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Abstract:  This study presents new contribution towards the Adaptive Temporal Radial Basis Function 
(ATRBF) applied to Continuous speech recognition, in particular the recognition of phonemes like 
Timit Corpus. ATRBF combines features from Time Delay Neural Network (TDNN)  and the 
advantages of Radial Basis Function (RBF). The capacity to detect the acoustic features and their 
independent temporal report of the temporal localisation is inspired from the TDNN model. The main 
use of RBF is both their speed of treatment and few parameters to adjust for the training phase, which 
encourages to apply this model to new tasks in most delicate cases. 
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INTRODUCTION 
 
A successful speech recognition system has to 
determine features not only present in the input pattern 
at one point in time, but also features of the input 
pattern changing over time [1, 2]. 
 The classic methods based on multilayer perceptron 
use the TDNN network, it is the first model used by 
Weibel in the speech  recognition domain [1]. But the 
problem  was the hard time processing  and the 
adjustment of parameters that become a laborious stain 
for the new applications.  
In the opposite, the RBF networks don't require a 
special adjustment and the training time becomes 
shorter with regard to the TDNN. But the  problem of 
RBF is the shift  invariant in  time[1]. 
The goal to combine the  approach of the RBF with the 
shift  invariance features  of the TDNN, can be get a 
new robust model, this is named Temporal Radial Basis 
Function (TRBF) , but to be more efficient, we  have 
adapt these networks so that they come more dynamic 
according to their behaviour and features of the object 
has study. It can be goes more clearly in the continuous 
word. Therefore to adapt the TRBF networks, it was 
necessary to develop an algorithm that permits to solve 
this type of problem, this algorithm is called (DOLS) 
which means Dynamic Orthogonal Least Square,  
presented in this study.  
To allow a RBF network to detect features in time, it is 
necessary to not only present inputs  to a point data, but 
in many passages. In this case, we take a structure of a 
classic RBF ( Fig. 1).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: An RBF Network Sweeping a Temporal Window  

of ∆t  Delay 
 
We notice in this network that the input vector have a 
large window, what burdens the time delay  count 
between centres and inputs.  
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centre ( τµ ,i ) of  this  RBF, ai(t) represent the activation  
function (kernel) , which depend on  the distance d(t). 
Among the major inconveniences of this model we cite  
the inability of adaptation towards the temporal transfer 
of the input vector, that is to say if the shape presented 
to the network already represents a prototype learned 
but shifted in time, this RBF network doesn't answer 
appropriately [1]. To solve this type of problem, we 
propose  to  prolong  the  time  for the hidden layer 
(Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: This T-RBF Network of Shape 3(3) Composed of a 

Input Window of  5 Units Length with a  Block of 3 
Units  in Time Delay and Generating in Result 3 
Hidden  Neurons. For Simplicity only one RBF 
Network is  Conceived  for  Each  Class 

 
In this kind of network the RBF units only represent a 
narrow time window to facilitate the count in the 
following layer that adds the different processes of 
these RBF through time. The notation « x(y) » 
represents sizes of these windows, x  indicates the 
number of delays of  input and y  represents the size of 
the window taken for the hidden layer integration.  
We remark according to  this  network, that time limits 
are fixed and we can not change them during the 
training. To this effect we propose a variant that 
permits to solve this problem ( Fig. 3).  
In this type of architecture, the goal is to get an 
elevated precision, in addition we can adapt for every 
shape the network while playing on the number of 
block in the hidden layer and this is in minimizing the 
size of the block of input time delay. Therefore the 
alone parameters to adjust are  the size of blocks of 
input windows and the size of time delays and the 
number of blocks in  the hidden layer. We notice that 
the taken time delay number for the input depends on 
he application, generally in recognition  of   the   word,   

the  size  of the observation window vectors is in the 
order of 10 to 15, therefore the number of time delay is 
understood between 5 to 10.  
Concerning the number of blocks of the restrained RBF 
in the hidden layer is fixed either according to the 
wanted training rate or following a error threshold.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:  This ATRBF Network of Shape 3 (3) 

Composed of  a Window of Input Length 5 
Units with a Block of Time Delay of 3 Units 
Generating in result m Hidden Blocks, Each 
Composed of 3 Hidden Nerons. For Simplicity 
Only One RBF Network is Conceived for 
Each Class 

 
We make the remark on the speed of training that 
characterizes our type of network in comparison to 
other architectures as networks based on back-
propagation.  
The classic RBF can be formed to accomplish tasks of 
the pattern    recognition    with    no    linear    and 
complex Contours [3], they are limited to treat some 
static models, rather than to treat shapes that are 
temporal nature. The training of such network requires 
some techniques to adapt the hidden neurons with 
passages of input windows so that it is an adequate 
integration of information according to the temporal 
interval.  
Several methods of training of this network are 
proposed e.g. A first method permits to create centres 
of unsupervised  manner follow-up of the weight count 
between the hidden and output layers [4].   
A second method characterised by incremental training, 
which means  that the creation of a centre is followed 
by the count of his correspondent  weight [1, 4, 5].  
The Temporal RBF, like ATDNN [6], LSTM are 
proposed to defeat the static limitation [7]. Networks 
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with this capacity can play an important role in 
applications domain, possessing some dynamic 
properties in pattern recognition e.g., the no stationary 
signals and the dynamic shapes. Also to take part of 
classic RBF advantages in approximation and 
recognition, the objective come closer toward a 
behaviour wanted by a collection of functions, named 
kernels [1]. A kernel is characterised here by a centre 
and a receptor field r, these kernels can be chosen by k-
means clustering or the quantification techniques.  
All these parameters can be taken in consideration by 
integrating a Bayesian neuronal classifier or to be 
optimised with the neuro-genetic techniques. In 
addition, we can combine this approach with other 
techniques as the Hidden Markov Models “HMM” 
while using the generated probabilities. In the 
following part we describe the algorithm of training 
that makes part of incremental method.  
 
Algorithm of OLS: For this algorithm 
OLS (Orthogonal Least Square ), we suppose that the 
kernel function  φ is fixed and that is the same for every 
hidden cell, the initial set of  this centres must be fixed 
also. Therefore this algorithm permits to make an 
incremental training [6]:  
 
* First it makes the linear separation between the 

input layer and the hidden layer, it creates the 
hidden neurons automatically while applying the 
Gram-Schmidt orthogonalisation, that permits to 
eliminate redundancies of information. Other 
methods consist in using the genetic algorithms 
to minimize the number of  hidden neurons with 
a good generalization.   

* Secondly to make the training between the 
hidden layer and the output layer, using the least 
square method while calculating synaptic 
weights. 

 
The OLS algorithm, conceived in  origin for no linear 
system identification, can apply the RBF network that 
can be considered like a particular case of the linear 
regression model definite by : 

 
d(t) =Σ Pi(t) θi + ε (t)    (3) 
 
 when  d(t): the desired output at t time 
           θI : are the estimated parameters  
           ε(t): the mistake of d(t) approximation  
  Pi: fixed  functions of x (t) ( Regressor )  
           Pi(t) = Pi (x(t))  
 
The function calculated by RBF network is the same as 
calculated by the formula (3), the analogy is the 
following form:  
 

d(t) is the desired output  of the network for the tth 
example, Pi(t) is the activation of the ith hidden cell for 
the tth example. The constant w0 (bias) can be gotten by 
the corresponding definition:     
 
Pi(t) = 1      (4) 
 
Thereafter, we are going to consider the following 
notations:  
Ne: The number of examples of the training basis  
M: The initial number of centres  
d: The vector of  desired outputs:  d = [d(1)… 
…d(Ne)]T  
P: The matrix of hidden layer activation:  P = [P1…… 
PM]  
Pi: The vector of exit of the ith hidden cell:  Pi = 
[Pi(1)…. Pi(Ne) ]T 
θ : The weight vector  of the output  layer:  θ = [θ1.. θM]  
E: The error vector between the calculated output   and 
desired output:   E = [ε(1).. ε (Ne)]T  
With the above definite notations, the equation (3) can 
be  written:  
 
d = (P θ+E)     (5) 
 
The resolution of the system equation (5) is a trivial 
problem. The vector of solutions θ can be defined by 
the  least square method.  
 
Dynamic OLS Variant: The OLS with its classic 
version can not adapt our ATRBF network, therefore 
the original idea  of  the  Dynamic  OLS  method  
resides  at  each iteration, the creation of a hidden 
centre block and not only one centre,  as the size of 
every block is expressed like suit:  
If we consider that the input vector is composed of n 
characteristic  on a temporal input window of Nfe 
length and if we take the value of  input time delay 
equal to Nde, such as: Nfe ≥Nde.Then the number of 
neurons composing every block is equal to:  Nfe-
Nde+1.  
The  size  of every  hidden  centre  is  equal  to:  n x 
Nde, (Fig. 4).  
With this representation, we can follow the following 
steps: by leaving  the eq. 5:  
 
d = (P θ+E)      
 
The orthogonalisation of the columns Pi can be gotten 
by the decomposition of the P matrix in two matrices 
W and A as:                                     
 
P = W A      (6) 
Where W: of size Ne x M, is the orthogonal image of 
the P matrix.  
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Fig. 4: Parameters of This ATRBF Network are: n 

number of Features Equal to Dim (X)=6. Nde: 
Time delay Equal to 4, Nfe: Size of the Input 
Window Equal to 6, Nnc: Number of Hidden 
Neurons by Block Equal to, Nbc: Represents 
the Number of Centres in Hidden Block, �: 
Represents a Centre of Size Equal to Nde x n 

 
A: of size M x M,  is a superior triangular matrix 
containing orthogonal coefficients. 
 
The A matrix is defined in Table 1.  
 
Table 1: Representation of  A  Matrix Containing  the 

Orthogonal  Coefficients 
1 α1,2    α1M 
0 1    α2,M 
0 0 1    
    αM-2,M-1 αM-2,M 

0   0 1 αM-1,M 
0   0 0 1 

 
The space generated by the vectors Pi is the same space 
generated by the vector Wi and the system of equation 
(6) can be written as suit:  
 
d = W*G + E      (7) 
 
Where G=A. θ  is the search solution. 
Now, Let’s note:                                                 
 
H = WT. W. E                                              (8)  

Since  the  columns of the  matrix W are  orthogonal 
one by one, H is a diagonal matrix with hi elements as: 

hi = wi
t.wi = �

=

Ne

1i
 wi(t) .wi(t) , 1 ≤ i ≤ M      (9) 

This  property  which gives the Dynamic OLS  method  
very interesting, and this is for following reason : the 
orthogonal solution G is calculated by:  
 
G  =H-1 . WT d               (10) 
 
Which can be written by:  
 
Gi = wi

T d / (wi
T .wi ) , 1 ≤ i ≤ M             (11) 

 
It means that the Gi elements of the orthogonal solution 
G depend only on wi column, in other mean by  the 
orthogonal image  for each calculated outputs of  each 
centre. This part defines the quotient of the reduction of 
the approximation mistake introduced by every vector 
wi:  
 
[err]i=Gi

2 . wi
T .wi /(d

T. d ) ;1 ≤ i ≤ M           (12) 
 
This equation is used for construction iterative of the 
ATRBF network as criteria of selection. Hence of an 
initial whole of M centers, the network is constructed to 
every iteration, by adding the center that possesses the 
[maximal error]i value, and once we take the 
corresponding Gi.  
At each  iteration we calculate the elements of A and W 
by:  
 
αjk

i=Wt
j*pi/ W

t
j* Wj  

 (13) 
Wi

k  = pi- � k-1 αjk
i* Wj   

 (14) 
 
The criterion of iteration stop here is not based merely 
on the Akaike criterion:  
 

ε≤− �
=

=

Mi

1i
ierr1    

  (15) 
But also with the following criterion : 
 
Modulo M on  Nnc=0, where  M≠0 (16) 
 
In end of iterations, we calculate the  synaptic weights 
according to the system:  
 
G=A*θ    (17) 
 
The developed approach has been achieved on a subset 
of the TIMIT data base [8, 9] organized of 6 vowels, 6 
fricatives and 6 plosives. For our survey we reduced the  
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space of study for the case of plosives ( Table 2).  
Signals   have   been   sampled   to   16   KHZS  with an  
analysis cepstral under the Mel  ladder, takes all 20 ms 
in Hamming  windows of 25 ms giving each 12 
MFCCS coefficients and the corresponding residual 
energy. 

 
Table 2:  Subset of TIMIT Base Containing the /b/, /d/, /g / 
  Train examples Test examples 
/b/  399  182 
/d/  1371  526 
/g/  1337  546 
 
This work was achieved  on a Pentium 4 
microcomputer 1.7 GHz with 256 Mo of RAM, 
developed by the C++ builder and Matlab 6.5 
programming language. Concerning the training   data  
basis,   it  has   been   quantified   with  a Kohonen Self 
Organising Map of size 15x15, generating a basis of 
225 phoneme examples, therefore the size of training  
basis is about  675 examples, every example is 
normalized on an input length window equal to 4. The 
size of the test basis is 450 example at rate of 150 
examples by phoneme.  
Parameters of our ATRBF are: Ne=675, Nfe=4 , Nde 
can take the values between  1 and 4, Nnc=Nfe-Nde+1, 
Nbc varies according to the phoneme basis training and 
the wanted precision, the used kernel is gaussian with 
receiving field equal to 1, the threshold error is fixed to 
0.04 and finally the data are normalized by center-
reduce  method.  
 
Effect of Changes on  Input Time Delay: The global 
rate accuracy is about 98% in learning and 83% in test, 
the Fig. 5  shows us the influence of the time delay  
change on the performance of the network. 

 
Fig. 5: Performance According to Size of Windows 

x(y), xNde, yNde 
 
If the number of the time delay is narrow the 
performance degrades seen that it has less space time to 
browse all characteristic.  

On the other hand if the time delay  is large, there is a 
risk that the system becomes not shift invariant over  
time. The best case is choosing  the time delay in the 
median  
 
Comparison with TRBF, SVM, TDNN: A 
comparison was made between different temporal 
approach in accuracy rate (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  6: Comparison between the Different Temporal 

Approach in Accuracy Rate 
 
The phonemes /b/, /d/, /g/ represents an obstacle for the 
SVM approach [10], yet it has some best rates in the 
other phonemes, it is due to difficulty towards 
consonant detection, it comes back to the overlap in the 
training data basis [10]. Concerning the TRBF its 
problem is in the shift invariant   in    time   as   leaving   
of    the   time    delay equals to 1 [11]. For the TDNN, 
results gotten on basis containing /b/ /d/ /dh/ /g / of 
TIMIT and implemented on a Digital WorkStation 433 
MHz with three day of count in spite of data basis 
containing  3793 examples, the gotten rate was not 
competitor [9], what it has taken to hybrid with the 
HMM approach [9]. Finally the model proposed in this 
study gave good results, it comes back has 
hybridisation between advantages of the TDNN 
approach and networks RBF [1].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Accuracy Rate Characterising the Tolerance of 

the Approach Towards a Guassian Noise of 
Different Spread � 
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Noise Effect: While noticing the Fig. 7, we can deduct 
that  the  ATRBF  among  so  many other methods [12],  
can adjust well with a word dived in a noised middle, 
by adding to the test data basis a gaussian noise of 
spread belongs to  0.001 until 0.05.  
We see that the classifier resists good until a threshold 
spread σ equal to 0.005 where the test rate overcome 
70% but from σ passing the value of  0.01 the rate 
degrades, it can even notice itself at the human being, 
we doesn't sometimes manage to distinguish passages 
of words some if we are in a very noisy environment.  
 

DISCUSSION 
 

In this study we have presented a new approach based 
on the adaptive temporal radial basis function, applied 
to speech  recognition. The main advantage with regard 
to other neural architectures, it is well the time won in 
the training, in addition we have few parameters to 
adjust. The ATRBF combines advantages of the TDNN 
that are shift invariants in the time and their capacity of 
temporal feature recognition and advantages of the 
RBF in their speed.  
It is shown that our ATRBF has a good rate of training 
and test. We hope that this work can be generalized and 
tested in different domains like the pattern recognition 
and more especially in applications covering the spatio-
temporal basis, as the mobile robotics, detection of 
targets, economic fluctuations etc. 
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