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Abstract: A plane quadrangular element with geometric anisotropy has 

been developed to perform 2D Finite Elements Analyses in cases where 

high stress concentrations, varying with very different laws along two 

orthogonal directions, are present. The element has been implemented into 

a finite element code. To validate the element behavior, analyses in the 

adhesive of a single lap joint and in a bimaterial interface have been 

performed, comparing the stress fields obtained with those get from 

different methodologies (analytical, experimental and numerical with very 

fine meshes). It has been found that, using the same number of nodes, the 

analyses with the developed element returned better results with respect to 

the ones obtained with standard geometric isotropic elements. 
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Introduction 

The problem of the stress concentration analysis in 

mechanical parts has been faced using different 

methodologies. From the first analytical approaches based 

on the Theory of Elasticity to the experimental and the 

recent numerical ones of the last decades, the analysis of the 

stress fields in parts characterized by geometric 

discontinuity or singularities dues to the matching of 

different materials has reached important results. In 

numerical methods based on Finite Elements (FE) it’s a 

common practice to use mesh with high refinements in the 

areas where the stress concentrations are present 

(Zienkiewicz and Taylor, 1994). This leads to a good 

simulation of the problem but also to an increased 

computational effort, using the elements contained in the 

element libraries of the commercial FE codes (Reddy, 

1993). The latter contain generally elements provided with 

geometric isotropy (Bathe, 1996), where the shape 

functions describing the displacement field within the 

element are polynomials of the same order in the three 

cartesian directions. Removing the condition of geometric 

isotropy it is possible to obtain elements where the shape 

functions describe the internal displacement field with laws 

of different form in the three cartesian directions. Therefore, 

in the cases where the quantities to estimate (displacements, 

strains, stresses, etc…) change with very different laws 

along the three directions, an element without geometric 

isotropy, appropriately oriented, is able to lead to reliable 

results also using a relative reduced number of elements. 

Then, it would be useful to have in the libraries of the FE 

programs also this kind of element to study problems with 

high stress concentrations varying with very different laws 

along the cartesian directions, with the purpose to reduce 

the storage resources and the computational time. Other 

approaches based on Lagrangian multipliers can be found in 

literature able to solve problems with anisotropic material 

with inextensible fibers (Wriggers et al., 2016). 

In this study a quadrangular, plane, eight-noded finite 

element without geometric isotropy has been developed. 

The element has been implemented into a home made FE 

code, compiled in Fortran. With the aim to verify the 

efficiency of the element, some FE analyses of problems 

with high stress concentrations have been done and the 

results compared with the ones obtained using isotropic 

element with the same meshes and by other analytical or 

experimental approaches. 

Numerical Procedure 

Analytical Formulation of the Anisotropic Element 

Experimental, analytical and numerical approaches 

should be followed when investigation of analytical 

formulation of the anisotropic element is taken into 

account. However, experimental methods fail to give 

information about loading history and the changes 

introduced during the course of penetration process, 

while being well expensive. Due to their high 

reliability, theoretically and analytically methods are a 

simple and fast method for achieving the desired 

results (Hedayati and Vahedi, 2017; 2018). 
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Following the typical FE approach in Zienkiewicz and 

Taylor (1994), displacements within the element are 

commonly expressed by the matrix relation: 
 

{ } [ ]{ }s N q=  (1) 
 
where, {s} is the displacement vector of a generic point 

inside the element, [N] is the shape function matrix, {q} 

is the displacement vector of the element nodes. 

Using the generalized coordinates (Bathe, 1996) the 

most general expressions of the in-plane displacement of 

a generic point are the u and v components in the x and y 

directions, respectively: 

2
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...
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= + + + + + +

= + + + + + +

 (2) 

 

where, αi are coefficients called generalized coordinates. 

For a given element, Equation (2) have to be particularized 

so that the compatibility and completeness criteria, which 

ensure the convergence of the solution as the element 

number grows, are satisfied. The condition of geometric 

isotropy is fulfilled if the x and y terms are chosen 

symmetrically with respect to the axis from the Pascal’s 

triangle in Fig. 1. 

 

 
 

Fig. 1: Pascal’s triangle and terms chosen for the isotropic 8-noded element 

 

 
 

Fig. 2: Isotropic 8-noded element 
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In the case of the plane quadrangular eight-noded 

isotropic element in Fig. 2, called hereinafter ISO8, 

choosing from Pascal’s triangle the terms circled in 

Fig. 1, displacements are described by Equation (3): 
 

2 2 2 2

1 2 3 4 5 5 6 7 8

2 2 2 2

9 10 11 12 13 14 15 16

u x y x xy xy y x y xy

v x y x xy y x y xy

α α α α α α α α α

α α α α α α α α

= + + + + + + + +

= + + + + + + +

 (3) 

 
As a consequence, the u and v displacements in (3) 

have the same analytical shape with respect to the x and 

y coordinates. 

In the case of the plane quadrangular eight-noded 

anisotropic element in Fig. 3, called hereinafter ANISO8, 

displacements can be described by Equation (4): 
 

2 2 3 3

1 2 3 4 5 6 7 8

2 2 3 3

9 10 11 12 13 14 15 16

u y xy y xy y xy

v x y xy y xy y xy

α α α α α α α α

α α α α α α α α

= + + + + + + +

= + + + + + + +

 (4) 

 
The terms chosen from Pascal’s triangle are shown in 

Fig. 4. Now displacements are described by polynomials 

where the x coordinate appears with linear terms, while y 

coordinate appears with terms up to cubic. 

From the expressions of the displacement functions 

(2), imposing displacement values at nodes {q}, the 

matrix of the shape functions can be obtained by: 
 

[ ] [ ][ ]
1

N A C
−

=

 (5) 
 
where, [A] is the matrix of the generalized coordinates 

and [C] is the matrix of the nodal coordinates. 

By associating the generic element to a square 

centred with respect to the origin of a local s and t 

reference system, with sides described by the 

segments s = ±1 and t = ±1 (Fig. 5), expressions of the 

shape functions, using natural s, t coordinates, can be 

obtained rewriting the element shape functions in 

generalized coordinates in s, t terms and performing 

the matrix operation (5). In this way, shape functions 

of easier usage are obtainable, because they are 

dependent not from the element geometry but only 

from the element type. 

Figure 6 shows, in the natural domain s, t, the 

shape functions associated, for both elements, to a 

corner node ((a) for ISO8 and (c) for ANISO8) and to 

an intermediate node ((b) for ISO8 and (d) for 

ANISO8). It can be seen how ANISO8 element is able 

to describe displacement field with different laws 

along two perpendicular directions. 

 

 

 
Fig. 3: Anisotropic 8-noded element 

 

 
 

Fig. 4: Terms chosen for the anisotropic 8-noded element 
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Fig. 5: ISO8 (left) and ANISO8 (right) elements in the natural coordinate system 
 

 
 

Fig. 6: Shape functions on the natural domain for ISO8 (a,b) and ANISO8 (c,d) elements 
 

The element stiffnes matrix, [k], normally expressed 

in the global x, y coordinates, must be given in s and t 

terms. To compute it, the Gauss quadrature method is 

usually used (Zienkiewicz and Taylor, 1994), where an 

analytical integration is substituted with a numerical 

sum. It can be written: 
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where, G(s,t) is a polynomial whose order depends on 

the number of degrees of freedom of the element along 

the s and t directions. Following the numerical 

integration procedure, G(s,t) is computed in a specified 

number of points, called Gauss points, inside the natural 

domain, whose number is equal to ns × nt; the obtained 

values are multiplied by some coefficients H named 

weights and then summation is executed. The number of 

Gauss points necessary to the exact integration of (6) is 

established by the order of G(s,t). Moreover, while with 

isotropic element is ns = nt, with anisotropic element ns and 

nt depend on the order of the coordinates s and t in G(s,t), 

respectively. With n Gauss points along a fixed direction is 

possible to achieve the exact integration of a 2n-1 order 

polynomial in the corresponding variable. For the eight-

noded isotropic element 3×3 = 9 Gauss points are 

necessary, while for the eight-noded anisotropic element 

2×4 = 8 Gauss points are enough. In Fig. 7 the positions of 

the Gauss points for the ANISO8 element are shown and in 

Table 1 the associated coordinates and weights. 
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Fig. 7: Location of the Gauss points (solid black) for the anisotropic element 
 
Table 1: Gauss points and relative weights for ANISO8 

s = ±0.57735  t = ±0.339981  t = ±0.861136  

H = 1  H = 0.652145  H = 0.347855  

 

Applications 

To evaluate the reliability of the element formulation, 

the developed procedure has been used to estimate the 

stress field in two problems characterized by high stress 

concentrations and the results have been compared with 

the ones obtained by other ways. 

Analysis of a Single Lap Joint 

The determination of the stress field in a single lap 

joint has been the object of several studies with different 

methodologies. Preliminary studies can be found in 

Hovgaard (1930) and later in Volkersen (1938) and in 

Goland and Reissner (1944). The attention was focused 

on the determination of the stress field in the adhesive 

film, according with the assumption that adhesive failure 

is the greater reason to the joint breakdown. Numerical 

studies begin with Wooley and Carver (1971) where the 

value of the stress concentration factor was estimated for 

different joint geometries. At the same time, Adams and 

Peppiatt (1974) appraised the reliability of analytical 

results performing numerical and experimental analyses. 

Among the later works is remarkable Andruet et al. 

(2000), where the adherends mesh has been obtained 

with beam elements, while the adhesive mesh with 

quadrangular four-noded elements. 

In the present paper, analyses of the joint depicted in 

Fig. 8 are performed with different methods: Analytical 

using the approach in Goland and Reissner (1944), 

numerical with the code ANSYS APDL using eight-

noded quadrangular isotropic Element (PLANE82) with 

a very fine mesh and numerical with the home made FE 

software using the ISO8 and ANISO8 elements. 

The analyses have been performed under these 

hypotheses: 

 

• Plane strain problem 

• Homogeneous and isotropic materials 

• Linear-elastic behaviour 

• In the analytical formulation εx is the only strain 

component unequal to zero in the adherends 

 

The elastic characteristics of materials are reported 

in Table 2. 

To refine the mesh in the regions where there is the 

higher stress concentration, just the part of the joint 

interested by the overlap has been modelled, replacing 

the adherends upstream and downstream the overlap 

with the normal force T and the bending moment M0 

in the sections a and b (Fig. 9a). The bending moment 

M0 = 36.8 Nmm is computed according to the 

formulation in Goland and Reissner (1944). The mesh 

created in the Fortran software is shown in Fig. 9b 

together with the orientation in the x,y plane of the 

anisotropic elements. With the same FE model, 

analyses have been performed both with ISO8 element 

and with ANISO8 element, using for both cases 288 

elements. A finer mesh has been employed in ANSYS 

using 1956 elements, in order to obtain a solution as 

closer as possible to the exact one. In Table 3 the 

features of the meshes are reported. 
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Fig. 8: Single lap joint 

 

 
 

Fig. 9: Analysed single lap model (left), mesh in the Fortran FE software (right) 

 
Table 2: Characteristics of materials for the single lap joint 

 Adherends (steel)  Adhesive (epoxy) 

Young mod. [MPa]  210000  2150  

Poisson ratio  0.3  0.34  

 

Table 3: Features of the meshes for the single lap joint 

 Fortran     

 ------------------------------- Ansys 

 ISO8  ANISO8  Plane82  

Nodes  953  981  5729  

Elements  288  288  1956  

 
Figure 10 are shown the stress components in the 

mid-section of the adhesive, obtained by the different 

computational methods. It can be seen that: 
 

• Near x = 0 (Fig. 10a) the curve related to σy obtained 

by ANSYS is slightly different from the one obtained 

by the analytical approach owing to the simplified 

hypotheses about εx introduced by Goland and 

Reissner; the values calculated by means of the 

ANISO8 element stay in the middle between the two 

curves mentioned above and furnish an error referred 

to the maximum value smaller than the one obtained 

by the ISO8 element with respect to ANSYS (3.3% 

versus 9.9%, respectively) 

• The shear stress (Fig. 10b) obtained by means of 

ANISO8 are almost equal to the results obtained by 

ANSYS (error referred to the minimum value close 

to 0.5% versus 13.6% related to the analysis using 

ISO8); this behaviour is appreciable also near the 

free surface, where isotropic element shows 

greater errors; according to analytical formulation 

(Goland and Reissner, 1944) in x = 0 τxy should 

have a minimum, while, by means of numerical 

analyses, results practically τxy = 0, because of the 

principle of reciprocity, the external surface being 

free from loads 

• The error related to the maximum value of σx (Fig. 

10c) estimable from the results obtained by the 

anisotropic element, with respect to ANSYS, is 

equal to 1.35%, while the one given using the 

isotropic element is equal to 11.8% 

 

Therefore clearly appears that the anisotropic 

element gives better results than the ones given by the 

isotropic element ISO8 with the same number of 

elements and really close to the ones obtained by 

ANSYS using very fine meshes having six times the 

total number of elements. 
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Fig. 10: Stress in the mid-section of the adhesive in the single lap joint: σy (a), τxy (b),σx (c) 
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Analysis of a Bimaterial Joint 

The use of joints between two or more different 

materials, in the last decades, has begun a very common 

practice in several applications. In this study, the case of a 

joint between two plates made with isotropic and 

homogeneous materials and with rectilinear interface is 

considered. The stress field near the interface tip caused 

by mechanical loads (either static or dynamic) or thermal 

loads strictly depends on the materials of the joint     

(Kelly et al., 1992). The more different are the materials, 

the more the stress concentration increases near the 

interface tip. This often brings the appearance of cracks or 

plasticisations. Thus, it’s evident how the exact 

knowledge of the stresses field plays a relevant role in the 

design of such a joint. The main analytical studies on the 

topic have been reported in Bogy (1968; 1971), in the case 

of plane problems. Relating to this study, two parameters α 

and β have been introduced in Dundurs (1969) depending 

on the elastic characteristics of both materials, denoted with 

the subscripts 1 and 2 and defined by: 
 

( ) ( )1 2 2 1
1 2 2 1

1 2 2 1 1 2 2 1

2 2
;

G m G mG m G m

G m G m G m G m
α β

− − −−

= =

+ +

 (7) 

 
where: 
 

( )

( )

4 1 ,

4
,

1

i i

i

i

m v for plane strain

m for plane stress
v

= −

=

−

 (8) 

 
and where G e v are respectively the shear modulus and 

the Poisson’s ratio. Dundurs supposes that the stress 

field pattern near the interface tip depends just on the 

values assumed by α and β (Kelly et al., 1992): It is 

possible to have singular stress fields (with logarithmic 

or hyperbolic pattern) or non-singular. 
In the most diffused case of hyperbolic singularity, the 

order of singularity derives only from the elastic 
characteristics of the joined materials. Later studies (Yang 
and Munz, 1997; Cirello and Zuccarello, 2001) have shown 
that it is possible to completely describe the hyperbolic 
stress field in a polar coordinate system (Fig. 11), in a 
restricted area around the origin, through the relation: 
 

( )ij ij
Kr fω

σ θ=  (9) 

 
where, ω is the order of singularity, K is the stress 
intensity factor connected with the elastic characteristics 
of materials, with the joint geometry and with the load 
system, fij(θ) are functions derived from the 
characteristics of the two materials. 

The original theory formulated by Bogy allows to 

calculate the order of singularity by solving the 

implicit relation: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
22

1 2 1

22 2 2 2

3 2

cos / 2 1

cos / 2 / 2 1 0

k k k

k sen k

ω ωπ ω

ωπ ωπ ω

 ∆ = − − + +
 

+ − + =

 (10) 

 
Where: 
 

( )1 2 1 2 2 1 3 2
/ ; 2 1 ; ;k G G k k k km m k km m= = − = − = +  (11) 

 
Once ω has been computed, the functions fij(θ) can be 

obtained considering that they are the eigenfunctions 

associated to the eigenvalue ω. However, analytical 

formulation permits to obtain just the order of singularity 

ω but not the value of the factor K, for which it is 

necessary to accomplish also numerical or experimental 

analyses. It has to be reminded that both numerical and 

experimental analyses are often difficult to perform. In 

fact the high stress concentration in a very restricted area, 

near the singularity point, needs, in numerical analyses, 

extremely refined meshes and the results can be affected 

by the type and the shape of the element used. 

Experimental approach presents difficulties due to the 

random errors associated to this kind of analysis, not only 

about the values obtained by the investigation but also 

about the exact measurement of the polar coordinates 

(Cirello and Zuccarello, 2001). However, to study the 

zone regulated by singularity, experimental analysis 

remain preferable, allowing to consider the eventual effects 

of hardening and/or plasticisations, the latter difficult to 

verify and simulate with numerical analyses. 

The bimaterial joint in Fig. 12 has been studied. The 

hypotheses of the analysis are: 
 
• Plane stress problem 

• Isotropic and homogeneous materials (aluminium 

and plexiglass) 

• Linear-elastic behaviour 

• Rectilinear interface 
 

 
 
Fig. 11: Bimaterial joint 
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Fig. 12: Bimaterial joint geometry 
 
Table 4: Characteristics of bimaterial joint costituents.  

 Aluminium  Plexiglass  

Young Modulus [MPa]  63600  3220  

Poisson Ratio  0.33  0.39  

 

The characteristics of materials are reported in Table 4. 

From Equation (7), Dundurs parameters can be 

computed: 
 

0.904; 0.274.α β= =  
 

Via Equation (10), the theoretical value of the order 

of singularity, ωBogy, is computed: 
 

0.2277.
Bogy

ω = −  

 

To obtain the order of singularity ω via numerical or 

experimental analyses, Equation (9) has to be rewritten 

in logarithmic form: 

 

( ) ( ) ( )log log log
ij ij

r K fσ ω θ = +    (12) 

To validate the results obtained analytically, these 

have been compared with the results of the experimental 

studies performed in Cirello and Zuccarello (2001) about 

the same couple of materials and the same geometric and 

loads configuration. These studies have been achieved 

with the automatic photoelasticity technique using a 

circular dark field polariscope in white light and a digital 

camera. Once the images of isochromatic fringes have 

been digitalized, the retardation δ has been computed 

along a segment oriented in the direction θ = 45°. In a 

bilogarithmic reference system (Fig. 13) the 

interpolation line of the results is traced; the slope of this 

line is equal to the order of singularity ωexp = -0.2273 

and is very close to the theoretical value. From Fig. 13, a 

deviation of the computed points from the interpolation 

line describing the hyperbolic behaviour predicted by 

Bogy is noted. This aspect can derive, near the interface 

tip, from the presence of plastic strains, while, far away 

of the tip, from the loss of validity of the hyperbolic law. 

In the present paper, numerical analyses have been 

performed using the home made FE software and also 

ANSYS (with very fine mesh) to validate the results. 

The model used in the home made software is shown in 

Fig. 14 considering the symmetry of the problem with 

respect to the line x = 37.5 mm. Four increasing mesh 

levels have been used, both with isotropic elements and 

with anisotropic elements (Table 5). 

In the figure the orientation of the anisotropic element 

on the x,y plane is also depicted: This allows to have more 

nodes along the direction parallel to the interface. 

Doing as in Fig. 13, the σr stress along the free edge 

of aluminium (θ = -90°) has been plotted in Fig. 15. To 

evaluate ω the stress values have been selected in the 

field 0 < log(r) < 0.8, that is 1 mm < r < 6.3 mm, in fact 

as r→0 a scattering of the points is noted (mostly in the 

analyses using isotropic element), while beyond r = 6.3 

mm Bogy’s formulation is not valid. In the field r < 6.3 

the results obtained by ANSYS, not shown, are in 

perfect agreement with the theoretical formulation. 

Figure 15, the greater scattering of points related 

to the isotropic element can be noticed in particular as 

r→0, while, points computed with the anisotropic 

element, settle on the interpolation line since the first 

node (log(r) =-0.61). This different behaviour is more 

appreciable using coarse meshes. What has been 

remarked results evident observing Table 5, where the 

values computed for ω with the different refining 

levels are reported. Since mesh D2 the analyses 

performed using the anisotropic elements return a 

value for ω equal to the analytical one, while using 

the isotropic element the mesh D4 is necessary to 

obtain a fair value. Approximately it can be noticed 

that to obtain the theoretical singularity order, it has to 

be used a mesh with twice isotropic elements than 

anisotropic elements. 
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Fig. 13: Curve of retardation δ along θ = 45° (from Cirello and Zuccarello, 2001) 
 

 
 

Fig. 14: Mesh in Fortran code for the bimaterial joint 
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Fig. 15: Log-log plot of σ

r
 stress along the free edge of aluminium (θ = -90°) obtained with the Fortran FE software: ISO8 

(a) mesh D4, ANISO8 (b) mesh D4 
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Fig. 16: Diagrams of σ
r
 on the free edge of aluminium in the bimaterial joint: Mesh D2 (a), mesh D4 (b) 

 
Table 5: Comparison between numerical results  

  Nodes   ω 

  --------------------------------------- ------------------------------------------ 

 Elem ISO8  ANISO8  ISO8  ANISO8  

Fortran D1  260  853  837  -0.2435  -0.2288  

Fortran D2  504  1613  1591  -0.2358  -0.2277  

Fortran D3  704  2233  2205  -0.2307  -0.2277  

Fortran D4  960  3017  2989  -0.2275  -0.2277  

Ansys  8000  24361  -0.2277  

 

Figure 16 the diagrams of σr along the free edge of 

aluminium, near the point of singularity, are shown 

computed by Bogy’s law, by ANSYS (coincident with 

Bogy) and with the Fortran software using both 

elements. It can be finally noted that the points 

obtained by the studies with ANISO8 elements have 

an error from the Bogy’s formulation smaller than the 

ones obtained by the studies with ISO8 elements, in 

particular with coarse meshes. 

Conclusion 

A plane quadrangular eight-noded element without 

geometric isotropy has been developed to perform 2D 

FE analyses of problems with high stress 

concentrations characterized by very different laws 

along two orthogonal directions. The aim is to reduce 

the total number of elements and the computational 

time, obtaining the same accuracy in results as with 

isotropic elements. 

Benchmark analyses are performed in some typical 

stress concentration cases, to compare results given by 

models meshed with the same number of isotropic and 

anisotropic elements. Results show that, to reach the 

same accuracy, a higher number of isotropic elements 

is in effect needed with respect to anisotropic ones 

having the same d.o.f. per element. 
Moreover, the anisotropic element has also the 

advantage that needs one less integration point than 
isotropic element to perform the exact computation of 
the stiffness matrix; this means that an iteration less of 
the computing routines is necessary for each element; 
that is a computational time reduction around 10% with 
respect to an equivalent analysis using isotropic 
elements is reachable. 

The advantages, in terms of resource saving, employing 

this kind of element become even more evident in the cases 

of iterative analyses (optimisation or non-linear problems), 

where the solution is obtained by several subsequent steps, 

or in cases of 3D and orthotropic material structures. 
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