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Abstract: Case Based Reasoning is a problem solving paradigm which is able to retrieve and reuse 
solutions that have worked for similar situations in the past. Past situations and their solutions are 
stored in a memory called case base. To find the good experiment in memory is the key of success in 
the reasoning. To identify adequate experiment in memory constitutes the process of recall. The study 
presents an associative memory model used for a Case-Based Reasoner. The search algorithm is 
funded on an evolutionary approach to compute neighbourhood of a new problem then a direct access 
is performed. 
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INTRODUCTION 

 
“Reasoning is Remembering” is the slogan of most 
researchers in Case Based Reasoning field. Case Based 
Reasoning (CBR) is a problem solving methodology 
founded on reusing old solution that have worked for 
similar situations in the past to solve new problem. Past 
situations and their solutions are stored in a memory 
called case base. 
To find the good experiment in memory is the key of 
success in the reasoning. The good experiment is the 
one that can perform the best inferences. To identify 
adequate experiment in memory is the recall process. 
Recall is highly influenced by memory organization 
and by retrieve strategies. The accuracy (in the sense of 
exhaustiveness) and speed of recall task constitute two 
important parameters in the performance evaluation of 
a CBR system. 
Case based reasoning is an Artificial Intelligence 
paradigm that can be synergistically combined with 
other approaches to facilitate a broad array of tasks [1]. 
Among those possible combinations, we present in the 
following, an approach to perform a quick and 
complete recall, in an associative memory, using 
evolutionary computing. 
The main idea is to compute the neighbourhood of a 
new problem by an evolutionary algorithm. This draws 
up the boundaries of the search space in the case base. 
And then, attains directly this neighbourhood via a 
network in an associative memory style. 
For a best understanding of the study, we start with a 
fast skimming of CBR paradigm, followed by the 
memory model proposed. Then the general framework 
is depicted. The conclusion section goes over the main 
points, it also presents related works and future 
direction 
 

CASE BASED REASONING PARADIGM 

 
The idea of CBR is intuitively pleasing because it is 
similar to human problem-solving behaviour. People 
sketch on past experience while solving new problems 
and this approach is both convenient and effective and 
it often reduces the burden of depth analysis of the 
problem  domain [2].  This  leads  to  the  advantage 
that CBR  can  be  based  on  shallow  knowledge and 
does not require significant effort in knowledge 
engineering when  compared  with  other  approaches 
(e.g., rule-based). 
Problem solving with CBR proceeds as follows: a new 
problem is posed and is described as the problem part 
of a new case, sometimes also called the query. Then, 
old cases containing problems that are similar to the 
new problem are retrieved and the most suitable 
solution among retrieved solutions is suggested to 
become the solution of the new problem. This solution 
is then tested in reality and may lead to a revised 
solution worth to be Stored as a new case. This last step 
is a form of incremental learning that enables CBR 
systems to adapt to changing environments rather 
smoothly. 
In theory, the basic cycle of CBR is in three phases: 
«retrieve, reuse and store». The system looks for a 
similar case to the input case, reuse the recovered 
solution and finally, store the current case for a future 
utilization.  
This cycle can be extended to five stages [2, 3]:  
 
Presentation or Specification: A description of the 
problem is provided at the entrance of the system. This 
description must be suitable to the comparison between 
the   case   in   entrance   and   cases   stored  in memory  
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(uniformity of the representation). One of the key 
points of the CBR is the research of applicable cases. It 
is what justifies the importance of the process that is 
going to label cases with indexes so that they could be 
recalled at the appropriate moment. This indexing leans 
mainly on the extraction of the most characteristic 
descriptors of the case.  
 
Retrieval: The system looks for cases that are best 
unified to this description (closest matching cases). 
These cases are stored in a case base or case memory 
(i.e.: data base of cases). If the case base is organized 
according to a particular structure, an algorithm of 
research describes then a path in this structure. A phase 
of filtering or selection is often performed in order to 
eliminate a subset of worst cases. A measure of 
similarity can be then used to refine the resemblance 
measure between the current case and selected cases. 
Then returns ordered cases.  
 
Adaptation: The system uses the current problem and 
the matching case to generate a solution to this 
problem. The adaptation constitutes the second difficult 
point (after the indexing) when conceiving a CBR 
system. It is necessary to decide what type of 
knowledge it is interesting to transfer from the best case 
remembered. We can do a transformational analogy, 
consisting in transforming the solution of retrieved case 
to adapt it to the current case. Or to proceed by 
derivation when adapting the method of solution 
generation. Otherwise, the possibility to adapt several 
cases to solve a problem, in a simultaneous way or 
operating several remembering and simple adaptation to 
the different stages of the resolution, has been judged 
more creative [5].  
 
Validation: This phase includes the possibility of an 
assessment of the solution proposed while testing it in 
an either simulated or real environment. The 
information returned guides a repair process, in case of 
failure of the proposed solution.  
 
Storage: The validated solution is added to the case 
base for a future utilization. We can have systems 
which store cases systematically in memory. A more 
selective memorization is however possible and would 
use some specific criteria to judge if the new case is 
useful to learn according to the current case memory. 
Generally, a case is useful to learn when it can reach a 
point of the solution space that was inaccessible before 
the arrival of this new case.  
 

THE MEMORY MODEL PROPOSED 

 
In order to function correctly, the case based reasoning 
uses cases stored in a case base. This one is supposed to 
be representative of the whole problems encountered in 
the field. The more it contains cases, the more the case 

selected for the reasoning will be similar to the new 
case. The elaborate solution will be thus better. But 
more the base increases, more prohibitive will be the 
calculating cost. This is why techniques of memory 
organization and search algorithms are particularly 
important in this reasoning mode. 
There are several memory organizations according to 
which search algorithms exist [2, 3]. The most 
frequently  used  models  of  memory  relying  on a 
Top-Down search, present some common features [4]:  
 
* They support a structuring of data by regrouping 

together related objects.  
* They support an efficient retrieval by utilizing 

traditional tree search algorithms.  
* Traversing a Top-Down memory structure is 

performed by answering questions in the internal 
nodes in order to choose which path to follow. This 
requires a specific order in the answers. In the case 
of incomplete information, it could mislead the 
utilization of an erroneous path.  

* Once a certain cluster of cases has been reached in 
the leaf of a tree, it is hard to access neighbouring 
clusters containing similar cases.  

 
For those reasons, we will expose another vision of 
retrieval problem based on the construction of problem 
neighbourhood.  
The case memory is indeed, a flat structure on which 
we construct a nested structure. There are two types of 
node: value node and case node. 
Each value node represents a particular value of a 
problem attribute (Fig. 1). It is linked to all case nodes 
where it occurs. 
The case node point out to the case base where the 
whole case is stored. 
The particularity of this structure is that we reach the 
case by its contents (the principle of associative 
memories). 
Another particularity is that the structure could be 
easily and automatically build by simply scanning the 
case memory. 
 
The General Framework: The retrieval of applicable 
cases can be formulated in how to extract from the 
search space a sub-space of cases that are similar to the 
problem to resolve. This sub-space is what we call 
neighbourhood of the target problem. It is classically 
obtained by a search strategy. 
The main idea is to compute the neighbourhood of a 
new problem by an evolutionary algorithm (Fig. 2). 
And then, access directly to this neighbourhood via a 
network in an associative memory style. 
Every source problem computed by the evolutionary 
module will be directly pointed in the search space via 
the net. 
A case is an entity within which is gathered various 
information on a past situation. The term «situation» is 
very  general.  A  case  is  also an entity about which an 
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Fig. 1: The Associative Memory 

 

    
 

Fig. 2: A Global Vision 

 
inference is possible by situating the new problem with 
regard to the definite circumstances in the case.  
A case is constituted of descriptors, also called 
dimensions, distributed in three categories: the 
description of the problem, the solution and issues of 
the solution.  
The description of the problem includes the context of 
the case. The solution is the solution of the problem or 
the reaction to this description (for example, the 
deliberation of a courthouse, the taken decision, etc.). It 
can also describe the used reasoning. The exit of the 
case is the description of the context after the 
implementation and execution of the solution. This part 
of the case is generally omitted and knowledge is 
reported on the other stages of the reasoning. 
The retrieval step is based on problem description only. 
We focus know on the evolutionary module and 
propose a coding of problem description. 
 
Coding: When a new problem is posed, the request to 
retrieve similar cases is generally, expressed with 
dimensions of problem description (Fig. 3). 

 Attrib1   Attribi   Attribn 
 Val1 …  Vali  …  Valn 
 
 Gene1 

  
 Genei 

  
 Genen 

 
Fig. 3: Problem Description as a Chromosome 

 
The coding of problem will be: 
 
Table 1: Matching between CBR and EC Entities 
Problem description : pbm Chromosome 
Descriptors : di        genes 
Descriptor values valj       Alleles 
 
Pbm = { di }  : an array of descriptors. 
di = (Attribi,valij): a couple of attribute/value 
valij € Domj  : each value belongs to a specific domain 
which could be symbolic or numeric. 
 
For our experimentation, we have used a sub set of 
‘auto import database’, an UCML dataset. We are 
interested in: 
problem description =<make, bodystyle, horsepower> 
 
Domainemake = {alfa-romero, audi, bmw, chevrolet, 
dodge, honda, isuzu, jaguar, mazda, mercedes-benz, 
mercury, mitsubishi, nissan, peugot, plymouth, porsche, 
renault, saab, subaru, toyota, volkswagen, Volvo} 
discrete 
 
So if we make a decimal coding: 
Make € [1, 22] � 2 digits 
 
For a binary coding we have: 
Make € [00000, 10110] � 5 bits 
 
Domainebodystyle = { hardtop, wagon, sedan, hatchback, 
convertible } discrete 
 
So if we make a decimal coding: 
Bodystyle € [1, 5] � 1 digit 
 
For a binary coding we have: 
bodystyle € [000, 101] � 3 bits 
 
Domainehorsepower = [48, 288] continuous 
So if we make a decimal coding: 
Horsepower € [48, 288] � 3 digits 
 
For a binary coding we have: 
horsepower€ [000110000,100100000] � 9 bits 
 
An example of chromosome could be: 
 
For a decimal coding 
1 3 2 0 6 8 

Binary coding is longer: 
01101 010 001001000 
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Which correspond to the description of the following 
problem : 
                     Prob=<nissan, wagon, 68> 
          The initial population is randomly generated. 
          The selection step is based on a strategy of 
similarity to the request (new problem). With a general 
shape :  
 
              D(G,Gk) = ∑ wi di( G,Gk) for i € [1, 3] 
 
Where: wi is the weight of the descriptor i (gene i) and 
di is the partial distance: 
 
                 di = 1-(|Xi-Xi

k|/maximal discard) 
 
Reproduction is essentially made by: 
Cross-over: for both binary coding and decimal coding 
we have two crossing points. They are separations 
between genes.  
Mutation of genes: The chromosome mutation 
corresponds to the troubling of the entry problem 
description in order to generate a neighbourhood.  
The fitness function is based on similarity assessment 
between the input problem and the actual chromosome. 
It has the following form:  
Maximizing ∑ D(G,Gk) for k=1 to N (N population 
cardinality). 
 
The whole algorithm will be: 
 
 
 
 
 
 
 
 
 
 
The stop criterion = population stabilisation or max 
Time 
 
For the following input problem description : 
1 3 2 0 6 8 

An example of population (with card =5): 
For decimal coding: 
Ind1 0 9 4 1 1 6 0.76 
Ind2 1 1 2 0 7 0 0.96 
Ind3 0 4 3 1 6 0 0.76 
Ind4 2 2 1 2 0 7 0.58 
Ind5 1 4 3 1 1 0 0.84 
 
The last column represents the selection function. 
 
A first simulation with decimal coding leads to results 
presented in Fig. 4. 

 
 

Fig. 4 : Simulation Results 

 

We ought to notice that in our study, both selection 
function and fitness function expresses the same 
semantic since we aim to retrieve the most similar 
problems. 
 

CONCLUSION 

 
Many different approaches of case memory models 
have been proposed in literature [6]. However 
Evolutionary computing approach seems to be 
interesting for multiple reasons [11, 12]: 
 
* Flexible knowledge representation. 
* Good computation performances. 
* Suitable for space exploration. 
* A large scale of applicability. 
 
Up to now their application in CBR was limited to the 
adaptation task. An evolutionary approach to case 
adaptation is presented in [7]. In [8], case adaptability is 
improved by a Genetic Algorithm. 
Our approach leans on a memory structure reachable by 
the contents. Flexible, easy to construct and having a 
uniform knowledge representation according to the 
Evolutionary computing module. 
It is very important to emphasize that the presented 
approach represents a general framework. When 
considering a specific application field we have to tune 
parameters of our system in order to improve the 
convergence. 
Since our previous work was on adaptability guided 
retrieval memory [9, 10] it is interesting to consider an 
extension of the approach where the adaptability 
criterion is integrated to the fitness function. 
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