
Journal of Computer Science 1 (1): 83-88, 2005
ISSN 1549-3636
© Science Publications, 2005

83

Designing a Portlet for Plagiarism Detections Within a Campus Portal

1Jinan A.W. Fiaidhi, 2Zuhoor AlKhanjari, 1Sabah M.A. Mohammed and 2Raiya Al-Hinai
1Department of Computer Science, Advanced Technology and Academic Centre
Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada

2Department of Computer Science, Sultan Qaboos University, P.O. Box 36
AlKhod 123, Muscat, Sultanate of Oman

Abstract: In an educational context, we are faced with similar challenges. How do we keep the
adminis tration, faculty, staff and students well informed about institutional policies and procedures?
How do we ensure the student body receives accurate and up-to-date information to help them achieve
their educational and career goals? How to check for plagiarism cases? In addition, we hope to build
learning communities-communities of students, instructors, administration, faculty and staff all
collaborating and constructing strong relationships that provide the foundation for students to achieve
their goals with greater success. We also want to promote information sharing so users can build on
their experiences at the institution. Plus, we want to provide seamless integration with legacy and other
applications in some easy, modifiable and reusable way. One solution to these goals is to provide a
support tool for such learning through a learning portal. This portal should provide all users (e.g.
students, instructors) with valuable information required. However, building and modifying learning
portal is no small task, especially when you consider the shrinking budgets and limited resources in
today's economy. Java portlet presents a new solution in which new functionality can be plugged to
existing portals. This study shed some light on an ongoing research to develop a plagiarism detection
portlet for java student assignments.

Key words: Learning Portal, Portlet, Plagiarism Detection, Software Complexity

INTRODUCTION

Learning portals that encourage collaborative and team-
work had been introduced to help overcome the current
limitation faced by traditional face-to-face classroom
learning approach. The solution is based on a
combination of state-of-the-art immersion and
interactive technology to induce the learner to non-stop
learning experiences and transform the learning
environment into a truer-to-life learning environment
that is more. Educational studies show clearly, that
learning is more fun and more effective in groups and
learning portals exactly do that.
Essentially, a learning portal is the doorway to the
capabilities provided by a Learning Management
System (LMS). There's often a wide variety of courses
and content available to the learner via a learning
portal. These include everything from courseware to
instructor-led classes to synchronous and asynchronous
discussion boards and assignment delivery. In many
institutions, these resources are drawn from both
internal and external resources. This variety is where a
learning portal adds its real value. There are various
benefits that can be gained out of Learning Portals [1]:

* Accelerates learning, less holdup between learning

and action, puts downtime to good use
* Leverages best practice knowledge enterprisewide

* Provide access to all learning opportunities and
advice from one place

* Single-source of learning for all functions (esp.
important for multi-project workers)

* Provides home base for communities of practice
* Integrates disparate functions, dissolves cognitive

boundaries between different functions.
* Moves learning to the learner
* Facilitates "home schooling"
* Resides prominently or the learner's desktop

However, with the growth of such technology it is
much easier for plagiarists to copy the materials from
each other and put them in their own documents
without the permission of the original authors. Indeed
facilitators encourage teamwork in doing students
studies and exercises. However, they do expect that
every student should write the assignments on their own
including designs and programs and they insist on
testing the acquired skills individually because of its
obvious reliability. The solution of plagiarism detection
problem cannot simply be solved by having a registered
link to cyber-based plagiarism detection packages
(e.g. Turnitin,WordCheck, PlagiServe, IntegridGuard,
CopyCatch) where mostly they can identify general
copying features based on Cut-and-Past material from
the internet or from their local databases. Thus, we need
a practical approach that can be native to a

J. Computer Sci., 1 (1): 83-88, 2005

 84

collaborative environment and can be tailored
according to the needs of the learning portal facilitators
as well as to be a flexible and extensible service. This
article proposes such an approach which can add
plagiarism detection facilities to any existing portal
using portlets. Generally portals use Java portlets as
pluggable user interface components that provide a
presentation layer to information systems. It is the next
technological step, after servlets and RMI programming
in Web application programming.

Structure and Requirements of Java Portlets: By
integrating applications and resources, portals let users
access information in a simple, straightforward manner.
Currently, most portals let users create one or more
personal pages composed of portlets-interactive Web
mini-applications. Until recently, no standards for
portlets exist and thus consuming remote portlets in a
generic way or deploying portlets in one portal server
that were developed in a different one has been
impossible. Two standards released in Fall 2003-the
Web Services for Remote Portlets (WSRP) and the Java
portlet specification-address these problems.
A portlet is a Java technology based web component,
managed by a portlet container, that processes requests
and generates dynamic content. Portlets are used by
portals as pluggable user interface components that
provide a presentation layer to Information Systems.
The content generated by a portlet is called a fragment,
a piece of markup (e.g., HTML, XHTML, or WML
(Wireless Markup Language)) adhering to certain rules.
A fragment can be aggregated with other fragments to
form a complete document. A portlet's content normally
aggregates with the content of other portlets to form the
resulting portal page or response [2]. A portlet
container manages a portlet's life cycle. The basic
portlet life cycle of a Java portlet is:

* Init: initialize the portlet and put the portlet into

service
* Handle requests: process different kinds of action-

and render-requests
* Destroy: put portlet out of service

The portlet container manages the portlet life cycle and
calls the corresponding methods on the portlet interface.
Figure 1 shows the typical architecture of a Java portal
server that supports WSRP and the Java portlet
specification. The portlet container component runs
portlet applications conforming to the Java portlet API.
The portal Web application component implements the
portal use cases, such as sign in, sign up, select portlet
layout, aggregate portlet responses and so on. To
interact with a portlet, the portal Web application
component calls on a specific API provided by the
portlet container.
The WSRP producer component provides an
implementation of the WSRP interfaces, so other

Fig. 1: The Architecture of Java Portlet

consumers can access local portlets. The portal server
also provides a WSRP consumer component,
implemented as a Java portlet, that acts as a generic
proxy of any WSRP producer, allowing the portal to
consume remote WSRP portlets. In the WSRP standard,
portlet modes refer to the types of functionality a portlet
can perform. The standard defines four modes: view,
edit, help and preview. It also defines window states,
which indicate the amount of space a portlet will be
assigned in the page. Window states can be normal,
minimized, maximized, or solo. To facilitate the
adoption of WSRP and the Java portlet specification,
the Apache Software Foundation has launched Jakarta
Pluto and WSRP4J. Jakarta Pluto is the reference
implementation of a Java portlet container and includes
a very simple portal Web application component for
testing portlets. WSRP4J builds on Jakarta Pluto,
providing a WSRP producer and a proxy portlet of a
WSRP producer.
The good thing about Java Portlet that it allows us to
package its specification as a .war file for deployment
to a J2EE application server. The .war file then can be
used to deploy a typical J2EE web application, it
contains a WEB-INF/web.xml file to configure the
application context. However, with a portlet
application, the WEB-INF folder must also contain a
portlet.xml file. The portlet.xml file is a descriptor file,
containing configuration details about all bundled
portlets in the .war file. The following listing shows a
simple example of a portlet.xml file. Note how many of
the previously-described constructs (portlet mode,
preferences, etc.) are defined in this file.

<portlet-app>
 <portlet>
 <portlet-name>MyPortlet</portlet-name>
 <portlet-class>com.abc.portlet.MyPortlet</portlet-
class>
 <init-param>--Init param, available in portlet's
PortletConfig instance.
 <name>view-to-present
 <value>/portlet/MyPortlet/startup_view.jsp</v
alue>

J. Computer Sci., 1 (1): 83-88, 2005

 85

 </init-param>
 <expiration-cache>300</expiration-cache>--Default
expiration for portlet cache (5 minutes)
 <supports>
 <mime-type>text/html</mime-type>--Portlet
supports HTML markup
 <portlet-mode>VIEW</portlet-mode>--MyPortlet
supports modes view and edit
 <portlet-mode>EDIT</portlet-mode>
 </supports>
 <resource-
bundle>com.abc.portlet.MyResourceBundle</resource-
bundle>
 <portlet-preferences>
 <preference>
 <name>Country1</name> --PortletPreferences
name/value pairs.
 <value>USA</value>
 </preference>
 <preference>
 <name>Country2</name>
 <value>Japan</value>
 </preference>
 --A PreferencesValidator will check any
preferences set.
 <preferences-
validator>com.abc.portlet.validate.CountryValidator
 </preferences-validator>
 </portlet-preferences>
 </portlet>
</portlet-app>

The Java Portlet Specification has already been widely
adopted by several commercial and open-source
vendors. Going forward, portlet developers can take
advantage of this standard, thereby insuring
compatibility among many different portals.

Linking Java Portlet to Campus Learning Portal:
Customizing learning portals is not an easy task without
the new Java Portlet. Most of the current learning
portals provide administrative applications based on
Java technology besides the courseware materials that
is likely to be in WebCT. To achieve linkage between
the learning portal and the required portlet one need to
establish a new channel for providing additional
features required by the portlet. In this direction the
Portlet Container from the Apache Jakarta project
called Pluto (http://portals.apache.org/pluto/) and play
the role of this channel. Pluto is the reference
implementation of the Java Portlet Specification. The
learning portal can embeds the Pluto container and
includes a Portlet adapter that makes it possible to
install and render Portlets along with its native
Channels. The End-User, in this case, can not tell the
difference between a Portlet interactions and a Channel
interactions. Pluto, when downloaded separately from
Apache, is distributed with several components:

* Portlet API (JSR-168)
* Portlet Container
* Portal Driver
* Test Suite Portlet

The learning portal should include the Portlet API,
Portlet Container and Test Suite Portlet, but not Pluto's
Portal Driver which is not meant to be a fully functional
portal. The learning portal acts as the Portal Driver.
The learning portal with its implementation of Pluto,
requires that the web application context representing
the deployed portal web application be set as "cross
context" because Pluto dispatches the Portlet request
objects to the individual Portlet applications which run
in their own web application context. Each container
should provide a means to enable this "cross context"
setting. This facility can be accomplished using the
Tomcat servlet container. Moreover, each portlet can
be deployed and linked automatically to ant learing
portal using the apachi ant APIs(http://ant.apache.org/).
Ant is extended using Java classes. Instead of writing
shell commands, the configuration files are XML-
based, calling out a target tree where various tasks get
executed. Each task is run by an object that implements
a particular Task interface. The ant tool takes a Portlet
WAR file, rewrites the web.xml file (a requirement of
the Pluto Portlet Container) and deploys the results to
the servlet container. You can deploy multiple portlets
at once. Finally, we may need to publish the new
services provided by these portlets. For this purpose, we
need to build a Portlet Registry based on all the Portlets
that are deployed into the servlet container.

Deploying Plagiarism Detection Portlet for the SQU
Learning Portal: The learning portal that we used to
deploy our plagiarism portlet is the SQU learning portal
used by the Sultan Qaboos
University(www.squ.edu.om). However, one can create
their own learning portals using the Apatche Portal
Driver or by using an open source portal like the
uPortal [3]. The SQU Learning portal supports many
administrative tasks that can be briefly illustrated in
Fig. 2 and 3.
The plagairism detection portlet needs to be deployed in
addition to the available functionalities of the SQU
Portal (Fig. 4).
AlHinai [4] provides detailed description of the SQU
Learning Portal.
The basic technique used for detecting plagairism is to
compare the similarity of the text sequences between
the given database of documents. Parker and Hamblen
[5] defined plagiarized document as a document that
has been produced from another document with a small
number of texts edit operations but no detailed
understanding of the document are required. Many
algorithms appeared and among these there are three
types of techniques, which are mostly applied to detect
plagiarism:

J. Computer Sci., 1 (1): 83-88, 2005

 86

Fig. 2: The General Layout of SQU Learning Portal

Fig. 3: The Basic Administrative Functionalities Supported by the SQU Learning Portal

* Attribute-counting-metric technique
* Structure-metric/ control-flow technique
* Hybrid technique of both the above technique

The attribute counting technique is the most natural and
straightforward technique that is proved to be effective
with variety of documents including computer
programs [6] as well as it is most natural with Java
environment with its reflection API and text paring
primitives(e.g StringTokenizer). Attribute-counting-
metrics depend on the counting of the frequent

occurrences of certain textual features in the document.
Thus we attempted to design our plagairism to check
the similarity of basically Java Source Documents. We
used metrics that are most relevant to Java source
documents as well as from those used by other notable
systems as MOSS, JPlag and YAP3. The metrics are:

* Unique number of used Java keywords
* Unique number of user methods
* Unique number of interfaces
* Unique number of constructors

News

Databases

LMS

Web Applications

External Resources

Communication
Applications

Staff

Faculty

Students

Portal Campus Environment

J. Computer Sci., 1 (1): 83-88, 2005

 87

Fig. 4: Adding Plagaorism Detection Functionality to SQU

Fig. 5: Comparing 25 Java Students Assignments Using the 11 Metrics

* Total number of used keywords
* Total number of used methods
* Total number of used interfaces
* Total number of used constructors
* Total number of used blocks
* Total number of used Exceptions
* Total number of used Classes

The plagairism portlet uses a version of java parser
generated by the Princeton University CPU Java
Parser Generator (http://www.cs.princeton.
edu/~appel/modern/java /CUP/). These measures are

inserted as probs within the generated parser code.
The portlet inspects the student assignments at the
drop box and performs linear correlation between the
metrics extracted from each source. A sample of
comparing 25 student assignments in response to the
facilitator request of conducting the plagairism test.
This test reveals that with a treshold of 0.9
correlation we can identify to suspect cases of
plagarism (S20 with S9 and S24 with S18). Indeed
changing the threshold may reveal other cases
(Fig. 5). One can choose an empirical threshold
which can indicate which pairs are likely to indicate

J. Computer Sci., 1 (1): 83-88, 2005

 88

suspected cases of plagarism. This is one of the
future modifications that we are working on.

CONCLUSION

This study introduced an attempt to design and
deplore a plagiarism portlet within an existing
campus learning portal. The Java Portlet API is used
for this purpose. It provided a new pluggable user
interface components that produce a modified
presentation layer to learning portal. The plagiarism
metrics used are simple Java-based attribute-counting
measures. More experiments are required to judge the
suitability and accuracy of these metrics. The
reusability of the plagiarism portlet is an advantage
which can be used with other application such as the
deep crawlers used for detecting cyber-plagiarism
[7].

REFERENCES

1. Karrer, A., 2000. Building a learning portal.

Learning Circuits OnLine Magazine,
www.learningcircuits.org.

2. Stefan H. and S. Hesmer, 2003. Introducing the
portlet specification. Java World J.,
http://www.javaworld.com/javaworld/jw-08-
2003/jw-0801-portlet_p.html.

3. Brad Rippe, 2003. Start developing portals with
JA-SIG uPortal. Java World J.,
http://www.javaworld.com/javaworld/jw-10-
2003/jw-1003-portal_p.html.

4. ALHinai, R.A., 2003. A Plagiarism Detection
Tool Supporting Campus Portal. MSc Thesis.
Sultan Qaboos University, Oman.

5. Parker, A. and J. Hamblen, 1989. Computer
algorithms for plagiarism detection. IEEE
Transactions on Education, 3: 2

6. Fiaidhi, J. and S.K. Robinson, 1987. An
empirical approach for detecting program
similarity and plagiarism within a university
programming environment. Intl. J. Computers
and Education, 11: 1

7. Fiaidhi, J., S. Mohammed and Z. AlKhanjari,
2003. Designing a vortal for detecting Java
programs cyberplagiarism. International
Conference on Internet Computing IC03, Las
Vegas, USA, June 23-26.

