 
experiments to include larger number of variables. We 
are in the process of investigating an automated global 
fit for any SPL and APL curves in order to find the 
complexity for any number of product terms. 
Investigating a mathematical model for other BDD 
characteristics (i.e. longest path length and number of 
paths) is also considered. 
 We have discussed the idea of using BDD to study 
and model a relationship between the path lengths and  
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the number of product terms in a Boolean function. 
Analyzing the Experimental results, we have introduced 
a single and unique mathematical model, which is based 
on an empirical fit that can predict valuable information 
related to the APL and SPL behaviors without building 
the BDD. A great reduction in time complexity for 
digital circuits' designs can be achieved and the model 
can also offer useful information on the design to 
handle the minimization of its evaluation time prior to 
its implementation. Our experimental results show good 
correlation between the experimental results and those 
given by the mathematical model. 
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