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Abstract: Problem statement: Piezoelectric actuator is a kind of key driving components for 
micropositioning stages, micropumps, micro valves, micro gripper and so on in the fields of 
micro/nano technology such as integrated circuit manufacturing, precision instruments, ultra precision 
fabrication, biomedical manipulation. It has lots of advantages including high stiffness, fast response 
times, less heat generating, low power consumption and large force output. But the hysteresis 
nonlinearity seriously affects working performance of actuators. So a lot of models were proposed to 
describe the hysteresis nonlinearity. A popular model which was widely used is the Preisach model. In 
order to obtain accurate displacement output corresponding to arbitrary input voltage with the Preisach 
model, function output approximation is needed. Approach: In this study, firstly the Preisach model 
was introduced. Then the function modeling of Preisach model based on a Bayesian Regularization 
Back Propagation Neural (BRBPNN) was presented and a three layers BPNN was designed. Finally, 
the BRBPNN was trained in Neural Network toolbox of MATLAB6.0. The Preisach function 
values not at equal diversion points were calculated by the trained network and the actual 
displacement outputs and theoretical values corresponding to random voltages input were 
compared. Results: Experimental results indicate that theoretical displacements and measured 
displacements agree with very well, the maximum displacement error is 0.35μm and the standard 
deviation is 0.24 μm. Conclusion: The BRBPNN could realize function approximation in Preisach 
modeling accurately and could meet the precision requirement in the field of modeling and controlling 
of piezoelectric actuators. 
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INTRODUCTION 
 
 Piezoelectric actuators are widely used in ultra-
precision machining, integrated circuit manufacturing, 
precision instruments (Wang et al., 2010) due to 
advantages of high displacement resolution, fast 
response, high stiffness, small volume and less heat 
generation. But the hysteresis nonlinearity affects their 
working performance seriously. So modeling for 
hysteresis nonlinearity is needed (Han et al., 2000; 
Gruenbichler et al., 2008; Li et al., 2007; Mordjaoui et 
al., 2007). The Preisach model is a hysteresis model 
describing the static nonlinearity of piezoelectric 
actuators, which was proposed by Preisach (1935) 
based on magnetic effect (Ping and Musa, 1997). When 
using Preisach model to compute displacement output 
of a piezoelectric actuator, the density level of the equal 

diversion points of voltage directly affects the output 
accuracy. The model has a relatively great error when 
the number of equal diversion points are relatively less, 
but as the increasing of equal diversion points, the 
amount of experimental data which needed to be 
acquired will grow dramatically. Therefor, how to 
predict Preisach function value not at equal diversion 
points by using small amount of measuring points 
through function output approximation is very important. 
Preisach model could obtain a relevant displacement 
output corresponding to an arbitrary voltage input by 
function approximation. It could reduce the influence of 
hysteresis and effectively improve the control precision 
of the piezoelectric actuator. 
 The traditional method of function approximation 
includes Bilinear Interpolation, Polynomial Fitting but 
the approximation accuracy is not high enough for 
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some nonlinear function and these methods do not have 
self-learning and adaptive capacity, so the application 
in Preisach modeling is in a certain limit. The modern 
developed methods, such as Back Propagation Neural 
Network (BPNN), make up the deficiency of the 
traditional methods and has broad prospects. The 
BPNN is a multilayer feed forward neural network. The 
network and its variations are mostly used in function 
approximation, pattern recognition, classification, 
intelligent control. But standard BP algorithm has 
problems of relevant to the order of the input sample, 
poor generalization ability, easy to form local minima 
and slow convergence speed. The improved methods 
include additional momentum, adaptive learning rate 
method, Bayesian Regularization algorithm and so on.  
 Some researchers used neural network to model the 
hysteresis curve directly. They used different neural 
networks to fit ascending and descending curves 
respectively, but when the change history of the input 
voltage is different from one of the experimental data 
used in training, the output cannot  be predicted by the 
trained neural networks (Hwang et al., 2001). Some 
academics also applied neural networks in parameter 
identification of Preisach model and improved Preisach 
model. Adly and Abd-El-Hafiz (1998) used the 
similarity of Preisach model and neural network to 
achieve the nonlinear and hysteresis modeling of 
materials without wiping-out property. Liu et al. (2001) 
used BP and RBF neural network to identify the key 
parameters of a new kind of generalized Preisach model 
and realize a high accuracy. 
 This study utilizes BPNN to realize function 
approximation based on Preisach model and select 
Bayesian Regularization method to optimize, which has 
a marked effect on enhancing generalization ability of 
network and increasing training speed and has been 
used in some research works (Aggarwal et al., 2005). 
The network was trained in Neural Network toolbox of 
MATLAB6.0 and validated by experiments. 
 

MATERIALS AND METHODS 
 
Materials: The experiment has been done with a 
piezoelectric actuator, the WTDS-IA of Sichan Institute 
of Piezoelectric and Acoustooptic Technology, whose 
voltage range is 0~300 Volts and the maximum 
displacement output is 20 μm. A DGS-6C Model digital 
inductance style micrometer with a resolution of 0.01 
μm was used in displacement measurement. 
 
Preisach model methods: Preisach model is piled up 
by the simplest hysteresis generator and the 
mathematical expression is (Ping and Musa, 1997): 

x(t) ( , ) [u(t)]d dαβα≥β
= μ α β γ α β∫∫  (1) 

 
Where: 
x(t) = Output displacement of piezoelectric 

actuator  
u(t) = Input voltage 
μ(α, β) = Weighting function 
γαβ = Elementary rectangular hysteresis operator 

as shown in Fig. 1 
 
 As the input voltage raises from 0 up to α’ and 
drops down to β’, the shrinkage of piezoelectric actuator 
is defined as Preisach function: 
 

' a ' 'X( ', ') x xα βα β = −  (2) 
 
Where: 
xα = The output displacement of actuator when the 

input voltage raises from 0 up to α 
xα’ β’ = Output displacement of actuator when the 

input voltage drops from α’ to β 
 
 To avoid the complexity of two partial derivatives 
and double integrals, Preisach model is discreted. When 
u(t) is on the upswing and the decline, the model is Eq. 
3-4, respectively: 
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Fig. 1: The picture of hysteresis operator 
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Fig. 2: Framework of back propagation neural network 
 

 The table of Preisach function values X(α,β) could 
be obtained by dividing the range of 0 to saturation 
voltage into n equal diversions and measuring voltage 
values at equal diversion points according to the request 
of Preisach function. In application, for different input 
voltages, the output displacements could be obtained by 
substituting Eq. 3-4 the values found in the table of 
Preisach function values X(α,β).  
 In order to obtain a relevant accurate displacement 
output corresponding to an arbitrary voltage input with 
the Preisach model, BPNN is used in function 
approximation, that is to predict Preisach function 
values which is not at equal diversion points by using 
the small amount of measuring data. 
 
Bayesian regularization algorithm methods: 
Generalization refers to the ability of neural network 
reflecting testing samples or working samples correctly 
after learning, which is an important index of neural 
network’s performance. Regularization algorithm 
means the process of improve the generalization ability 
by amending the performance function. 
 The performance function of standard BP 
algorithm usually use the mean square error function 
(Song et al., 2008) mse: 
 

N
2

i i
i 1

mse (t a ) / N
=

= −∑  (5) 

 
Where: 
ti = Target value 
ai = Output value 
 
 In the regularization method, the network 
performance function is improved into the following 
form: 
 
msereg p mse q msw= × + ×  (6) 
 
Where: 
p and q = Proportional coefficient 

msw = Average of all network weights’ square 
sum, that is: 

 
N

2
j

j 1
msw W / N

=

= ∑  (7) 

 
 If p<<q, the network focuses on decreasing training 
error, but over-fitting may occur. If q<<p, the network 
focuses on limiting the scale of weights, but errors may 
be larger. Conventional regularization method is often 
difficult to determine the size of the proportional 
coefficient p and q, but Bayesian Regularization 
method can adaptively adjust the size of p and q in the 
training process and optimize the network. In the 
Bayesian framework, network weights are considered 
as random variables, the noise and weight vectors exist 
in sample data obeys Gaussian distribution. Based on 
Bayesian Regularization criteria, the optimal solution of 
p and q could be obtained by maximizing the posterior 
probability when the performance function is of 
minimum value. 
 Through the new performance index function, the 
network could have small weights when the network 
error be ensured to be as small as possible, which in 
fact is equivalent to the reducing of the size of network 
automatically. The shrinkage of the network size 
(usually referring to the number of hidden layers) could 
make neural networks’ size be much smaller than the 
size of the training sample, when the training sample is 
of a certain size, so the probability of over-training is 
very small, which helps to improve the generalization 
ability of the network. 
 
The methods of the establishment of BPNN: A 
BPNN consists of input layer, hidden layer and output 
layer. Nodes in front layer and back layer are connected 
by network connection weights and there is no coupling 
between nodes in the same layer. The learning and 
training process consists of two parts, that is the 
forward transmission of the input signal of network and 
the back transmission of error signal. Robert Hecht-
Nielson has proved that any continuous function in an 
enclosured domain can be fitted by BPNN with one 
hidden layer (Cybenko, 1989). 
 A three layers BPNN was designed as shown in 
Fig. 2. Input layer has two nodes, the rising voltage α 
and dropping voltage β. There is one hidden layer, 
which has 20 neurons. Output layer has one node, the 
displacement xαβ corresponding to extreme voltage 
points. ωij is network weights between the input nodes 
and hidden nodes. θi is network weights between the 
hidden nodes and output nodes. 
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Table 1: Table of Preisach function X (α, β) value (Unit:μm) 
α (V) ------------------------------------------------------------------------------β (V)----------------------------------------------------------------------------- 
 0.00 30.00 60.00 90.00 120.00 150.00 180.00 210.00 240.00 270 
300 19.98 19.40 18.25 16.29 13.72 10.76 7.95 5.46 3.33 1.54 
270 18.13 17.36 16.22 14.32 11.81 8.90 6.11 3.69 1.67  
240 15.75 14.98 13.85 11.97 9.50 6.66 3.96 1.78   
210 12.86 12.09 10.97 9.13 6. 72 4.11 1.78    
180 9.69 8.92 7.80 5.96 3.78 1.59     
150 6.82 6.06 4.95 3.25 1.42      
120 4.34 3.60 2.54 1.24       
90 2.46 1.77 0.85        
60 1.22 0.58  
30 0.57       
 
Table 2: Comparison between measured displacement and 

theoretical displacement 
Voltage (V) Meas. disp. (μm) Theoretical Disp. (μm) Error (μm) 
0 0.00 0.00 0.00 
285 19.10 19.11 -0.01 
40 1.12 1.01 0.11 
100 3.34 3.11 0.23 
250 16.22 16.48 -0.26 
170 10.68 10.88 -0.20 
110 5.02 5.27 -0.25 
70 2.42 2.32 0.10 
130 5.47 5.12 0.35 
160 7.92 7.58 0.34 
 
 The network input vector is: 
 

TV ( , )= α β  (8) 
 
 The output of network’s hidden layer is: 
 

2

j i j i j
i 1

y f ( x b )
=

= ω −∑  (9) 

 
Where: 
bj = The threshold of hidden layer nodes  
f = The activation function of hidden layer, which is 

sigmoid function and the expression is: 
 

v

1f (v)
1 e−=
+

 (10) 

 
 The output of network’s output layer is: 
 

20

O j j
j 1

T f ( y r)
=

= θ −∑  (11) 

 
Where: 
r = The threshold of output nodes 
fo = The activation function of output layer, which is 

linear function and the expression is: 
 

Of (x) kx(k 0)= ≠  (12) 

 The training procedure of BPNN is as follows: 
 
• Initialize the thresholds and weights of the network 

and set all of them to be small random numbers 
• Provide training samples, which is the measured 

voltage at equal diversion points (α,β) and the 
corresponding Preisach function value X(α,β) 

• Compute the actual output, the error of hidden 
layer and output layer using Eq. 8-9 and Eq. 6. 

• Adjust the weights until the error is less than the 
target error 

 
 When the network training is completed, fixed 
weights and thresholds could be getten, then the 
network has the capacity of function approximation. 
Input the voltage values which is not at equal diversion 
points into the network, the corresponding Preisach 
function value can be received. 
  
Simulation and experiment methods: The 
piezoelectric actuator’s input voltage range of 0~300 V 
was divide into 10 equal diversions. During the 
experiment, the applying voltage changed from 0-30 V 
while the output displacement was recorded, then the 
applying voltage changed to 0 V while the output 
displacement was recorded too. The value of X (30, 0) 
can be calculated out by the two records. Then the 
applying voltage changed from 0-60 V and then 
returned to 30 V while both output displacements were 
recorded and the value of X (60, 30) can be calculated 
out. According to this method, the table of Preisach 
function value X (α, β) has been obtained as Table 1 
(Wei and Tao, 2004). 
 The Neural Network toolbox in MATLAB6.0 was 
used to train the network. Bayesian Regularization 
algorithm, hidden layer activation function and output 
layer activation function were realized by built-in 
function trainbr, tansig and purelin. The training sample 
is the experimental data in Table 1.  
 The main network training parameters are set as 
follows: the minimum expected error is 0.01μm; the 
revised weights learning rate is 0.1; the maximum 
training cycles is 1,000,000. After 673,004 times 
training, the expected error is reduced to 0.01μm. 
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Fig. 3: Comparison between measured curve and 

theoretical curve of displacement 
 

RESULTS AND DISCUSSION 
 
 In order to verify the fitting performance of 
BRBPNN, the Preisach function values which is not at 
the equal diversion points is predicted using the trained 
network. The theoretical displacement outputs and 
measuring values corresponding to random voltages 
input were compared. As shown in Table 2 and Fig. 3, 
the maximum displacement error is 0.35 μm and the 
standard deviation is 0.24 μm. 
 

CONCLUSION 
 
 According to the demand of output function 
approximation in piezoelectric actuator’s Preisach 
model, a Bayesian Regularization algorithm was used 
to amend the performance function to enhance the 
neural network’s generalization ability. A three layers 
BPNN has been designed and the sample is the 
measured data in the table of Preisach function value X 
(α, β). The BRBPNN was trained in Neural Network 
toolbox of MATLAB6.0 and which was used to predict 
displacement outputs corresponding to random voltages 
input. The results indicate that the theoretical values 
and measured ones agree with very well. 
 Through BPNN realizing output function 
approximation in Preisach model of piezoelectric 
actuator, Preisach model can be applied in open loop 
control or feedforward control system to compensate 
for the inherent hysteresis of piezoelectric actuator and 
effectively improve the control accuracy. 
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