
Journal of Computer Science 1 (1): 7-18, 2005
ISSN 1549-3636
© Science Publications, 2005
�

7

Dynamic Reconfiguration of IP Domain Middleware Stacks to Support
Multicast Multimedia Distribution in a Heterogeneous Environment

Kevin Curran and Gerard Parr

Internet Technologies Research Group, University of Ulster, Northern Ireland, UK

Abstract: Seamless connectivity to multiple wireless networks independently of a fixed point is
becoming increasingly important for mobile devices however wireless networks differ in bandwidth,
size and access costs each requiring protocol functions to enable devices to communicate efficiently. In
addition, due to the divergence of users and applications, traditional stacks are frequently enriched with
additional functionality such as transport protocol functionality, synchronisation and presentation
coding which can lead to a performance bottleneck due to the insufficient processing power and
memory of portable devices. We argue that an extensible middleware is needed to cover small resource
constrained devices to full-fledged desktop computers thus we investigate dynamic micro-protocols
which enable devices to adopt specific protocol stacks at runtime in an attempt to optimise the stack to
the functionality that is actually required by the application thus eliminating additional overhead
functionality provided by generic stacks. A side effect of this is that it allows devices such as PDAs to
offer protocol functions, which would not normally be available due to their memory constraints.
Memory constrained devices are catered for through the deployment of a client-proxy overlay network
where proxies offload processing. The problem of the ‘common denominator bandwidth’ is overcome
through multicast media groups where clients subscribe to different quality of services in accordance
with resource availability and move between groups according to bandwidth availability over time.
Our end result is a Java middleware for multimedia streaming to heterogeneous mobile clients,
utilising dynamic configuration of protocols with respect to application requirements and available
network resources. Performance is increased through application specific tailored protocols and
reducing protocol complexity allows stacks to fit inside the limited memory space of current mobile
devices. We evaluate the dynamic reconfigurability of the middleware and present some new results
from a series of applications utilising runtime adaptation.

Key words: Middleware, Multimedia, Streaming, Heterogeneous Environment, Dynamic Configuration

INTRODUCTION

One application no one can ignore of late is wireless
LAN (WiFi) [1], which is making its way into "hot
spots" throughout the world. In addition, the emergence
of 3G wireless and multiple interface terminals, makes
the need to provide a seamless link between mobile
networks and the wireless LAN network critical. The
Industry’s main players such as CISCO, 3COM and
Microsoft are devoting large research budgets to
delivering protocols that can support any IP access
technology for interworking between Wireless LANs
and mobile networks. For example, if a GSM user
roams into a hot spot, one would need to dynamically
switch onto the WiFi network and likewise, if they
roam out of that hotspot, the network should place them
back onto the GSM network. Along with a seamless
experience, the success of the mobile Internet will be
the ability to deliver personalized services across any
platform, whether it is an IP phone, wireless phone or
the PSTN. A new related concept from Microsoft is the
Windows Powered Smart Displays, flat-panel monitors
that let users interact with their computer from around

the house. When undocked, they use integrated 802.11b
and Microsoft's Remote Desktop Protocol (RDP), a
feature found in Windows XP Professional, to connect
to the base computer. This could be seen as
demonstrating Microsoft’s belief in the 802.11b
standard.
This explosive growth of the Internet and mobile
computing however has brought to light two main
problem areas in delivering high quality multimedia
streams to moving targets. The first problem area is
heterogeneity of client devices and their network
connections with client devices varying from desktop
PCs, notebook computers, PDAs to mobile phones,
with their capabilities also varying along many axes,
including screen size, colour depth and processing
power. Furthermore, they may connect to the Internet
via different networks, such as wired LAN, wireless
LAN or wireless WAN. The second problem area is
mobility of clients, which can be moving while they are
accessing multimedia streams thus allowing network
connections to change from time to time, ranging
from a good (i.e. high throughput error free) network to
a congested network.

����������	
 ����� �� ���7-18��� � � ��
�

� 8

Fig.1: Chameleon Architecture View

The two problem areas described above make it
difficult for a multimedia server to provide a streaming
service, which is appropriate for every client in every
situation. A solution to the problems above, which is
presented in this thesis, is to provide a quality aware
media transcoding middleware which allows clients to
select among a range of media formats and within each
media stream to convert these multimedia streams to
more appropriate formats on the fly if necessary. The
converting process is known as transcoding, which
means converting multimedia streams from one format
to another format. The test-bed scenario used to
evaluate our middleware [2] is the problem of
delivering optimal multimedia streams to a
‘heterogeneous sea’ of memory constrained mobile
devices in fluctuating network conditions through
middleware.

Chameleon–A Middleware Framework: An object-
oriented framework is a skeleton implementation of an
application in a particular problem domain composed of
concrete and abstract classes, which provide a model of
interaction among the instances of classes defined by
the framework. An important characteristic of a
framework is that the methods defined by the user to
tailor the framework will often be called from within
the framework itself, rather than the user’s application
code thus the framework often plays the role of the
main program in co-ordinating and sequencing
application activity. This inversion of control gives the
framework the power to serve as extensible skeleton
with the methods supplied by the user tailoring the
generic algorithms defined in the framework for a
particular application. Chameleon is a Middleware
Framework (so named, as it adapts ‘automatically’ in

���������	
�����

Video

� � � ���

�����

����	
	��
������

 Text
Group

� �� � ��

	����

����	
	��

������

 Video
Group

���	��

����	
	��

������

 Audio
Group

� � � ���

� � 	����� �
������� 	��

��� ������ �� 	�
� �� � � ��	� �� �

� ������ �

�� �

� ���� �

� �� �� �� � �� !�

" ��# �$ �" �� � �� �
� �� �

 Text
Group Audio

Group
Video
Group

� �� � �
�� � ��
� � �� ��

��� � �� �

�	� 	� ��

�� � ���

�� � ��� �

� �� ��� ��

�� �

� ���� �

Ping Data Control Ping Data Control
�# �� %� �& �

' % (� �!�

' �&) !�
* � " �!��� ��

	 � + !
 ������& �

, �+ �%��(��
� & � " �� �# ��

- �!�% (��

$ �
 ���& ��

�. / � & �!�

��& ���%�

	 ��� ����& ���%�� �

0 �� �� !�

	 ��� ��
	 � + !
 ������& �

	 � ��!��
 !�� �	 �
 1 �
�����& � & ��

2 � 3 � � !�!�

����������	
 ����� �� ���7-18��� � � ��
�

� 9

an ‘optimal’ manner to a fluctuating network
environment delivering streaming media), which
supports reconfigurable dissemination oriented
communication [2]. Chameleon fragments various
media elements of a multimedia application, prioritises
them and broadcasts them over separate channels to be
subscribed to at the receiver’s own choice. The full
range of media is not forced on any subscriber, rather a
source transmits over a particular channel and receivers,
which have previously subscribed (to the channel),
receive media streams (e.g. audio, text and video) with
no interactions with the source. Clients are free to
‘move’ between differing quality multicast groups in
order to receive the highest quality (or move to a lower
quality group for the greater good of minimising
network congestion. This is known as Primary Quality
Transformation (PQT). In addition proxies offload
intensive computing on behalf of clients and dynamic
reconfigurable abilities allow new components to be
slotted into live systems. The new components can
perform additional transcoding on streams within each
group. This is known as Secondary Quality
Transformation (SQT). PQT and SQT provide a rich set
of features for the optimal reception of multimedia
flows. Chameleon is packaged with a core API and a
set of Java template classes. The object-oriented design
process produces a hierarchy of classes, from which a
collection of objects is instantiated to build a particular
application. One key idea behind our middleware is the
uniform abstraction of services as well as device
capabilities via proxies as the application-programming
interface.
Chameleon (Fig. 1) addresses the network congestion
and heterogeneity problem by taking into account the
differing nature and requirements of multimedia
elements such as text, audio and video thereby creating
tailored protocol stacks which distribute the information
to different multicast groups allowing the receivers to
decide which multicast group(s) to subscribe to
according to available memory, display resolutions and
network bandwidth availability. Chameleon supports
dissemination of multimedia from a source to multiple
destinations however end-to-end closed-loop control
can be difficult and cumbersome with multiple
receivers, as the slowest receiver will impede the
progress of the others therefore we have adopted an
alternative approach that relies on very loose coupling
between the source and the receivers, i.e. an open-loop
approach, more suited to real-time continuous media.
Multimedia is composed of varying types such as
audio, video, text, control information, etc. Within these
types, exists a multitude of formats such as PCM, JPEG
and MPEG etc. Take the example of a conference
application, where control information and files need to
be transmitted alongside audio and video. The control
information such as who has floor control and files
need reliable transport guarantees, whereas the audio

and video may be transmitted with a differing QoS.
Traditional transport protocols transport the media
types through the same stack. If a video stream is
filtered through the same stack as an audio stream, the
video data will have to adopt the packet size allocated
to the audio stream. Audio in general runs more
efficiently with smaller packet sizes [3].
Isochronous multimedia traffic can tolerate some loss
however data that misses its expected delivery time is
of no use. Therefore it is more efficient to lose smaller
packets than larger packets however, smaller packets
demand increased header processing in routers. Small
packet sizes are not optimal for video data due to the
increased size of the media involved. Using an identical
protocol stack to cater for all these transport types is not
an ideal scenario therefore a more efficient method
would construct optimised protocol stacks for each of
the media e.g. audio, text and video. Maximum benefit
would be achieved if this could be implemented at run-
time to cater for the applications particular preferences.
A traditional stack belonging to a multimedia
application, for example, would send the audio and
video in packets of identical size. Research shows that
optimal audio packets are smaller in size than video
packets [4]. Multiple multicast multimedia groups
provide a finer granularity of control compared to using
a single video/audio/text stream, because a receiver
may subscribe to one or more layers depending on its
capabilities. If a receiver experiences packet loss as a
result of network congestion, moving to a lower quality
multicast group will reduce congestion and hence will
reduce potential packet loss. This is known as Primary
Quality Transformation (PQT). This technique allows
media to be composed into broad bandwidth encoded
qualities thus all a system needs to do to increase or
decrease quality is to move between multicast groups.
The Secondary Quality Transformation (SQT)
technique compliments this technique by providing
fine-grained control of quality within each multicast
group by the insertion of transformations in the stream
such as compression. The application of multiple
multicast group streaming techniques to mobile devices
allows the allocation of resources based on local
specifications and priorities. Multicast group streaming
enables receivers to change the quality of the stream
they receive, independently of one another without the
source being aware of the change. Considering the
feedback problems of multicast, this is a useful property
and fits well with an open-loop approach to congestion
control of high-speed networks, as when network
congestion arises, it is possible to move between quality
groups without interruption in service. Service quality
should only be slightly reduced however; this technique
can be highly effective as a last resort for congestion
control. Priorities can be assigned to each multicast
group to allow streams to be protected against
competing streams. This is an application level QoS

����������	
 ����� �� ���7-18��� � � ��
�

� 10

scheme and can be implemented easily in Chameleon as
all streams pass through a proxy. Pre-set priority levels
overcome many problems associated with streaming
over wireless links. Atmospheric conditions, physical
obstacles, electromagnetic interference and other
phenomena interfere with transmissions over wireless
channels, ultimately introducing bit errors. Long lasting
error bursts can severely impact upon applications,
causing video frames to be dropped, thus effectively
lowering the perceived quality. Chameleon supports the

seamless operation of real-time streams over wireless
links by assigning a priority and a portion of the link’s
resources, which are protected from being used by
lower priority streams. As Chameleon is an open-loop
system, a segment with its size defined by the
application, is an independent piece of information. We
expect that many multimedia applications, guarantees
of reliable delivery will not be necessary for various
media component types and some segments could be
dropped at times of heavy congestion.

Fig. 2: Architectural Overview of Chameleon Components

Fig. 3: Chameleon Multi-stream Server

4 0 5�. / � & �!�

� 	���� �

����� ���

� �� � �� ��

����� ���

� ����� ��

����� ���

�� � 	�	�� ��

����� ���

�� � ���	� ��

����� ���

����	

 �� �

��� 	�
� ���
��� ������

�����

� � ! ���
� � � ��

�� ���� �� �

� �� � �

� ����

� 	�
� �� �� ���	���

� � �	�� ��� ��	� ��

� � �	�� ��� � ������

� �	��� � ������

$ �
 ���& �0 �� �� !�

	 � !!��& �
� & & �� &
 � �� & �!�

, �& �����2 � !�� �
 � �
� �. & 6��
 � �7 �	 �

� 	�
� ��

����� ���

� � �	�� �� ��� ��
��

����� ���

�� ��
� ��� � ����

, �& ���� �
� # ���) # �� ��

� 	�
� �

� � � ��	� � � �

" ����
� �
���	� � � � �

�� ��
���

� ����
	�� ���

� �����!� �� ���

����������	
 ����� �� ���7-18��� � � ��
�

� 11

In addition, some of these applications may actually be
quite tolerant of delays.
Particularly for lower priority components, applications
would be expected to recover gracefully from loss of
segments, or adapt to changes in the delays of their
arrivals. Performing transformations on multiple
streams is suited to the approach of a source
transmitting multiple coded media streams from which
the receivers pick according to their individual
specifications and capabilities. The benefit of this
approach is that there is reduced complexity due to the
absence of feedback control mechanisms, which are
often redundant for continuous media. Here the
source’s main concern is to deliver various media
streams onto a multicast channel, with no emphasis on
where they end up and how they are used. A client’s (or
receiver’s) main concern is what to extract from a
channel, which is viewed as offering multiple streams,
some or all of which are of interest. We believe this
communication paradigm is appropriate for multimedia
distribution services such as video-on-demand systems
where a single source generates video (and associated
audio) distributed to a large set of receivers who
generally have little or no interaction with the source.
Chameleon addresses application, application control
and transport layers (Fig. 1). The application layer
consists of the multimedia application (e.g., a video-on-
demand application) which is responsible for retrieving
the stored audio/video file with captions/subtitles
(multilingual), composition at the sending end and the
audio/video client which is responsible for decoding
and displaying the video frames at the receiving end.
Application control consists of a media filter at the
sending side to demultiplex each stream into several
sub streams and media filter at the receiving end to
multiplex back one or more sub streams for the
audio/video client. These multiplexed streams
(transport layer) differ from common practice in that
these streams are not logically grouped together and
shipped over the wire. Instead, the media elements are
divided into audio/video/text by the event filter and
distributed to separate groups in accordance with
application layered framing practice and then the
receiving filter directs the streams to the relevant media
application, thus the streams retain their distinctiveness.
Media may be stored in separate files on the server and
so that there is no need to split the media in real-time.
The application media filter receives events from the
application which may categorised them as text, audio
or video. A session manager is consulted to see how
many groupings of each category are required. The
normal is one for text and three each for audio and
video. The text stack is composed as a reliable stack.
The audio/video stacks are both UDP differing in
default packet size and header sizes. Each media is sent
to separate multicast groups where the well-known

addresses are obtained from the session manager. Each
of the three sub-groups of audio and video will require
a separate multicast address. Since the network load
changes during a session, a receiver may decide to join
or leave a multicast group, thereby extending or
shrinking the multicast trees.
Channels are a multicast medium into which sender
applications basically ‘push’ streams and to which
receivers can subscribe to receive those streams. With
increasing scale, dissemination actually saves
bandwidth because it eliminates the flood of duplicate
requests and responses when multiple clients all request
the same stream. Multicast communication allows
applications to be relocated from one machine to
another and to distribute data from one sender to many
receivers efficiently also catering for fast and slow
receivers. Publishers (i.e. Senders) and subscribers (i.e.
Receivers) must conform to a public interface. The
active network proposals target network
programmability without being content-aware.
Chameleon, in contrast targets content-aware
application-level programmability. The rapid increase
in media types necessitates a network infrastructure that
allows clients and servers to be free from media
dependency and burdens of managing content and
client heterogeneity. This can be extremely important
for streaming media because of its demanding resource
requirements for processing, translation and
transmission thus middleware must combine media
awareness with a high degree of intelligent adaptivity in
order to truly serve heterogeneous clients. Clearly, the
requirement for uniform access of device capabilities as
well as remote services can be easily established by our
approach. The micro-kernel [5] allows the flexible
integration of new transport plug-ins and device
capabilities by simply registering a new entity, which
accepts an invocation. This allows the provision of
access to all features available on resource-rich
computer systems. The minimal functionality of the
adopted protocol stacks allows the deployment of the
middleware on resource-poor devices as well. The
uniform reduced instruction set programming
abstraction is provided by the service abstraction for
remote service network access and device capabilities.
The middleware allows protocols to be dynamically
loaded & configured through the invocation abstraction.
The middleware is implemented in Java allowing it to
be deployed on all platforms for which a VM exists
including specialized Java processors.

Streaming Server and Multicast Group
Management: A media-streaming Java server delivers
multiple multicast media streams to clients. We adopt
the industry-standard Real-Time Protocol/Real-Time
treaming Protocol for default web casts. This ensures
that no file is ever downloaded to a client’s hard drive,

����������	
 ����� �� ���7-18��� � � ��
�

� 12

Fig. 4: Multi-Layer Adaptive Architecture

Fig. 5: Architectural View of SQT in the QoS Scheme

Fig. 6: Primary and Secondary Quality Transformation

 � ��� � �#

$ 	� �� ����

� %

" ����

� �� �
��� �� �	� �

" �# �� �� �

 ���

�� ! ���
� ���� �

&'
�$

Colour 30 fps, 800x600

Colour 30 fps, 800x600

(
�$
�� ���
) � � � �� ��� � �

�� ���� �

�� � ��	� �!� $ ���
 ����	� �% �� � �

� �� �
��� �� �	� �
! �# �� �� �

Colour 15 fps, 800x600

(
�$

�� ���
*� � + � � �� ,
) � � � �� ��� � �

&����
� � ��	� �

��' % ��

-. /
��*�

&����
� � ��	� �

(��
� ��) �* � �	��

� ���	��

% �	����

 �	� � 0� ��	��� � �

�%

" ����

��) � � �	��

% �	����

 �	� � 0� ��	��� � �

+�	���,�
� �� �
��� �� �	� �

! �# �� �� �

Colour 15 fps, 800x600

B&W 15 fps, 800x600

�%�� & ��� �

� 	�
� �� � � ��	� �� �

�� � ���
+ �� � ��) �

, �) �� �� �
�	# ��

��� � ��$ �����

!�� ���

�%�� & ��� �

��� � ��$ �����
!�� ���

	 � �/ � ��

��� � ��$ ����

!�� ���

' ��� (�

� ��
�	�� ��

!�� ��

� ��
�	�� ��

!�� ��
 � ��
�	�� ��

!�� ��

 � � �

��
� �	�
	�����

% �����	��� � �� � 	�� ��

� �	��� ����	�
�

• !� $ �- 	�����	�� ��

!� �� �&��� �
(���	������

� � � �	.&��� �
(���	������� 	�	��	�
����

• � 	�
� ��	�
��� � ����

• � � ���
	�����	�� ��� ����
��	�
�

• �� � ����� ��� � �	�� ��

• � � ��
��� �	��� � �	�� ��
�

' ��� ��� �
� � ��� �
&�
� ��� ����

� � �� ���� ��� &�

• ��
� �	�!� �����

����������	
 ����� �� ���7-18��� � � ��
�

� 13

which is essential if we are to target resource
constrained mobile devices. Therefore, media is played,
but not stored by the client software as it is delivered.
The server can transmit through IP multicast or unicast
depending on whether the URL denotes a multicast
address or not. Multicast is recommended in order to
achieve the full functionality of Chameleon and the
performance benefits (including bandwidth savings).
Each video stream can be sent through a live web cam
feed using a Capture component or else a stream -
retrieves a media sample from a series of pre-stored
media clips.
In either case, the media is then filtered though an
encoder for compression. The compressed data is
returned to RTP.Processing, which forwards it to the
framing component for packetisation. The Transmission
Application component delivers it to the network layer
for transmission. Media files have certain attributes
such as encoding type, frame size, frame rate and the
data type and these have an effect on the quality and
size of the file created thus Chameleon allows new
content developers to expand the capabilities of the
framework to handle MPEG-4, QuickTime movies with
Sorenson Video and even user-added QuickTime
components like On2’s open-source VP3 or Apple’s
optional MPEG-2 component [6]. This should provide
the video quality required for a commercial application.
A multi-stream server (Fig. 3) was developed using the
Chameleon API to facilitate multiple multicast group
streaming. Any streams, which have no active
receivers, will be suspended after a pre-specified time
to conserve network bandwidth. The Stream Manager
(SM) is loosely modelled on sd – Berkeley’s MBone
Session manager [7]. The SM is responsible for
announcing and scheduling sessions. Another point
worth noting is that with traditional middleware, a
client needs to obtain an object reference via a highly
available naming service or registry in order to invoke a
remote object.

Stack Management: Central to providing an adaptable
QoS is the ability to maintain multiple protocol stacks.
A protocol stack consists of a linear list of protocol
objects and represents a quality of service such as
reliable delivery or encrypted communication. The
framework provides the services necessary for
supporting new communication protocols and qualities
of service. Chameleon consists of a set of Java classes
for representing Uniform Resource Locators, protocol
stacks, the framework API and media packet objects
similar to Horus [8]. Chameleon stacks however, have
the ability to be configured at run-time. The protocol
stack uses micro-protocols in its implementation where
each micro-protocol (or layer) enforces a part of the
quality of service property guaranteed by the protocol
stack as a whole. Creating a layer for each property and
stacking them on top of each other achieve the

properties desired by the user of a stack as each layer
contains the same interface.
We argue that synthesis of ‘fine grain’ protocol
functions should replace the coarse grain protocol
design of traditional protocols (e.g. TCP Reno). We
argue that the integration of all the application
communication requirements (including transmission
control, synchronisation and presentation encoding) in a
single optimised protocol graph will result in increased
performance, which is in line with the ALF
architecture. The protocol profiler is used to configure.
a protocol that satisfies the optimal protocol
configuration as defined in the profiler for each media.
Protocol functions such as acknowledgements, flow
control and check summing are located within the
Chameleon source code ‘tree’ as separate classes.
Given the timeout and retransmission mechanisms of
reliable transport protocols, each class is multithreaded
with each protocol configuration being a protocol
graph, which defines a set of stack elements and their
relations. Stack elements are implemented in classes
with each class encapsulating a typical task such as
error control, flow control, encryption or decryption.
Normally, there are several classes available for a
protocol function (e.g., a system may implement a
FIFO or a LIFO queuing algorithm in the end-system
buffer). All layers in chameleon implement the layer
interface, which means that a developer will only need
to see the interface class. In order for a client to be able
to receive, decompress and/or decrypt data, it may need
to download the appropriate layer(s) from a central
repository. These layers are downloaded through Java
serialisation where it can be cast (on the client) using
the layer interface and appropriate methods called thus
removing the need for client software to be bundled
with all layer classes. This ensures that clients can use
protocol functions, which were not available at the time
the client software was published. A message sent by
ProtocolStack is passed to the protocol stack, which in
turn forwards it to the top-most layer. All layers
perform some computation and pass the message on to
a layer below with the bottom-most layer placing the
message on the network. In the opposite direction, the
bottom-most layer of a protocol stack will receive a
message from the network and pass it on to the next
layer above where this layer performs some
computation and passes it to the layer above it. The
message will be removed when Stack.Receive is called.
Layers can add protocol specific data, such as a
checksum or a key for encryption at any stage. The
Protocol Profiler according to a properties argument
defined when creating an instance of Stack creates
protocol layers. The middleware is designed to meet
only the minimal definition of multicast and if the need
arises, machinery to enforce a particular delivery order
can be easily added on top of this delivery service.
Distinct media formats deserve distinct transportation

����������	
 ����� �� ���7-18��� � � ��
�

� 14

treatment. Proxies filter the data depending on the
source data stream e.g. audio (Microphone), Video
(Camcorder) or text (File transfer) and composes one of
a library of protocol stacks suitable for transmission of
the media. The result is that separate streams from the
same application are multicast to the same IP group
address and filters recompose the streams into an
integrated application. Protocol stacks can be compiled
as late as run-time depending on the need for re-
adaptability.

Adaptation Management: Modern distributed
applications, such as enterprise computing and mobile
multimedia applications encounter unpredictable
environments due to user mobility and varying resource
availability. To adapt, systems must identify the need
for a change, decide on the change and implement it in
a timely manner. This section deals with adaptation
within Chameleon. Adaptation can occur at multiple
levels (Fig. 4). For instance in the case of streaming
media, adaptation can take place in the application layer
by increasing the compression, decreasing image size or
transcoding the stream to mono. At the middleware
layer, the server source for the stream could be changed
or frame filtering could be introduced into the path.
Another scenario might be where high bit rate errors are
encountered over wireless links and some sort of
forward error correcting module is injected into the
path.
Chameleon adopts a centralised adaptation architecture
where system monitor components are embedded in the
application components and/or middleware. A
centralised System Resource Decision making
component periodically receives event information
from these monitors and reacts according to QoS
policies defined by the system administrator. The
adaptation process repeats a cycle of estimating,
deciding and acting with the use of observation
variables, which capture relevant aspects of the system
status. Once of the more commonly used observation
variable is throughput. Monitors are components that
aid the Decision Making Component in implementing
the decision to restore the system to a desirable state of
operation. These components may be built into the
application layer or the middleware layer (Fig. 4). Due
to the nature of next generation communication
networks using different kind of wireless access and
added mobility, applications will have to react rapidly
to variations in resource availability. To cope with
temporarily unavailable network resources, multimedia
applications have to be elastic in adapting media
representations without excessively sacrificing the
perceived quality of service. To address both mobility
and QoS issues, two alternative but complementary

architecture solutions have been identified. The first
approach purely leverages existing protocols and
components defined (or being defined) by the IETF and
tries to provide the necessary extensions to them. The
choice of this organisation is due to the fact the
Chameleon architecture is IP-centric and so therefore
no modifications of existing applications are needed.
The second approach presumes instead the availability
of some middleware, which is providing the major
functionality for dealing with mobility and QoS issues,
as well as offering several Application Programming
Interface (API) functionalities for to-be-developed
applications. Both viewpoints are therefore synthesised
in a modular fashion, indicated by different types of
application classes in the architecture. There are likely
to be lots of variations and developments at the lower
levels and the lower layer protocols will only provide a
certain level of QoS that needs to be enhanced for many
applications. Hence the need for a middleware layer to
provide suitable abstraction from the networking layers
and facilitate session layer QoS processing. Mobile
terminals moving into regions with low signal quality
or handing-off to new access points, may violate the
QoS contract with the network, which can cause the
frequent dropping of connections. This requires QoS
adaptation and even re-negotiation. All these conditions
require the applications to be adaptive in a sense that
applications have to react to varying resource
availability inside the network and the end systems.
In order to simplify the programming of mobile
broadband applications and to allow for support of
dynamic QoS changes, these active adaptation
mechanisms should be hidden to application
programmers. The idea of shifting adaptation
mechanisms from the application level to a flexible
middleware featuring QoS functions will thereby result
in simplified application development for mobile
environments. The goal of Chameleon is to allow any
kind of application to get the desired level of support
from the system in other open environments like the
Internet. Fig. 5 illustrates where SQT fits in relation to
common approaches to providing network QoS. For
instance, the Primary Quality Transformation algorithm
assumes responsibility for coarse grain adaptation
decisions. This involves moving between multicast
groups upon violation of group bandwidth limits.
Secondary Quality Transformation assumes
responsibility for responding to quality fluctuations
within each group. The SQT technique works through
the use of transcoder mechanisms, which transform the
data as it flows through the proxy. Transformations
could include downgrading a full colour 30fps AVI
movie to a Black and White 15fps MPEG movie as
illustrated in Fig. 6.

����������	
 ����� �� ���7-18��� � � ��
�

� 15

Fig. 7: Quality Adaptation Domain

Fig. 8: Adaptation Algorithm

Fig. 9: Stack Reconfiguration Algorithm

PQT with priority relies on third party traffic being
disabled (or rate controlled). This can be achieved
through the technique of blocking ports. Traffic types
within Chameleon are assigned port numbers to
designate media type and these work alongside the well
know port numbers assigned to traffic such as FTP,

TCP etc. in order to bring about prioritised media traffic
streams.
Figure 7 depicts an illustration of a media stream
subscribed to a medium quality multicast group. This
group broadcasts media ranging in quality from 400k to
1000k. The group at both the low end and the high end

Traffic
Bandwidth

Group Max BW
Boundary

� %

+ �� �� �

� %

+ �� �� �

�%

+ �� �� �

Group Min BW
Boundary

Group Min BW
Danger Region

Group Max BW
Danger Region

4 ��� ��, �& �� � �� �� & � �(�� ��% ���& �

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Time

400K

600K

800K

1000K

(�/ �012 �� � ��� ��� ��" ��	���� �+3 114 ,

&�� ��+�,

�� ����� ���(��� $ �� 	�

3 1

(��� $ �� 	�

4 � �	����

3 11

��/ �512 �� � ��� ��� ��! ��	���� �+614 ,

01 7 1 8 1 9 161

&�����
�(��� $ �� 	�

51

9 1

8 1

01 (
6

��
� 6

��
�

&

(

1
-

2

�

' ��� ��	�$ �	� �� �� � ���� ����	�

: ��

Upgrade Reconfiguration Downgrade

(��� $ �� 	� �;� �� � �� <

� � ��� ������ ��
�� �	��
��

!� �� �� 	�
� ���� �����

� $ � �� 	�
� �' ��� ��	�

� � �	������= �
�	�� �

: �� > �

' ��� ��	�$ �	� ��� $ ���� ����	�

!� �� �� 	 �
� ���� �����

� $ � �� 	�
� �' ��� ��	�

: ��

> � > �

����������	
 ����� �� ���7-18��� � � ��
�

� 16

of the scale contains a 100K ‘danger’ region.
Monitoring within the danger area and violations are
handled by PQT whilst monitoring with the 400K
interim regions is handled by SQT. The adaptation
algorithm is the proxies’ responsibility for deciding
whether a PQT group move should be made or if an
SQT filter should increase or decrease bandwidth. A
measurement of the current packet loss rate is recorded
using a sliding window of variable length S packets.
Take the case of a stream, which is receiving the lowest
quality of media (e.g. black and white CIF video over a
wireless bandwidth). If the client reconnects to the
LAN, the bandwidth manager will record increased
packet delivery beyond a certain threshold for a certain
period, as specified in low->high util‰ (increase from
B&W CIF to Colour) and ave interval‰ (average)
parameters. The client may also return to mono video
(lower quality) when the data traffic activity yet again
has fallen below a certain threshold for a certain period,
as specified in high->low util‰(decrease from high to
low) and ave interval‰. Adaptation occurs dynamically
on an 'as needed' basis with all threshold points being
defined in the Session Manager’s stream profiles.
Threshold points are flexible and allow the definition of
adaptation points such as how long traffic is to remain
at a specified percentage level before renegotiating
QoS. Fig. 8 illustrates reconfigurability where point 1
shows when data reaches the traffic load percentage
value.
The volume of data has reached the percentage value
that has been set on low->high util‰. In this particular
case, data volume must exceed 80% volume for a
certain length of time, as in ave interval‰ before the
low quality stream can move to a higher quality stream.
Point 2 marks the point at which data volume has
exceeded the traffic load percentage value for five
seconds. The clients now receives video at the higher
band rate automatically and continues doing so open
until data volume drops below a configurable level as in
parameter high->low util‰. At point 3 in the diagram,
traffic decreases temporarily before increasing again.
Because bandwidth requirements can change suddenly
like this, the algorithm waits for a period of time before
readapting. In the above diagram, this value has been
set to 5 seconds. At point 4, data drops below the lower
traffic load percentage value (20% of 100K). Because
traffic volume must remain below this threshold for a
certain length of time, the client does not revert to
receiving the lower quality stream until point 5 (5
seconds later) has been reached.
The primary quality transformation is conducted by
PQT while finer grained quality transformations are
performed by SQT using transcoding techniques. SQT
compliments the PQT technique and its machinery is
discussed elsewhere with regards filters etc. The
algorithm for the SQT is similar to the PQT with the
primary difference being SQT invokes a
transcoding/filtering transformation on the existing

steam rather than move to a multicast group providing
higher or lower quality. The reconfiguration algorithm
is illustrated (high level) in Fig. 9. Data is lost for the
duration of a protocol stack reconfiguration when
transporting RTP/UDP message streams. TCP message
streams do not result in lost data. Upon activation of the
reconfiguration algorithm, certain activities may take
place such as transforming the media to another type in
the media hierarchy; reduction of the quality of the
attached media stream in order to improve down load
time; altering the dimension of media which are scaled
in the X, Y dimension such as audio in terms of
amplitude or tone and finally, lossy or non-lossy
compression of media which benefit such as text, wav,
postscript etc. At present, adaptation is performed in an
ad hoc manner.

Evaluation: Distributed multimedia applications
require efficient data throughput in order to serve up
reasonable viewing to end users. As previously
discussed, this is not always possible in mobile
heterogeneous environments therefore adaptation of
media under variable resource constraints is a means to
maintain an optimal quality level. Chameleon utilises a
proxy to perform adaptation of streams in order to
provide an enhanced viewing experience for mobile
clients. The expected benefits from this adaptation are
to move computation from the client to the proxy and in
addition to reduce the volume of data transferred to the
client. This takes place by modification of the
streaming media in real-time. These modifications can
have a significant impact on the quality of media
received. This set of experiments is an investigation
into one aspect of dynamic video adaptation. Here a
performance evaluation of the ability to perform
dynamic runtime adaptation of multimedia is
conducted. Mobile terminals differ in terms of
processor and display capacities thus displaying a video
encoded for a desktop machine on a PDA can be
inefficient. The PDA in this case is required to resize
the video on the fly in order to display it. This
reconfiguration can require more CPU power than is
available on a particular PDA for the task. Thus, this
experiment aims to demonstrate the benefits of adapting
video on a separate proxy in order to allow for the
limited processing and display capabilities of modern
PDA’s.

Experimental Parameters: For these experiments, a
Media Server was connected to a Proxy over a 100MB
Fast Ethernet segment which was connected to a Sony
Vaio PCG-C1VE sub-notebook (simulating a PDA)
over an 802.11b WLAN connection. The WLAN was a
direct-sequence spread spectrum radio network with a
raw bandwidth of 2 Mbps and a range of 100 meters.
The PCMCIA card operated in the 2.4 GHz band and
application throughput was approximately 1.2 Mbps
with round-trip times averaging 6 ms. The WLAN was

����������	
 ����� �� ���7-18��� � � ��
�

� 17

, �� 3 �	� ��
4 �	��
+ 	��

1

6

3 1

3 6

01

06

7 1

0 5 3 8 01 09 7 0 7 5 8 8 61 69 9 0 9 5 ? 8 51 59 @ 0 @ 5 3 1
8

3 3
1

3 3
9

&�� ��+��
,

A
��

�
��

�
�	

�
�� � 	��
- ��� � 	��

Fig.10: Displayed Frame Rate over 802.11b

!� ���� �	��

1
6

3 1
3 6
01
06
7 1
7 6
8 1
8 6
61

0 5 3 8 01 09 7 0 7 5 8 8 61 69 9 0 9 5 ? 8 51 59 @ 0 @ 5 3 1
8

3 3
1

3 3
9

&�� ��+��
,

2
��

�

��

	�
�!

��
	

�� � 	��
- ��� � 	��

Fig.11: Impact of Adaptation on Loss Rate over 802.11b

idle except for the traffic generated by these
experiments while the Ethernet was moderately loaded
by regular use. The server distributed the video to the
proxy over the Ethernet connection and the proxy was
connected to the client over the WLAN. The proxy ran
the adaptation middleware which forwarded the
transcoded video to the client which ran the Chameleon
viewer application.

 CIF to QCIF Dynamic Transformation
Experiment: To demonstrate the benefits of dynamic
adaptation, a series of streaming broadcast tests were
performed over a 2 Mbps 802.11b network to the client
where no adaptation was invoked. The stream was
broadcast from the Chameleon server to the proxy and
onto the mobile client. This stream was a H.261 CIF
encoded at 25fps. The achieved Frame Rate for this
unadapted stream can be seen in the bottom line of
Fig.10. The percentage of packets lost for the unadapted
stream can be seen in the top line of Fig. 11.
A series of tests were then conducted with the
adaptation proxy in place. Here the H.261 CIF stream at
25 fps was forwarded over the Ethernet to the proxy
who resized the video to QCIF (176x144) and reduces
the quality by 20%. To demonstrate any benefits from
this adaptation, measurements of the loss rate, frame

rate and data rate were performed on the client. Fig. 10
illustrates the displayed frame rate on the client when
adaptation is performed and when adaptation is not
performed. It shows that the client’s reception of video
is dramatically improved when the CIF stream is
reduced to a QCIF stream. This is more than watchable
on a PDA and most PDA’s are incapable of displaying
a larger picture. When the CIF stream is forwarded to
the client without transformation into a QCIF screen
size, the frame rate averages out at only 5-7 fps. The
22-25 fps achieved through the proxy transcoding is a
more desirable experience. The transformation results
in the original frame rate being achieved by the client
howbeit at a reduced screen size.
Figure 11 shows the measured loss when no adaptation
is invoked. Here the loss rate averages out at 40-45%.
Packet losses can be caused as a result of network
congestion but here the cause is due to the processor
overload. Due to the limitations of the PDA screen, the
original CIF stream must be resized to fit on the CIF
sized screen thus valuable processing time is taken from
the application thus causing high packet losses and
increased processing. When adaptation is invoked, it
can be seen that the percentage of packets lost averages
out at about 4-6%. There can be multiple wireless
clients downstream awaiting the output from the

����������	
 ����� �� ���7-18��� � � ��
�

� 18

transcoding session so the transcoding operation will
only need to be applied once but the filtered stream will
be replicated to multiple clients.

CONCLUSION

Here we have demonstrated that adaptation
significantly improves client performance and network
resource utilisation. The MAC (CSMA/CA) layer
prevents any node from constantly transmitting,
resulting in a highly variable and oscillatory loss rate
for the streaming media application as expected from a
highly utilized wireless channel. It is clear that by
employing adaptation the loss rates are reduced
(averaging 40%) and a more stable channel is seen by
the application. As mentioned previously many
handheld devices such as smart phones are incapable of
displaying video beyond the QCIF format therefore it is
wasteful for these clients to attempt to receive the larger
original encoding streams. The role of a proxy in
reducing the original stream to a more suitable reduced
format should not be under-estimated. This experiment
demonstrates the power of middleware which can
utilise proxies to offload re-encoding of video in order
to achieve a higher satisfaction level when viewing.
This experiment re-enforces the usefulness of proxies in
filtering media prior to distribution over bandwidth
limited links to resource constrained clients. Chameleon
can provides this functionality and this set of
experiments proved the usefulness of such an approach
to overcoming the limited resource capabilities of
modern PDA devices and indeed the limited resources
of some wireless connections. Chameleon provides
support for heterogeneous clients by placing
transcoding modules inside stationary proxies. This
transcoding has been done on off-the-shelf hardware
with a limited number of supported clients.

REFERENCES

1. Ross, J., 2003. The Book of Wi-Fi: Install,

Configure. and Use 802.11B Wireless
Networking. No Starch Press; ISBN:
188641145X .

2. Parr, G. and K. Curran, 2000. A Paradigm Shift
In the Distribution of Multimedia.
Communications of the ACM, 43: 103-109.

3. Modiano, E., 1999. An adaptive algorithm for
optimizing the packet size used in wireless ARQ
protocols. MIT Lincoln Laboratory, Lexington,
MA 02420-9108, USA. Wireless Networks, 5: 4.

4. Society of Cable Telecommunications Engineers,
Inc., 2000. Audio codec requirements for the
provision of bi-directional audio service over
cable television networks. Data Standards
Subcommittee Document: SCTE DSS-00-01
December 15, 2000.

5. Rashid, R., D. Julin, D. Orr, R. Sanzi, R. Baron,
A. Forin, D. Golub and M. Jones, 1989. Mach: A
System Software kernel. Proceedings of 34th
Computer Society International Conference
(COMPCON).

6. Quicktime, 2003.
http://developer.apple.com/quicktime/qtjava/

7. Handley, M., 1997. The SDR Session Directory.
Tech Report: University College London.
http://mice.ed.ac.uk/mice/archive/sdr.html

8. Maffeis, S., 2002. Mobile Services for Java-
enabled Devices on 3G Wireless Networks. In:
World market Research Report, 2002
http://www.softwired-
inc.com/people/maffeis/publications.htm

