
Journal of Computer Sciences 1 (4): 482-487, 2005
ISSN 1549-3636
© Science Publications, 2005

Corresponding Author: Souheil Khaddaj, School of Computing and Information Systems, Kingston University,
 Kingston upon Thames, Surrey KT1 2EE, UK

482

A Proposed Adaptable Quality Model for Software Quality Assurance

Souheil Khaddaj and Gerard Horgan

School of Computing and Information Systems, Kingston University,
Kingston upon Thames, Surrey KT1 2EE, UK

Abstract: Many of the early quality models have followed a hierarchical approach in which a set of factors
that affect quality are defined, with little scope for expansion. More recent models have been developed
that follow a 'Define your own' approach with locally tailored factors. The aim of this study is to present a
new model to software quality assurance which addresses the problems of theses approaches and includes
quality factors that represent a common set of criteria while allowing tailoring to a local environment. In
addition the proposed model allows the quality factors to be determined and analysed in an integrated,
adaptable fashion.

Key words: Quality modelling, quality measurement, quality assurance

INTRODUCTION

Quality is a multidimensional construct reflected

in the quality model, where each parameter in the
model defines a quality dimension. A metrics
measurement-based framework, linked to a quality
model, is a requirement for effective software
production and quality[1]. Many of the early designs
of quality models have followed a hierarchical
approach in which a set of factors that affect quality are
defined, with little scope for expansion. Early efforts
include the Factor Criteria Metric Model[2,3] and the
Hierarchical Quality Model[4]. Problems with these
models include bias towards maintainability and
reliability, non-independent factors and little
recognition of different quality requirements for
different projects[2,5,6].

In order to address these issues, models were
developed that follow a Define Your Own Approach[7],
in which a collective decision is made between the
developers and the users, as to what attributes constitute
quality. The major problem with these approaches is the
lack of comprehensive guidelines to produce a
consensus view of quality attributes and the inability to
provide common quality criteria, due to their tailored
nature.

The aim of this study is to present a new approach
to quality modelling which seeks to combine these
modelling approaches, whilst resolving conflicts of
opinions of quality, so that quality measurement can be
both tailored to a local environment and potentially can
be compared across projects. This approach forms the
basis of the Adaptable Quality Model, or ADEQUATE
for short.

THE ADEQUATE QUALITY MODELLING
APPROACH

A key to successful quality measurement is to

identify those opinions of individuals that are deemed
the most important, since these individuals have the
most control over the quality of the final product. These
opinions are referred to as Essential Views and are
determined by examining an individual's expected use
of the product, their experiences in developing or using
similar products and their overall influence on project
decisions. By concentrating on removing conflicts of
opinion between the Essential Views, a consensus can
be reached as to what properties constitute quality and
how quality should be measured.

A pictorial representation of the ADEQUATE
approach is shown in Fig. 1. The properties that
constitute the 'explicit and/or implicit attributes' of
quality form a set of Key Quality Factors and a set of
Locally Defined Factors. The Key Quality Factors
represent global quality criteria, ie factors that are
required of all products. The Locally Defined Factors
represent local quality criteria, ie additional factors
identified by the Essential Views and are appropriate

Fig. 1: The ADEQUATE approach

J. Comp. Sci., 1 (4): 482-487, 2005

483

only to the current product being developed. In this
way, the KQFs represent a common set of criteria that
can be used for cross-project comparisons, whilst the
LDFs retain the ability to allow local tailoring. The
KQFs also act as a catalyst for enabling the Essential
Views to identify other criteria of interest (Which form
the LDFs).

The key quality factors and locally defined quality
factors: In total, seven KQFs are defined. These are
Maintainability, Usability, Cost/Benefit, Security,
Reliability, Timeliness and Correctness.

Maintainability is defined as the ability of a
product to be modified. It is included as a KQF
primarily due to its perceived importance in other
models[2,4,8-10].

Usability is defined as the ability of a product to be
used for the purpose chosen. It is a factor that is also
considered important in other models[2,8-10]. If a product
isn't usable, then there is little point in its existence.

Cost/Benefit is defined as the ability of a product to
satisfy its cost/benefit specification. The Costs and
Benefits involved in a product's creation, should be a
major consideration[11]. If the costs are high and the
benefits of its development are low, then there is little
point in developing the product.

Security is defined as the ability of a product to be
defended against unauthorised use. Data and
information are one of the most important properties to
a company. Security, therefore, should always be given
a high profile.

Reliability is defined as the ability of a product to
reproduce its function over a period of time and is also
included in other approaches[2,8-10].

Timeliness is defined as the ability of a product to
meet delivery deadlines. If a product is delivered late,
then it may have good quality aspects, but customers
may rightly consider it to be of lesser quality than
products delivered on time. It is important, therefore,
that there is a focus on delivery requirements 'up-front'.

Finally, Correctness is defined as the ability of a
product to meet and support its functional objectives.
Other models also include this factor[2,4,8-10,12]. If
software doesn't meet its objectives, it may be delivered
on time, but no-one will use it.

The factors for the KQF set were chosen for their
obvious importance, people tend to resist plans with
many quality factors, due to limited resources or tight
schedules. In fact the ISO/IEC 9126 model at the
highest level uses six factors[13]. Based on previous
research[14], the number of key factors should be kept
between three and eight.

The LDFs are not a replacement for the KQFs.
Instead, they define additional quality criteria. No LDFs
are explicitly provided with the ADEQUATE model,
since each project may or may not have its own set of
LDFs. Their identification and inclusion is entirely the
responsibility of the Essential Views.

Conflict handling and the essential views: Since
quality factors depend on many different views, it is
necessary to derive methods for determining the
Essential Views from the collection of individuals
associated with a project. It is envisaged that the overall
project manager, in consultation with experienced
colleagues will be responsible for identifying the
Essential Views.

Having identified the Essential Views, any
conflicts of quality opinions between these views needs
to be removed. Many existing conflict resolution
mechanisms[15] presuppose relationships between views
and relationships between criteria and views. The
conflict removal mechanism chosen in the
ADEQUATE approach consists of two stages. First, the
relationships between each quality criterion (Whether it
be a KQF or an LDF) is identified in order to
understand the quality constraints and understand what
quality can and cannot be achieved in the final product.
Second, the required goals for each criterion is
established based on the relationships identified. Both
these steps are performed by the Essential Views.

The relationship chart: The first step of the conflict
removal mechanism is implemented by use of a
Relationship Chart[2]. The chart displays graphically the
relationships between quality criteria as a first stage
towards measuring the criteria and provides the basis
for constraints on what can be achieved.

In the Relationship Chart, each criterion is listed
horizontally and vertically. Where one criterion crosses
another, the relationship between those criteria is
specified. For KQFs, the relationships are fixed; they
are standard. This is because the set of KQF criteria
does not change, therefore the relationships between
each KQF criterion does not change. Across different
projects, however, different LDFs may be used. The
Relationship Chart (Fig. 2), therefore, shows the
relationships between each LDF criterion and each
KQF criterion and also the relationships between each
LDF criterion and each other LDF criterion.

Given two quality criteria, Criterion A and
Criterion B, the possible relationships between these
two criteria are as follows : 1) Neutral: An
improvement to the quality of Criterion A is unlikely to
affect the quality of Criterion B. 2) Direct: An
improvement to the quality of Criterion A is likely to
cause an improvement to the quality of Criterion B. 3)
Inverse: An improvement to the quality of Criterion A
is likely to cause a degradation to the quality of
Criterion B.

By considering these relationships, checks can be
made as to the feasibility of requirements. For example,
users may state that a reliable product is required, that
is both usable and maintainable. The relationships
between Reliability and Maintainability and
Maintainability and Usability are set to Neutral.
Therefore, it is acceptable to state a requirement for a

J. Comp. Sci., 1 (4): 482-487, 2005

484

Fig. 2: The relationship chart

reliable product that is also maintainable. Similarly, the
relationship between Reliability and Usability is set to
Direct so it is also acceptable to state that a product be
reliable and usable. As a result, it is an acceptable
requirement for a product to be reliable, usable and
maintainable. However, now suppose the requirement is
for a secure product that is easy to use and which can be
modified easily in the future. The relationship between
Security and Usability is set to Inverse. Similarly, the
relationship between Security and Maintainability is set
to Inverse. As a result, this requirement cannot be
completely fulfilled.

The polarity profile: The second step in producing a
consensus view of quality, is to set the required goals
for each criterion, based on the relationships identified
in the Relationship Chart. However, there is a need to
ensure that anyone can understand the graphical format
chosen quickly and easily, particularly when it is
considered that some essential views may belong to
individuals with little technical background. There
is also a need to illustrate over-engineered criteria
(Ie, criteria that has exceeded its requirements), since
further improvements in these areas will have little
effect on the overall quality of the product.

The solution chosen, therefore, is to use a Polarity
Profile[2]. For each criterion, a range of values exists.
The required quality of a criterion is defined as a single
value on a horizontal line. The actual quality achieved
is also defined as a single value on the same line. The
advantage of using a Polarity Profile is that its format
can be easily understood by anyone. Further, it is easy
to determine whether or not a criterion has been

over-engineered, since its actual quality value will be
further advanced along the line than its required
quality value.

Figure 3 shows an example Polarity Profile used in
the ADEQUATE approach, it is clear the weight of
each factor is set according to a particular requirement.
As can be seen, both Maintainability and Security have
been over-engineered, since their actual quality values
exceed their required quality values (The criteria
Efficiency and Portability are LDFs that have been
chosen by the Essential Views). The criteria listed in
the Polarity Profile are the same criteria as listed in the
Relationship Chart.

Each organisation will use different metrics and
metric approaches to measure different quality
attributes. In order to identify the required quality for
each criterion in the Polarity Profile, the properties of
that criterion need to be measured using metrics. The
same metrics should be used to identify the actual
quality for that criterion. There is a need, therefore, for
Conversion Mechanisms which convert the results of
metrics used to measure the quality of a criterion, into a
value that lies in the range 1 to 5, for displaying in the
ADEQUATE Polarity Profile.

For each relationship type in the Relationship Chart
(Ie, Inverse, Direct and Neutral), a set of rules exist
which directly set the allowable required quality values.
Consider two quality criteria, Criterion A and Criterion
B. Given these two criteria, the allowable required
quality values in the Polarity Profile are determined
using the following rules for a given relationship type
specified in the Relationship Chart:

J. Comp. Sci., 1 (4): 482-487, 2005

485

Fig. 3: An example polarity profile

1) Neutral: No rules. 2) Direct: If Criterion A is greater
than, or equal to the value 2, then Criterion B must be
greater or equal to the value 2. 3) Inverse: Neither
Criterion A nor Criterion B can be set to the value 3. If
Criterion A is set to the value 4 or the value 5, then
Criterion B cannot be set to a value greater than 2. If
Criterion A is set to the value 1 or the value 2, then
Criterion B cannot be set to a value smaller than 4.
Only the required quality values are constrained by
these rules. For each criterion, the Conversion
Mechanism will probably be unique to each metric
used. Since different organisations may use different
metrics, no single Conversion Mechanism will be
suitable in all cases.

The quality formulas: Having considered both the
Relationship Chart and the Polarity Profile it might be
useful to produce a single value of quality which may
be used to indicate the overall quality of a product in
terms of its required versus actual values. This single
value shows the overall quality of a product in terms of
the percentage of quality requirements met. Given a
Polarity Profile showing both required and actual
quality values, Fig. 4 shows the formulas used to
produce this single quality value.

Note that, where a criterion has been
over-engineered, the required quality value is used in
place of the actual quality value when calculating the
Overall actual quality score. In this way, an
over-engineered criterion is prevented from cancelling
out a poorly engineered criterion. The advantage of
producing a single quality value for a product, is that it
simplifies quality comparisons between products. But,
caution should, of course, always be exercised when
making such comparisons; Different Conversion

Fig. 4: Calculation of the overall quality value

Mechanisms may have been used, different Essential
Views may exist and the Relationship Charts and
Polarity Profiles will inevitably differ. Different
methodologies, processes and resources may also have
been used.

IMPLEMENTATION AND EVALUATION

A software tool has been built to support the
ADEQUATE approach which allows users to create
and view Relationship Charts, Polarity Profiles and
Overall Quality scores for a Product, Process or
Resource. The tool also provides a Definitions
Database, allowing storage and retrieval of criterion
definitions. A Measurements Database is also included,
allowing storing and retrieval of ADEQUATE
measurements.

The ADEQUATE approach has also been tested on
a real project at a multi-national financial institution.
The company uses a mainframe system to enable

J. Comp. Sci., 1 (4): 482-487, 2005

486

Fig. 5: Required values and actual values for the MIS handoff file

on-line entering and viewing of financial movements
across different sectors of the Stock Exchange, for
customer accounts. An overnight batch run is
performed that, amongst other things, updates account
entries and generates reports on the days activities and a
handoff file which is then transferred into an SQL
based Management Information System (MIS).

There were three major problems with the handoff
process. The first was that, due to the design of the
database structure, the MIS system was unable to
handle duplicate records existing in the handoff file.
The second problem was that the information
transferred in the handoff file was insufficient to cater
for the needs of the MIS users. Finally, due to historical
reasons, the handoff file was being passed to another
external system first, before it was passed on to the MIS
system; An unnecessary delay.

Three Essential Views were identified; The
Support Manager (Who had overall responsibility for
changes made to both the MIS system and the
mainframe), the MIS Representative (The 'User', who
also had overall responsibility for code changes made to
the MIS system) and the Development Team Leader
(Who had the responsibility for ensuring the
implementation of the necessary code changes on the
mainframe). All three Essential Views agreed that
there was no need for additional quality criteria, so no
LDFs were added to the Relationship Chart or
Polarity Profile.

After the necessary code changes had been made
and the changes implemented in the live environment,
the actual quality values for the Polarity Profile were
recorded. Figure 5 shows the updated Polarity Profile
screen from the ADEQUATE tool. As in Fig. 5, the
Usability factor had a required quality value of 4, but

was affected after implementation by the fact that not
all the changes required had been successfully
achieved. This was deemed a serious problem, hence
the actual quality value was only set to 2. As a result,
the Correctness score was affected in that the actual
quality value was set to 4, whereas the required value
had been set to 5.

Security, however, was seen as improved since the
file was no longer being passed through another
external system. The required Quality value for
Security was set to 2 and the actual quality value was
set to 3. This improvement, therefore, resulted in
Security being over-engineered. Timeliness met the
quality requirements (required quality and actual
quality values of 5), since the transfer of the handoff
file no longer was delayed by being transferred through
another external system. Both the required quality and
actual quality values for Maintainability were set to 4.
Maintainability quality had been achieved by the
developers consciously commenting and documenting
the code changes, partly because they were aware that
the changes would be examined externally to determine
the actual quality value for ADEQUATE.

The required quality value for Reliability was set to
5, but the actual quality value was set to 4. The required
quality value was not achieved because the first time
that the amendments were executed, they failed due to
incorrect batch coding by the systems operations staff.
Once this had been corrected, the code ran through to
completion but it was deemed that this failure should be
reflected in the Polarity Profile. In view of these
problems, the Cost/Benefit score was 3, falling short of
its required quality value of 5. The Overall Quality
score achieved was 83%.

J. Comp. Sci., 1 (4): 482-487, 2005

487

Applying the ADEQUATE approach to this project
has shown that the technique clearly captured the
quality requirements and quality delivered and
effectively highlighted differences between different
implementations of the project. The approach allowed
the building of a matrix of individual software quality
factors with clear visibility and individual weighting
according to project requirements.

The results have also highlighted and confirmed
the impact of the relationships between the various
quality factors, as well as the need to balance the
requirements as well as the choices that have to be
made. Essential views are considered and evaluated
which lead to improvement in both individual software
quality factors as well as the overall quality of the
project.

CONCLUSIONS

This study has presented a new quality
measurement and quality assurance approach, at the
heart of which is a set of quality factors divided into
Key Quality Factors and Local Defined Factors. Unlike
existing methodologies, both global and local quality
factors can be integrated, individual quality views can
be combined, view conflicts can be removed and an
indication of overall quality can be determined. A key
feature of the approach is Consistency; the method can
be applied not only to Products, but also to the
Processes and Resources used to create that Product.
Thus, it is possible to model a whole organisation
which is defined by the Products, Processes and
Resources it uses and creates. This enables the
approach to form an overall quality assurance
framework.

The model allows the specification of benchmarks
against which achieved quality levels can be measured
and provides guidance for building quality into
software. The feasibility of quality goals is controlled
by the use of a Relationship Chart and a Polarity
Profile. Moreover, the ADEQUATE approach is not
static; If project personnel changes occur, or project
requirements change, the Relationship Charts and
Polarity Profiles can be updated to reflect these
changes.

Although feedback from the use of the technique
has been encouraging, there are a number of areas that
require further investigation. The approach has been
tested, but its scalability is uncertain and can only
become clear after extensive use of the technique. The
KQF set currently consists of seven attributes, but again
further use of the model is required to determine the

completeness of this set. It is possible, for example, to
expand the approach to incorporate the customer's
views as to what properties should constitute the KQFs,
as a majority Essential Views input. Moreover, a set of
formal guidelines has yet to be finalised for identifying
the Essential Views, despite their importance to the
approach. It is hoped that, through wider use of the
technique, comprehensive guidelines for Essential
Views determination can be produced.

REFERENCES

1. Offen, R. and R. Jeffery, 1997. Establishing

software measurement. IEEE Software, pp: 45-53.
2. Gillies, A.C., 1992. Software quality: Theory and

management. Chapman and Hall, pp: 1-33.
3. Kitchenham, B. and S.L. Pfleeger, 1996. Software

quality: The elusive target. IEEE, Software, pp:
12-21.

4. Boehm, B.W., J.R Brown, H. Kaspar, M. Lipow,
G. MacLeod and M.J Merritt, 1978. Characteristics
of software quality. North Holland.

5. Manns, T. and M. Coleman, 1996. Software quality
assurance. MacMillan Press Ltd., pp: 1-12.

6. Matsumoto, Y. and Y. Ohno, 1989. Japanese
perspectives in software engineering. Addison-
Wesley, pp: 279-301.

7. Fenton, N., 1991. Software metrics: A rigorous
approach. Chapman and Hall, pp: 42-62.

8. Dromey, R.G., 1995. A model for software product
quality. IEEE Transactions on Software Eng., 21:
146-162.

9. Plant, R.T., 1991. Factors in software quality for
knowledge based systems. Information and
Software Technol., 33: 527-536.

10. Kitchenham, B., 1987. Towards a constructive
quality model. Software Eng. J., pp: 105-113.

11. Elbert, C., 1997. The road to maturity: Navigating
between craft and science. IEEE Software, pp:
77-82.

12. Lindland, O.I, G. Sindre and A. Solvberg, 1994.
Understanding quality in conceptual modeling.
IEEE Software, pp: 42-49.

13. ISO/IEC TR 9126: Software Engineering-Product
quality, 19-12-2000.

14. Miyoshi, T. and M. Azuma, 1993. An empirical
study of evaluating software development
environment quality. IEEE Transactions on
Software Eng., 19: 425-435.

15. Boehm, B., 1996. Identifying quality-requirement
conflicts. IEEE Software, pp: 25-35.

