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Abstract: In this article, entropy in the collected data about the Gaussian 

population mean is traced from its embryonic stage as new data are 

periodically collected. The traditional Shannon’s entropy has shortcomings 

from the data analytics point of view and it creates a necessity to refine the 

Shannon’s entropy. Its refined version is named Gaussian Nucleus Entropy 

in this article. Advantages of the refined version are pointed out. The 

Prior, likelihood, Posterior and predictive nucleus entropies are derived, 

interconnected and interpreted. The results are illustrated using data on 

cesarean births in thirteen countries in the period [1987, 2007]. The 

medical communities and families are alarmed, as the cesarean births are 

increasing not due to emergency or necessity basis but rather for monetary 

or convenience basis. Nucleus entropy based data analysis answers 

whether their alarm is baseless. 
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Introduction 

What is entropy? In essence, entropy is all about 

information. Shannon (1948) introduced a seminal 

idea of capturing information in the collected data 

about an unknown parameter. In his example dealing 

with electronic communication, Shannon evaluated 

the amount of captured message in a destination 

location compared to the amount transmitted out of an 

originate location. Upon the advice of his friend John 

von Neumann, Shannon misnamed it as entropy for a 

reason. What was the reason? Claude Shannon himself 

revealed it: “My greatest concern was what to call it. I 

thought of calling it information, but the word was 

overly used, as I decided to call it uncertainty. When I 

discussed it with John von Neumann, he had a better 

idea. Von told me; you should call it entropy for two 

reasons. In the first place, your uncertainty function 

has been used in statistical mechanics under that 

name, so it already has a name. In the second place, 

more important, nobody knows what entropy really is, 

so in a debate you will always have the advantage” 

(Tribus and McIrvine, 1971). However, the Shannon’s 

entropy concept is popularly utilized in medicine, 

health, engineering, business, economics, marketing 

and statistics among other disciplines with a 

contextual interpretation opposite to what really, 

Shannon intended (Smelser and Baltes, 2001). 
A litmus test for an entropy is that it should be 

quantifiable, partially orderable, additive, storable and 

transmittable. Shannon’s entropy possesses several of 

those in the above list but does not the much-needed 

additive property, which is a requirement in data 

analysis. When an additional observation becomes 

available, the entropy ought to increase. The 

Shannon’s entropy does not do so and hence, it needs 

a refinement. These and other controversies about the 

Shannon entropy convinced professionals to give up 

on entropy as documented in Ben-Naim (2011). 

Instead, why not we refine entropy and use it? 

Exactly, this question is answered in this article. 

The Shannon’s entropy is refined, in this article, by 

peeling away unnecessary entropy junkies. This refined 

new version is named nucleus entropy. Gaussian 

probability distribution is focused because it is more 

popularly employed in data analysis than any other 

distribution. Advantages in the Gaussian nucleus entropy 

over the traditional Shannon’s entropy are pointed out. 

Biostatistics community often selects Bayes 

approach over the frequentist’s approach to perform 

data analysis and prediction as new data are 

periodically entering the databases. In the Bayes 
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approach, the conjugate prior jointly plays a cohesive 

crucial role along with that data dominant likelihood 

function to shape up the posterior frequency density 

curve. For sake of making a prediction of yet to be 

calculable, the predictive frequency density curve is 

often employed in the Bayesian analysis. In the course 

of time, a posterior frequency curve of the past 

becomes the prior for making the posterior frequency 

curve of the current time as new data become 

available. In this framework and practice, the 

Gaussian conjugate prior, data dominant likelihood, 

posterior and predictive nucleus entropies are derived, 

interconnected and interpreted. 

In the illustration, the log-transformation of the 

number of cesarean births (in 1,000) over the years since 

1987 in six groups of thirteen countries: Belgium, 

Canada, Czech, Denmark, Finland, Ireland, Italy, 

Norway, Portugal, Slovak, Spain, Sweden and US in 

Declercq et al. (2011) is considered, analyzed and 

interpreted. The future number of cesarean births in each 

of these thirteen countries is predicted and compared. 

Advantages of Gaussian nucleus entropy are articulated. 

A few conclusive comments are made in the end.  

Gaussian Nucleus Entropies and Their 

Properties 

To be specific, consider that a random sample 

y1,y2,...,yn is drawn from a Gaussian population 
2

( , )
y

f y µ σ where Equation 1: 
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µ is an unknown (natural) parameter and 2

y
σ  is a 

known shape parameter. The Shannon’s entropy HGauss(.) 

is Equation 2a: 
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Notice that its natural parameter µ is not even a part 

of the entropy (2). Furthermore, the Shannon’s entropy 

exhibits a weakness from the practitioners’ point of 

view. To see it, first note that it is known (Stuart and 

Ord, 1994) that a sum s = y1 + y2 +…+ yn of n 

independent and identically Gaussian distributed 

observations follows a Gaussian probability structure 

2
( , )yf s n nµ σ . In which case, the Shannon entropy of the 

sum s = y1 + y2 +…+ yn ought to be n times 
2

( , )Gauss yH y µ σ . However, it did not happen so. The 

Shannon’s entropy of the sum is not additive of the 

individual entropies. That is: 

 

( ) ( )2 2
, ,Gauss y Gauss yH s n n nH yµ σ µ σ≠  

 

For entropy practitioners, this causes confusion, as 

the Shannon’s entropy is not adding up as a new 

Gaussian observation becomes available. The existence 

of such a deficiency in Shannon’s entropy is a sufficient 

reason to refine the entropy idea in an alternative way 

and it is what exactly done in this article. In other words, 

this article introduces a new and novel approach based 

on Gaussian nucleus entropy. That is: 

Definition 1 

A nucleus entropy,
2

,

,

y

Gauss Y

µ σ

Ν resides in the Gaussian 

population frequency curve once it is written as 

Equation 2b: 
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With an observation -∞<y<∞, an unknown (natural) 

parameter -∞<µ<∞ and an entropy accumulator 

parameter 2
0

y
σ > .  

The function 2( , )
y

A µ σ is insulated from observation y. 

The function 2( , )
y

B y σ  does not connect to the unknown 

(natural) parameter µ. In a sense, both the functions (that 

is, 2( , )
y

A µ σ  and 2( , )
y

B y σ ) are entropy junkies. Unlike the 

Shannon’s entropy, notice that the nucleus entropy 

involves both the unknown natural parameter µ and an 

entropy accumulator parameter 2

y
σ . The Gaussian nucleus 

entropy is more appropriate, appealing and meaningful 

than the Shannon’s entropy. 

From now on, the variance 2

y
σ could perhaps be 

recognized and called as nucleus entropy accumulator. In 

other words, from (2b), the Gaussian nucleus entropy is 

2 2
,

:
y y

y

Gauss Y
e

µ

µ σ σ

Ν =  with a single observation y and 

22
,

:
y

s

Gauss S
e

µ

σµ σ
Ν = for a sum s = y1 + y2 +…+ yn of n 

independent and identically distributed Gaussian 

observations.  

Without losing any generality, the nucleus entropy 

could be expressed in a logarithmic scale just for the sake 

of a comparison with the Shannon’s entropy, which is in 

a logarithmic scale. The expected nucleus entropy of a 
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single observation y is 
2 2

, ,

: :
{ln( )}y y

Gauss Y f Gauss YE E
µ σ µ σ

= Ν  which 

simplifies to Equation 3a: 

 

( ) ( )

2

2 2

,

:

, ,2 2

2

2

, , ln

y

y y

Gauss Y

y y Y Y

y

E

A B y

µ σ

µ σ µ σ

µ σ σ

µ

σ

 = Ν Ν  

=

∫  (3a) 

 

The sample counterpart of (3a) is named calculable 

Gaussian nucleus entropy and it is Equation 3b: 

 
2

,

: 2

n

Gauss Y

y

y
O

µ

σ

=  (3b) 

 

The expected and observed nucleus entropy of a sum 

s = y1 + y2 +…+ yn of n random sample observations are 

2
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words, the expected and observed nucleus entropies of 

the likelihood function: 
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Are respectively: 
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Notice that the observed likelihood nucleus entropy 

(4b) is calculable. The ratio of conditional expectation 

and variance: 
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Is explainable risk in the likelihood to address the 

unknown Gaussian mean parameter µ (O’Hagan, 1994). 

Notice that the likelihood-based risk is more in the high 

neighborhood of the mean. 

In the Bayesian analysis, the prior distribution for 

the unknown (natural) parameter of interest needs to 

be chosen in such a manner that the current data 

likelihood function is a dominant factor in the process 

of updating to obtain the posterior distribution. A 

uniform or a conjugate prior distribution is 

conventionally considered. The conjugate prior is 

more versatile than the uniform prior. In addition, in 

terms of the probability structure, the conjugate prior 

distribution is compatible with the likelihood function 

(Shanmugam, 1992). For the unknown (natural) 

Gaussian mean parameter, a Gaussian distribution 

Equation 5: 
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Is known (O’Hagan, 1994) to be conjugate prior 

distribution based on a prior sample of size n0≥1 and their 

mean 
0
y . On its own merit, the conjugate prior distribution 

(5) is Gaussian and hence, the expected and observed prior 

Gaussian nucleus entropies are respectively: 
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A comment is necessary here and that the expected 

prior Gaussian nucleus entropy (6a) is calculable. 

Interestingly, there is a parallelism among expressions 

(4a), (4b), (6a) and (6b) and it is due to conjugation 

principle. The ratio of prior conditional expectation 

and variance: 
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Is calculable prior risk to address the unknown 

Gaussian mean parameter µ (O’Hagan, 1994). When the 

Gaussian nucleus entropy accumulation is zero in the 

beginning (that is, 2
0

y
σ = ), the calculable prior risk is 

maximum possible one. Notice that the calculable prior 

risk reduces when the Gaussian nucleus entropy 

accumulation 2

y
σ  increases. The importance of Gaussian 

nucleus entropy could not be clearer. 

A beauty of the Bayesian analysis is that even if the 

prior distribution happens to be a bad selection, it is 
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eventually moderated in the posterior distribution. What 

is the posterior distribution? It is an update of the prior 

by its mixing with the data dominated likelihood 

function and integrating out their commonalities. 

Mathematically, it is done as follows:  
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The posterior distribution (7) is also Gaussian and 

ence, the expected and observed posterior Gaussian 

nucleus entropies are respectively: 
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Again, the expected posterior Gaussian nucleus 

entropy (8a) is calculable. The ratio of posterior 

conditional expectation and variance: 
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Is calculable posterior risk to address the unknown 

Gaussian mean parameter µ (O’Hagan, 1994). When 

the Gaussian nucleus entropy accumulation is zero in 

the beginning (that is, 2
0

y
σ = ), the calculable posterior 

risk is maximum possible one. Notice that the 

calculable posterior risk reduces when the Gaussian 

nucleus entropy accumulation 2

y
σ  increases. The 

importance of Gaussian nucleus entropy cannot be 

over emphasized. The percent reduction in the 

calculable risk is: 

( )
2

2

0 0 0 0

/

calculable risk

Posterior Prior Prior

y

y

Risk Risk Risk

n y

n y ny n y

σ

σ

−

ℜ

= −

   
=     + +   

 (8c) 

 

The purpose of knowledge discovery is only to reap 

its benefits currently or in the future. The Bayesian 

concepts meets this practical purpose. In other words, 

based on the prior or posterior distribution, the Bayesian 

approach leads into finding and using the so called 

predictive distribution to forecast what might be the 

future calculable mean, yɶ based on a yet to be collected 

random sample of size m≥1? The prior predictive density 

(O’Hagan, 1994) is Equation 9: 
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Which is also Gaussian. Hence, the expected and 

observed prior predictive Gaussian nucleus entropies are 

respectively: 
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Again, the expected posterior Gaussian nucleus 

entropy (10a) is calculable. 

Due to the posterior distribution (7), the posterior 

predictive density is Equation 11: 
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Which is also Gaussian. Hence, the expected and 

observed posterior predictive Gaussian nucleus 

entropies are respectively Equation 12a and b: 
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Again, the expected posterior Gaussian nucleus 

entropy (10a) is calculable. The extra quadratic 

information:
inf ormation

ℚ in the current sample compared to 

what it was in the prior sample is Equation 13: 
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Which suggests that the extra quadratic information 

increases when the Gaussian nucleus entropy 

accumulation increases and/or the current sample size far 

exceeds the prior sample size. 

The calculable jump in the predictive Gaussian 

nucleus entropy from prior to posterior time is 

Equation 14: 
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The calculable jump from the prior Gaussian nucleus 

entropy to the posterior nucleus entropy is Equation 15: 
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The proportionality of predictive entropy jump 
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℘  is Equation 16: 
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where, 
2
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denote the Gaussian 

likelihood nucleus entropy (4b) of the current sample 

sum s = y1 + y2 +…+ y
n
 and the prior sample sum 

0
0 1 2

... ns y y y= + + + . Hence, we obtain the Theorem 1 

below. 

Theorem 1 

Because the first three factors in (16) are less than 

one, when: 
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The Gaussian nucleus entropy in the current sample is 

lesser than its counterpart in the prior sample and hence, the 

current sample is lesser informative than the prior sample. 

When the Theorem 1 prevails, further sampling 

might not be worthwhile.  

Case in Point is Gaussian Nucleus Entropy 

to Predict Number of Cesarean Births  

In this section, the results of the previous section are 

illustrated using the data on the number Y of cesarean 

births (in 1,000 s) incountries: Belgium, Canada, 

Czech, Denmark, Finland, Ireland, Italy, Norway, 

Portugal, Slovak, Spain, Sweden and US during 1987 

through 2002 in Declercq et al. (2011). The first and 

foremost data analysis checks whether the lnY (because 

the numbers are big in size) follows a Gaussian 

distribution. Figure 1 to 5 and they confirm that the lnY 

(because the dots are closer to the upward diagonal 

line) indeed follows a Gaussian distribution. Hence, the 

data are suitable for the illustration of the Gaussian 

nucleus entropy results of the previous section. Figure 

6 to realize the proximity and trend among the years of 

the incidences. 

In our analysis, we evaluate the data before the year 

2,000 as prior sample (with n0 = 3) and the data after the 

year 2,000 as current sample (with n = 2). Table 1 for the 

values of lnY, 2

0
, ,

y
y y σ  and the observed likelihood nucleus 
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entropy 
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in (4b) for the entire sample. The 

expected prior nucleus entropy 
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℘  in (16) of the current over prior 

sample likelihood entropies are calculated and displayed 

in the Table 2.  
 

 
 
Fig. 1. Gaussian of cesarean births in 1987 
 

 
 
Fig. 2. Gaussian of cesarean births in 1992 

 
 
Fig. 3. Gaussian of Cesarean births in 1997 
 

 
 
Fig. 4. Gaussian of Cesarean births in 2002 
 

 
 
Fig. 5. Gaussian of cesarean births in 2007 
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Fig. 6. Proximity among the years as far as the incidence of cesarean births 

 

 
 

Fig. 7. Expected prior and posterior Gaussian nucleus entropy for the countries 

 

 
 

Fig. 8. Cesarean births have increased after 2,000 
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Fig. 9. Calculable risk versus Quadratic information for the countries 

 

 
 

Fig. 10. Proximity among the countries 

 
Table 1. The average and variance of ln (# Cesarean Births) in 1,000 since 1987  

 Before 2,000  After 2,000 Prior Sample   Posterior Observed 

 ---------------------------------- -------------------- mean mean variance mean nucleus 

Country 1987 1992 1997 2002 2007 4.78 5.16 0.07 4.93 1866.1 

Belgium 4.56 4.79 4.98 5.16 5.15 5.22 5.52 0.03 5.34 4833.50 

Canada 5.28 5.18 5.21 5.46 5.58 4.5 5.12 0.16 4.75 699.39 

Czech  4.25 4.48 4.77 4.95 5.28 4.86 5.29 0.06 5.03 2093.70 

Denmark 4.86 4.80 4.92 5.21 5.37 4.99 5.10 0.00 5.03 31836.00 

Finland 4.96 4.98 5.04 5.10 5.09 4.77 5.50 0.20 5.06 641.65 

Ireland 4.49 4.79 5.03 5.42 5.58 5.40 5.94 0.11 5.62 1400.60 

Italy 5.16 5.45 5.60 5.89 5.99 4.85 5.11 0.02 4.95 6331.80 

Norway 4.86 4.84 4.86 5.08 5.13 5.29 5.78 0.14 5.49 1044.10 

Portugal 4.88 5.38 5.61 5.71 5.85 4.59 5.30 0.20 4.87 595.15 

Slovak  4.29 4.60 4.87 5.18 5.41 5.06 5.50 0.09 5.23 1561.30 

Spain 4.80 5.09 5.29 5.46 5.53 4.73 5.11 0.05 4.88 2386.20 

Sweden 4.68 4.67 4.83 5.05 5.17 5.41 5.66 0.03 5.51 5752.40 

US 5.47 5.41 5.34 5.56 5.76 4.78 5.16 0.07 4.93 1866.10 
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Table 2. Summary of expected prior posterior, predictive, likelihood entropies, risk and information 

Country 
2

,

, :

y

prior Gauss SE
µ σ

 
2

,

, :

y

posterior Gauss SE
µ σ

 
calculable risk−

ℜ  
inf ormation

ℚ  
2

:

y

predictiveGauss S

σ

ℑ  
2

:

y

Gauss S

σ

℘  

2

2

0

,

, :

,

, :

y

y

Like Gauss S

Like Gauss S

O

O

µ σ

µ σ
 

Belgium 1051.9380 1797.9490 0.00185 0.02603 1.367 1.709 0.710 

Canada 2772.6840 4705.5100 0.00076 0.01181 1.358 1.697 0.697 

Czech  377.2589 656.5635 0.00489 0.06441 1.392 1.740 0.742 

Denmark 1171.8010 2008.6880 0.00169 0.02419 1.371 1.714 0.715 

Finland 18794.0000 31527.7500 0.00011 0.00159 1.342 1.678 0.678 

Ireland 341.8576 598.0071 0.00573 0.07987 1.399 1.749 0.751 

Italy 777.3856 1337.1490 0.00283 0.04507 1.376 1.720 0.721 

Norway 3646.2610 6178.3590 0.00054 0.00775 1.356 1.694 0.695 

Portugal 582.4762 999.7821 0.00369 0.05765 1.373 1.716 0.717 

Slovak  316.7505 554.3287 0.00595 0.07970 1.400 1.750 0.752 

Spain 875.5363 1499.6460 0.00235 0.03509 1.370 1.713 0.713 

Sweden 1343.1690 2297.0890 0.00143 0.01996 1.368 1.710 0.711 

US 3325.6020 5626.0880 0.00066 0.01055 1.353 1.692 0.692 

 

The Fig. 7 confirms that the expected posterior 

Gaussian nucleus entropy dominates the corresponding 

expected prior Gaussian nucleus entropy in every 

country. This finding would have been missed if the 

Shannon’s entropy is used and it emphasizes the 

importance of the nucleus entropy of this article. First, 

the Fig. 8 informs that the average incidence of 

cesarean births during the years 2,000-2,007 has been 

consistently more than the average incidence of 

cesarean births during the years 1,987-2,000 in every 

country. It, therefore, answers that the concern of the 

medical professionals and the communities of 

increasing cesarean births is legitimate. The extra 

quadratic information: 
inf ormation

ℚ in the current sample 

compared to what it was in the prior sample is consistently 

more than the percent reduction in the calculable 

risk
calculable risk−

ℜ in each country (Fig. 9) and it confirms 

that the data information is more than the risk of 

addressing the Gaussian population mean, according to 

the nucleus entropy. Such confirmation is not possible 

when the Shannon’s entropy is involved and it 

demonstrates the importance of nucleus entropy as a 

refinement of the Shannon’s entropy. Finally, we notice 

(Fig. 10) that the countries cluster together with respect 

to all of the above mentioned nucleus entropy related 

results. In specific, the countries: US and Canada form 

the first cluster, the countries: Norway, Sweden and 

Denmark form the second cluster and the countries: 

Czech, Finland, Ireland, Italy, Spain, Belgium and 

Portugal form the third cluster. The visualization of such 

clusters of countries is feasible due to the concept of 

nucleus entropy and it is not possible in using the 

complicated Shannon’s entropy. 

Conclusion 

In conclusion, the central theme, nucleus entropy of 

this particle refines the seminal and wonderful Shannon’s 

concept to capture data information. Though this refined 

nucleus entropy has been illustrated using the cesarean 

data, it is versatile enough to be useful in finance, 

economics, marketing, engineering, medical and health 

studies also. Further research on building regression 

models using nucleus entropy concept is underway and it 

will be communicated later in a journal article.  
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