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Abstract: To investigate the use of classical epidemiological models for studying computer virus 
propagation we described analogies between computer and population disease propagation using SIR 
(Susceptible-Infected-Removed) epidemiological models. By modifying these models with the 
introduction of anti-viral individuals we analyzed the stability of the disease free equilibrium points. 
Consequently, the basal virus reproduction rate gives some theoretical hints about how to avoid 
infections in a computer network. Numerical simulations show the dynamics of the process for several 
parameter values giving the number of infected machines as a function of time. 
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INTRODUCTION 
 
Nowadays, computer viruses are an important risk to 
computational systems endangering either corporation 
systems of all sizes or personal computers used for 
simple applications as accessing bank accounting or 
even consulting entertainment activities schedules. The 
viruses are being developed simultaneously with the 
computer systems and the use of INTERNET facilities 
increases the number of damaging virus incidents. 
Since the first trials on studying how to combat viruses, 
biological analogies were established because 
biological organisms and computer networks share 
many characteristics as, for example, large number of 
connections among large number of simple components 
creating complex system [1]. 
Local systems in a computer network can be attacked 
generating malfunctions that, spreading along the 
network, produce network-wide disorders following a 
similar qualitative model of disease spreading for a 
biological system. This is the main reason for 
designating attacks against networks by biological 
terms as worms and viruses. 
Using these ideas, it is important to consider that 
computer viruses have two different levels for being 
studied: microscopic and macroscopic [2].  
The microscopic level has been the subject of several 
studies. For instance, [3, 4] establishes theoretical 
principles about how to kill the new viruses created 
every day. Following the virus development, computer 
immunology is a new discipline capable of creating 
efficient anti-virus strategies as programs that are being 
sold all over the world guaranteeing protection to 
individual users of a global network [5, 6]. 
 

 
However, the macroscopic approach has not been 
receiving the same attention in spite of epidemiology 
analogies being an important tool in order to establish 
the policies to preventing infections by giving figures 
about how to update the anti-virus programs.   
The interesting but simple model considering 
exponential variation in the number of computer 
viruses, proposed by [7], couldn’t be considered 
realistic because the lack of limits for the growth, which 
is a natural phenomenon either in biological or in 
computer systems. 
There is vast catalog of Mathematical Biology models 
indicated for epidemiology [8]. One of them, called SIR 
(Susceptible-Infected-Removed) model, was originally 
proposed by [9]. 
Here, we employ a modified version of such a model in 
order to obtain parameter combinations representing 
situations with asymptotically stable disease-free 
solutions. 
The relations among network parameters can provide 
some hints about how to prevent infections in networks. 
An expression for the maximum infection rate of 
computers equipped with anti-virus to avoid the 
propagation of new infections is given. If this number is 
known, an updating plan for anti-virus programs in a 
computer network can be elaborated. 
 
The Model: We proposed the model represented in Fig. 
1 for the dynamics of the infection propagation in a 
computer network. The model contains a modification 
related to the traditional SIR model [8], with an 
antidotal population compartment (A) representing the 
nodes of the network equipped with fully effective anti-
virus programs. 
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The total population T is divided into four groups: S of 
non-infected computers subjected to possible infection; 
A of non-infected computers equipped with anti-virus; I 
of infected computers; and R of removed ones due to 
the infection or not. 
The model is called SAIR (Susceptible-Antidotal-
Infected-Removed). Its dynamics is described by: 
 
dS/dt=N-�·S·A-�SI·S·I-µ·S+�IS·I+�RS·R (1) 
dI/dt =�SI·S·I+�AI·A·I-�IS·I-�·I-µ·I  (2) 
dR/dt = � · I - �RS · R - µ · R   (3) 
dA/dt=� · S · A - µ · A - �AI · A · I  (4) 
 
The parameters of the model are defined as follows: 
 
* N: influx rate, representing the incorporation of 

new computers to the network; 
* µ: mortality rate not due to the virus; 
* �SI : infection rate of susceptible computers; 
* pSI = I /(T-1) : probability of susceptible 

computers to establish an effective 
communication with infected ones; 

* �AI : infection rate of antidotal computers due to 
the onset of new virus; 

* pAI = I (1- η) / (T-1) : probability of antidotal 
computers to establish an effective 
communication with infected ones; 

* �: removing rate of infected computers; 
* ki /ni : probability of the execution of an infected 

file, i.e., probability of conversion of non-
infected computers into infected ones; 

* ni: number of executable files in the i-computer, 
considering that all the files have the same 
probability of being executed; 

* ki
i : number of infected files in the i-computer; 

* ki
n : number of normal files in the i-computer; 

* �IS : recovering rate of infected computers; 
* pIS = (A) /( (T-1)η) : recovering probability of 

infected computers, i.e., probability of occurring 
an effective communication between infected 
computers and antidotal ones; 

* �RS :  recovering rate of removed computers, 
with an operator intervention; 

* �: conversion of susceptible computers into 
antidotal ones, occurring when susceptible 
computers establish effective communication 
with antidotal ones and the antidotal installs the 
anti-virus in the susceptible; 

* pSA = A / (T-1) : probability of an antidotal 
computer installing the anti-virus in a susceptible 
one, when an effective communication is 
established. 

 
For simplicity, the influx rate is considered to be N = 0, 
representing that there are no incorporation of new 
computers to the network during the propagation of a 
virus that is considered to be very fast. The same reason 
justifies the choice µ = 0.  

Under these conditions, the system is modeled by 
equations: 
 
dS/dt=-�·S·A-�SI·S·I+�IS·I+�RS·R  (5) 
dI/dt  = �SI · S · I + �AI · A · I - �IS · I - � · I  (6) 
dR/dt = � · I - �RS · R   (7) 
dA/dt = � · S · A - �AI · A · I  (8) 
 
Since dS/dt + dA/dt + dI/dt + dR/dt = 0, then S + A + I 
+ R = T = constant for any instant t. 
 
Equilibrium Points: In order to investigate the 
properties of the dynamics of the model, we determine 
the equilibrium points by considering that all the 
derivatives of population compartments vanish when 
this kind of solution holds. 
There are disease free equilibrium points, which 
represent the situations where the infected population is 
null (I = 0). These points are given by: 
 
P1

* = (S = 0, A = T, I = 0, R = 0)   (9) 
P2

*= (S = T, A = 0, I = 0, R = 0)   (10) 
 
Thus,  all  computers  are susceptible or antidotal when 
I = 0. 
Expressions for endemic equilibrium points are given 
by: 
 
P3

*=(S=(�IS+�)/�SI, A=0, I=(�RS·R)/�, R=T-S-I) (11) 
P4

*= (S =(�AI · I)/�, A = -(�SI · �AI · I - �IS · � - � · �)/(� · 
�AI), I = T - S - A,R =(� · I)/�RS)       (12) 
 
The expressions for the equilibrium points make 
possible to obtain the conditions for stability of disease 
free solutions that are useful to establish the minimum 
recovering rate that a network is supposed to have in 
order to avoid the propagation of infections. 
 
Disease Free Stability and Basal Reproduction Rate: 
The stability of the equilibrium points determines the 
viral evolution represented by our SAIR model: if there 
is asymptotically stable free-disease equilibrium point, 
then the disease can disappear; if there is not, it 
becomes endemic. 
We obtain the linear approximation of the model 
around the equilibrium points by calculating the 
corresponding Jacobian (4x4) matrix [10] as: 
 
 -A�-I�SI -�SIS +�IS �RS -�S 
 I�SI �SI S+�AIA-�IS– � 0 �AII 

J= 0 � -�RS  0 

 A� -�AIA 0 �S-�AII  

(13) 
 
Stability of P1

*: Calculating this Jacobian matrix in P1
*, 

we obtain: 
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-A�  �IS   �RS  0 
0  �AIA - �IS - �  0  0 

J= 0  �   -�RS  0         (14) 
A�  -�AIA   0 0 

 
With eigenvalues given by: 
 
�1 = -T · �  
�2 = �AI · T - �IS – � 
�3 = -�RS 

�4 = 0 
 
In spite of one of the eigenvalues being zero the 
analysis of the stability can be conclusive because the 
A-axis is a central manifold such that A remains 
constant for any initial condition [10]. Then, as �1 and 
�3 are real and negative the problem is reduced to 
analyze �2. The condition �2 < 0 is necessary and 
sufficient for considering P1

* asymptotically stable. 
Consequently, the condition for asymptotic stability of 
this point is: 
 
T <(�IS + �)/�AI              (15) 
 
Stability of P2

*: Calculating the Jacobian matrix in P2
*, 

we obtain: 
 

0         -�SIS + �SI  �RS       -�S 
 0  �SIS - �IS – � 0  0         (16) 
J= 0  �   -�RS  0 

0  0   0  �S 
 
With eigenvalues given by: 
 
�1 = 0 
�2 = �SI · T - �IS – � 
�3 = -�RS 

 �4 = � · T 
 
As �4 is real and positive, P2

* is unstable for any 
combination of parameters. 
 
Basal Reproduction Rate: In epidemiology literature 
it is well known the concept of basal reproduction rate 
(R0). This is a bifurcation parameter meaning that, if R0 
> 1, all disease free equilibrium points are unstable and 
the epidemic process persists. If R0 < 1, there is 
asymptotically stable disease free equilibrium point; 
thus, the disease can vanish. In our model, the basal 
reproduction rate can be determined by analyzing the 
stability of P1

*. 
 
From (15), we obtain: 
 
R01 = (�AI · T)/(�IS + �)   (17) 
 

 
 
Fig. 1: Susceptible-Antidotal-Infected-Removed 

Model 
 

 
 
Fig. 2: Dynamics with an Asymptotically Stable 

Disease-Free Equilibrium Point 
 

 
 
Fig. 3: Unstable Disease-Free Dynamics 
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Consequently, if R01 < 1, the virus propagation along 
the network is avoided. Then, the limit infection rate of 
antidotal computers �AI is given by: 
 
�AI = (�IS + �)/T    (18) 
 
Therefore, (18) is the parameter that must be evaluated 
in a computer network, providing figures about how to 
maintain the satisfactory operation of a computer 
network. 
 
Simulations: The condition (18) gives a theoretical 
prediction about possible ways of avoiding infection in 
a computer network. We performed numerical 
simulations of the SAIR model by supposing a local 
network with 50 computers and half of then equipped 
with anti-virus programs.  The goal is to follow what 
happens when few infected individuals are introduced 
in the network. �AI is taken as the control parameter.  
The values of the other parameters are: � = 0.1, �SI = 
0.5, �IS = 0.5, �RS = 0.5, � = 0.5. 
Considering these values, �AI = 0.02 represents the limit 
of the basal reproduction rate.  Then we simulate the 
SAIR model for �AI < 0.02, and �AI > 0.02. Figure 2 
shows a simulation for �AI = 0.01. Infected and removed 
populations vanish and the network, in the long term, is 
in a good operational state. Figure 3 exhibits a 
simulation for �AI = 0.5. All the populations become 
composed by either infected or removed computer. In 
the long term, there is a "low"density of operational 
computers and, consequently, no network. 
 

CONCLUSION 
 
Viral attacks against computer networks are an 
important research area because the defense strategies 
need to be able to avoid infection propagation. In this 
work we presented the SAIR model based on 
epidemiological studies and conditions for the 
asymptotically stability of the disease free equilibrium 
were deduced. Some simulations were performed 
showing how a parameter, analogous to the epidemic 
basal reproduction rate, affects the dynamics of the 
infection propagation. 
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