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Abstract: Problem statement: Organ transplantation is a life-saving and increasingly common 
procedure, as it often serves as the only treatment available for end-stage organ disease. Although the 
constant development of new and more effective immunosuppressive drugs has revolutionized the 
prevention and treatment of acute graft rejection, these drugs have significant toxicity, greatly increase 
patient susceptibility to neoplasms and infection and exert little impact on chronic rejection. 
Approach: The literature was reviewed to illuminate the mechanisms by which the anti-donor immune 
response is initiated and how cellular therapies impact this response. Results: Data show that Donor 
Specific Transfusion, Apoptotic Cell therapies and Dendritic Cell therapies all function as a source of 
alloantigen to suppress the anti-donor T cell response. Conclusion: Cellular therapies hold promise in the 
prevention of solid organ allograft rejection, but require optimization and study in large animal models 
before clinical implementation. 
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INTRODUCTION 
 
 Organ transplantation is becoming an increasingly 
important and common surgical procedure, as 
transplantation surgery often serves as the only life-saving 
treatment available for end-stage organ disease. Although 
the constant development of new and more effective 
immunosuppressive drugs along with better knowledge of 
their therapeutic application have revolutionized the 
prevention and treatment of acute graft rejection, these 
drugs have significant toxicity and greatly increase patient 
susceptibility to malignant neoplasias and infections. 
Further, the implementation of immunosuppressive agents 
has exerted little impact on the incidence of chronic 
rejection and therefore overall long-term graft survival has 
only improved modestly. Novel cell-based therapies that 
are able to down-regulate the immune response against 
donor Antigen (Ag), without inducing generalized 
immune suppression and its harmful side-effects, represent 
a promising avenue of research in transplantation. Cell-
based therapies include Donor Specific Transfusion (DST) 
(the transfusion of donor peripheral blood mononuclear 
cells), donor-derived apoptotic cell therapy and negative 
immunization with donor- (or recipient-) derived Dendritic 
Cells (DC). DC-based therapies in particular have received 
significant attention over the past decade as possibly ideal 

therapeutics in transplantation. Recent data though have 
shown that DC-based therapy, like DST and apoptotic 
cell-based therapies all function via a similar mechanism, 
that is as a source of alloantigen for presentation by 
recipient Ag-Presenting Cells (APC) to T cells. 
 
Basics of solid organ transplantation: Allografts are 
grafted organs/tissues/cells transplanted between 
genetically disparate, MHC-mismatched individuals of 
the same species. The targeted Ag are called 
alloantigens (alloAg), are derived from Major 
Histocompatibility Complex (MHC) or minor 
histocompatibility Ag and are recognized by the 
adaptive immune response as non-self, or tissue 
incompatible (Afzali et al., 2007). Allo-recognition 
describes recognition of the allogeneic Ag by the 
recipient immune system and allo-response refers to the 
effector mechanisms recruited in the reaction to the 
transplanted cell/tissue/organ (Afzali et al., 2007).  
 Allografts are threatened by three types of rejection 
that are defined by both tempo of onset and 
histopathology. Hyperacute rejection occurs within 
minutes to h (usually within 48 h) after transplantation 
surgery and is mediated by deposition of pre-formed 
circulating antibodies against Ag on graft vascular 
endothelial cells and the consequent activation of 
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complement and coagulation cascades, resulting in 
intravascular thrombosis, ischemia and necrosis. This 
results from pre-sensitization of the recipient, by 
previous blood transfusion, organ transplant, or 
pregnancy and in 1% of the general population for no 
known reason. Hyperacute rejection is largely 
preventable due to screening for antibodies against non-
self HLA phenotypes and cross-matching, with 
subsequent pre-transplantation plasmaphoresis if 
necessary (Gallon et al., 2002; Magee, 2006).  
 Acute rejection begins within weeks or months (5 
days to 3 months is typical), or in rare cases even years, 
following transplantation and constitutes the main 
immediate threat to allograft survival. It is mediated by 
both innate and adaptive immune responses, however the 
advent of immunosuppressive drugs renders acute 
rejection largely preventable. Histopathology reveals 
diffuse interstitial infiltrate of CD4+ and CD8+ T cells with 
activated or memory phenotype (Ibrahim et al., 1995). 
 Chronic rejection develops in months or typically 
years post-transplantation and is the most common cause 
of graft loss one year after transplantation (Pascual et al., 
2002; Sayegh and Carpenter, 2004). It results from both 
immune and non-immune factors. Typical features of 
chronic rejection include steady decline of organ 
function, interstitial fibrosis, chronic inflammatory 
infiltrate (i.e., lymphocytes, plasma cells), atrophy and 
gradual loss of parenchymal cells and chronic vascular 
arteriopathy, the latter a condition manifested by 
endothelitis, intimal proliferation, elastic fiber disruption, 
fibrosis and leukocyte infiltration of medium- and small-
size arteries of the graft (Pascual et al., 2002). 
Unfortunately, current immunosuppression protocols are 
ineffective at preventing or treating chronic rejection. 
 The development and introduction of 
immunosuppressive drugs in the 1980s has greatly 
reduced the risk of acute rejection. Steroids, calcineurin 
inhibitors such as tacrolimus and cyclosporine that 
block TCR-dependent T cell activation, the MTOR 
inhibitor sirolimus, mycophenylate mofetil which 
inhibits purine biosynthesis and lymphocyte-depleting 
antibodies are currently employed in the clinic to 
prevent or mitigate acute rejection with great success. 
However, these agents non-specifically suppress the 
immune system, thus greatly increasing patient 
susceptibility to opportunistic infections and various 
cancers. Further, currently employed 
immunosuppressive regimens offer little protection 
against chronic rejection and have significant toxicity. 
Clearly, generation of therapeutics capable of donor 
Ag-specific suppression is ideal, if not necessary to 
reduce dependence on chronic pharmacologic agents. 
 

Immune mechanisms of allograft rejection: The 
diversity and robustness of the alloresponse constitute 
major challenges to preventing graft rejection. Both the 

innate and adaptive immune responses are contributory. 
Mechanisms of graft damage include contact-dependent 
T cell cytotoxicity, granulocyte activation by Th1 or 
Th2 cytokines, NK cell-mediated cytotoxicity, delayed-
type hypersensitivity like reaction and allo-Ab and 
complement activation (Moine et al., 2002).  
 

Ischemia-reperfusion injury: Ischemia-reperfusion 
injury refers to tissue damage resulting from the return of 
blood supply to tissue after a period of ischemia. This 
injury is Ag-independent and is responsible for initiating 
the events associated with rejection. Land et al. (1994) 
developed the “injury hypothesis” by showing that intra-
operative treatment of cadaver-derived renal allografts 
with a free-radical scavenger reduced the incidence of 
acute rejection and improved long-term graft outcome 
(Land et al., 1994). Tissue injury up-regulates pro-
inflammatory mediators, inducing a robust innate 
immune response that in turn further promotes 
inflammation (LaRosa et al., 2007). The innate immune 
response occurs prior to and independently of the 
adaptive immune response (Christopher et al., 2002; He 
et al., 2002; 2003), as RAG-deficient cardiac transplant 
recipients experience comparable cellular infiltration, 
chemokine receptor expression and pro-inflammatory 
cytokine expression with wild-type recipients 1 day post-
transplantation (He et al., 2002). 
 Innate immune cells express non-rearranged 
pattern recognition receptors that recognize not only 
conserved pathogen-derived molecules, as originally 
appreciated (Medzhitov and Janeway, 2002) but also 
self-derived molecules released from damaged or 
stressed tissue (Mollen et al., 2006). Optimal 
inflammatory responses to liver damage by ischemia-
reperfusion injury requires signaling through toll-like 
receptor 4 (TLR4) expressed on hematopoietic-derived 
phagocytes and activated by products of necrotic cells 
or extracellular matrix disruption (Shen et al., 2005a; 
2005b; Tsung et al., 2005a; Zhai et al., 2004). 
Interestingly, in humans, studies of lung transplant 
patients and kidney transplant recipients that are 
heterozygous for either of two TLR4 functional 
polymorphisms associated with LPS 
hyporesponsiveness both showed a reduced incidence 
of acute allograft rejection (Ducloux et al., 2005; 
Palmer et al., 2003). This is likely due to abundance of 
various redundant danger signals. Levels of the danger 
signal High-Mobility Group Box 1 (HMGB1) are 
increased following liver ischemia-reperfusion injury as 
early as 1 h following transplantation and neutralization 
of HMGB1 decreases markers of liver inflammation 
(Tsung et al., 2005b). Likewise, inhibiting signals of 
receptor for Advanced Glycation End products 
(RAGE), the receptor for HMGB1, prolongs survival of 
fully allogeneic cardiac allografts (Moser et al., 2007). 
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 Notably, danger signals seem to persist within 
allografts long after transplantation, as T cell-deficient 
mice transplanted with mismatched skin or cardiac 
allografts that are allowed to heal for 50 days, rapidly 
reject their grafts upon T cell reconstitution (Anderson 
et al., 2001; Bingaman et al., 2000). If homeostatic 
proliferation is taken into account using a model devoid 
of secondary lymphoid organs but containing a normal 
T cell compartment, allografts display histological 
evidence of chronic rejection, but are not acutely 
rejected (Chalasani et al., 2004).  
 

Innate immune response: Polymorphonuclear cells 
(PMN), or neutrophils, rapidly infiltrate allografts 
following surgery and ischemia/reperfusion injury. 
Neutrophils have numerous cytotoxic and pro-
inflammatory mechanisms, including release of pro-
inflammatory cytokines and chemoattractants and 
production of reactive oxygen and nitrogen species. In a 
rat liver model of ischemia-reperfusion injury, 
depletion of neutrophils abrogates tissue damage 
(Jaeschke et al., 1990) and neutralization of 
KC/CXCL1, a potent neutrophil chemoattractant, 
decreases PMN infiltration and prolongs graft survival 
(Morita et al., 2001). 
 NK cells are also important contributors to allograft 
rejection. Based on the ‘missing self’ hypothesis, NK 
cells recognize cells lacking expression of self-MHC 
class I molecules. NK cells are not sufficient to reject 
solid organ allografts, as Rag-/- or SCID mice, that lack 
T and B cells, fail to reject skin or heart allografts 
(Bingaman et al., 2000; Kitchens et al., 2006). NK cells 
do however contribute to tissue damage and amplify 
graft inflammation through release of the pro-
inflammatory cytokines IFN-γ and TNF-α and through 
contact-mediated cytotoxicity (Obara et al., 2005). 
Further, NK cell depletion in CD28-/- mice, whose T 
cells are unable to receive co-stimulation, prolongs fully 
MHC-mismatched cardiac allograft survival (Maier et 
al., 2001), suggesting that NK cells influence the 
adaptive immune response (McNerney et al., 2006).  
 Macrophages (MΦ) are also believed to be 
important for rejection, although their importance may 
be organ or model dependent. MΦ contribute to an 
inflammatory response in multiple ways. They 
phagocytose necrotic debris, secrete pro-inflammatory 
cytokines, produce reactive nitrogen and oxygen 
species and present Ag to effector T cells (Wyburn et 
al., 2005). In rat renal allografts, MΦ begin infiltrating 
allografts within 24 h following surgery and proliferate 
in situ (Grau et al., 1998) and in human acute renal 
rejection, MΦ accumulate in significant numbers 
(Hancock et al., 1983). Also in a rat renal transplant 
model, liposomal clodronate administration 1 d post-
transplantation, which depletes the majority of MΦ, 
reduces allograft damage (Jose et al., 2003), although 

liposomal clodronate also depletes other subsets of 
monocytes and DC thus complicating interpretation of 
the data. The production of iNOS in particular seems 
important for allograft rejection, as its neutralization 
prolongs cardiac allograft survival in mice (Roza et al., 
2000; Worrall et al., 1995).  
 

Adaptive immune response: There are two mechanisms 
by which donor-reactive T cells recognize alloAg: the 
direct and the indirect pathways of allorecognition (Fig. 
1) (Game and Lechler, 2002). By the direct pathway, 
recipient T cells recognize intact donor MHC molecules 
expressed on the surface of donor APC transplanted 
along with the allograft (i.e. donor DC, macrophages, 
endothelial cells) (Lombardi et al., 1989). Ischemia-
reperfusion injury and surgical trauma activate donor DC 
inducing their migration as “passenger leukocytes” to 
recipient secondary lymphoid organs, where they prime 
donor-reactive T cells (Anderson et al., 2001). The 
precursor frequency of direct pathway T cells is 
extremely high, roughly 1-10% (Baker et al., 2001) of 
the T cell pool. This direct T cell alloreactivity likely 
results from cross-reactivity between intact allogeneic 
MHC molecules and self-MHC-foreign peptide 
complexes (Lombardi et al., 1989).  
 By the indirect pathway, recipient T cells recognize 
self-MHC molecules presenting donor-derived 
allopeptides on recipient APC (Benichou et al., 1992; 
Liu et al., 1996). The precursor frequency of indirect 
pathway T cells is extremely low (1:100,000-200,000) 
and similar to that for any other conventional/nominal 
Ag. It is unknown whether recipient APC mobilized 
into the graft acquire alloAg, then traffic to secondary 
lymphoid organs to prime indirect pathway T cells, or 
whether alloAg derived from the graft, either in the 
form of passenger leukocytes or soluble MHC 
molecules, enters secondary lymphoid organs where it 
is taken up by lymphoid-resident DC for presentation. 
Either way, recipient APC internalize donor Ag and 
process it into peptide for presentation by self-MHC to 
indirect pathway T cells. 
 Recently, a third “semi-direct” pathway of 
allorecognition has been identified in mouse models. 
By the semi-direct pathway, intact donor MHC 
molecules are acquired by recipient APC and are 
presented intact to direct pathway T cells (Herrera et 
al., 2004).  
 The semi-direct pathway is one proposed model 
challenging the existing paradigm that direct pathway T 
cells are primed independently of recipient APC and the 
indirect pathway (Fig. 2a, d). Alternatively, the 4-cell 
hypothesis suggests that indirect pathway CD4+ T 
helper cells stimulated by recipient APC provide 
unlinked bystander help to direct pathway CD8+ T cells 
stimulated by donor APC (Fig. 2b, c). Indirect CD4+ T 
cells could also provide CD40-mediated stimulation of 
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recipient APC that in turn might stimulate the direct 
pathway response through an unknown mechanism 
(Fig. 2b), or via interaction between a B cell receptor, if 
the recipient APC were a B cell, with donor 
MHC:alloAg on the surface of donor APC (Fig. 2c).  
 T cells are both necessary and sufficient for allograft 
rejection of almost all tissues. Acute graft rejection is 
considered T cell dependent, as several studies 
demonstrate that mice lacking T cells accept fully MHC-
mismatched allografts and that T cell reconstitution 
results in rejection. Due to the high precursor frequency 
of direct pathway T cells (approximately 1000 fold 
greater than indirect pathway T cells), it is assumed that 
the direct pathway is the more significant contributor of 
acute rejection (Larsen et al., 1990; Lechler and 
Batchelor, 1982; Talmage et al., 1976). However, as the 
supply of donor APC within the graft wanes over time, 
the contribution of the direct pathway decreases. Human 
studies confirm that the direct pathway response is 
strongest in the period immediately following 
transplantation. Comparatively, alloAg is shed from the 
graft continuously and due to epitope spreading 
(Ciubotariu et al., 1998), the significance of the indirect 
pathway increases (Valujskikh et al., 1998). As such, it is 
considered the main mediator of chronic rejection, which 
is confirmed in human studies of chronically rejected 
heart, kidney and lung (Ciubotariu et al., 1998; Frasca et 
al., 1998; Hornick et al., 2000; Lee et al., 2001; Liu et 
al., 1996; Reznik et al., 2001; Valujskikh et al., 1998; 
Vella et al., 1997).  
 Notably, there is evidence supporting the ability of 
the indirect pathway to mediate acute rejection. In 
human recipients of heart, kidney and liver allografts, in 
vitro detection of the indirect response shows strong 
correlation with episodes of rejection (Dalchau et al., 
1992; Vella et al., 1997) and immunization of animals 
with peptide derived from allogeneic MHC (thus 
presented through the indirect pathway) causes allograft 
rejection (Fangmann et al., 1992a; 1992b). Finally, 
using a cardiac allograft transplant model in mice, 
Auchincloss et al. (1993) showed that the indirect 
pathway is sufficient to elicit graft rejection in the 
absence of direct allorecognition (Auchincloss et al., 
1993). The relative contributions of the indirect and 
direct pathway were evaluated in skin, cornea and 
retina and results reveal that the importance of each 
pathway appears to be organ dependent (Illigens et al., 
2002). As expected, skin allografts have a pronounced 
direct pathway response, likely attributable to their high 
passenger APC load. Comparatively, cornea had a more 
potent indirect pathway response, again not surprising 
given its low level of MHC molecule expression. Such 
studies are yet to be performed in heart transplantation, 
although given the low number of passenger 
leukocytes, one might expect increased importance of 
the indirect response. 

 T cells contribute to allograft rejection by various 
mechanisms. Contact mediated cytotoxicity and 
release of pro-inflammatory cytokines are both potent 
mechanisms of allograft damage. Typically, the 
allograft response is Th1, IFN-γ mediated, however 
both Th1 and Th2 effector responses can cause 
allograft rejection (Moine et al., 2002). Further, T 
cells stimulate other immune cells to cause damage. B 
cell function and the alloAb response depends on 
indirect pathway CD4+ T cell help because B cells 
recognizing Ag via B cell receptors internalize, 
process and present antigenic peptides loaded in self-
MHC to T cells, that in turn, provide the necessary 
help for B cell effector function and Ab class 
switching (Steele et al., 1996; Terasaki, 2003). 
Indirect pathway T cells could also stimulate recipient 
MΦ or DC within the graft to release pro-
inflammatory molecules in a DTH-like response. This 
previously has been associated with chronic rejection, 
however it is possible that the cytotoxic molecules 
released by MΦ/DC could contribute to acute 
rejection, particularly since one stimulated MΦ/DC 
could damage numerous surrounding donor cells 
simultaneously, while one CD8+ cytotoxic T cell 
targets only one donor cell at a time.  
 
Cellular therapies in solid organ transplantation: 
The concept of utilizing cellular therapies to induce 
allograft tolerance has its roots in the earliest studies of 
transplantation. Billingham et al. (1953) showed that 
infusion of donor allogeneic cells into newborn mice 
resulted in acceptance of skin allografts in the absence 
of immunosuppression (Billingham et al., 1953). More 
recently, Sayegh et al. (1993) demonstrated that intra-
thymic injection of donor allopeptides prolongs 
subsequent allografts of the same MHC, further 
indicating that exposure of recipients to donor Ag prior 
to transplantation has a tolerizing effect. Currently, 
there are three types of cellular therapies proposed for 
use in transplantation. Donor-Specific Transfusion 
(DST) refers to the transfer of donor splenocytes in 
mice, or peripheral blood mononuclear cells in humans, 
directly from donor to recipient with little manipulation. 
DST has been employed in the clinic for decades and in 
some cases successfully decreased the anti-donor 
immune response and prolonged allograft survival. 
However, prevention of acute rejection was not 
universally achieved and DST was associated with risk 
of recipient sensitization, thus the advent of 
pharmacologic immunosuppressive agents replaced 
DST as the main prophylactic for transplant 
recipients. Ironically, the negative side effects of 
pharmacologic immunosuppression coupled with the 
new goal of achieving operational tolerance, defined 
as long-term freedom from all immunosuppression 
with normal graft function, has resulted in a renewed 
interest in cellular therapies. 
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Fig. 1: Pathways of allorecognition. In the direct pathway, donor DC directly interact with anti-donor T cells. In 

this case, T cells recognize alloMHC: peptide complexes on the surface of donor DC. In the indirect 
pathway, recipient DC re-process donor alloAg derived from donor APC into allopeptide for presentation 
by self-MHC to anti-donor T cells.  

 

 
 
Fig. 2: Models of direct pathway CD8+ T cell priming. (a) Direct pathway T cells are primed by donor APC 

independently of recipient APC or indirect T cells. (b) Indirect pathway CD4+ helper T cells stimulated by 
recipient APC provide unlinked bystander help to direct pathway CD8+ T cells stimulated by donor APC. 
(c, d) Indirect CD4+ T cells provide CD40-mediated stimulation of recipient APC that in turn might 
stimulate the direct pathway response via (c) interaction between a B cell receptor, if the recipient APC 
were a B cell, or (d) a recipient DC with donor MHC:alloAg on its surface. 



Am. J. Immunol., 8 (2): 52-64, 2012 
 

57 

Advancements in understanding peripheral tolerance 
mechanisms has led to development of newer cellular 
therapies including donor apoptotic cell therapy and 
tolerogenic DC therapies. 
 
DST in transplantation of solid organ allografts: 
Quezada et al. (2003) showed that DST significantly 
prolongs skin allograft survival through peripheral 
deletion of indirect pathway CD4+ T cells and increased 
numbers of regulatory T cells (Treg). Brouard and 
Soulillou and colleagues demonstrated that infusion of 
splenocytes without additional immunosuppression 
leads to long-term survival of cardiac allografts through 
expansion of Treg and that transfer of long-term 
survivor splenic T cells to new allograft recipients 
transfers long-term allograft survival in an Ag-specific 
manner (Lair et al., 2007). Importantly, in the Quezada 
study, the injected living donor splenocytes did not 
directly interact with CD4+ T cells (Quezada et al., 
2003). This finding suggests that living splenocytes 
upon i.v. injection in some way transfer alloAg to 
recipient APC for indirect presentation rather directly 
interacting with direct pathway T cells.  
 
Apoptotic cell therapy in transplantation of solid 
organ allografts: Our group has investigated apoptotic 
cell therapy in allograft survival and demonstrated in 
mice that i.v. administration of donor-derived UV-B-
irradiated apoptotic splenocytes 7 d prior to 
transplantation significantly prolongs survival of heart 
allografts in the absence of immunosuppression (Wang 
et al., 2006). Moreover, combination of donor apoptotic 
splenocytes with suboptimal blockade of the CD40-
CD154 pathway with a single dose of anti-CD154 Ab 
results in long-term survival of cardiac transplants for 
more than 100 d (Wang et al., 2006). The therapeutic 
effect of donor apoptotic cells was donor-specific and 
required interaction of the apoptotic cells with recipient 
DC in secondary lymphoid organs. It also depended on 
the physical properties of the donor leukocytes, since 
administration of donor necrotic cells did not affect 
graft survival (Wang et al., 2006). We further 
demonstrated that i.v. administered donor-apoptotic 
cells are rapidly phagocytosed by recipient splenic DC, 
which present apoptotic cell-derived allopeptides in 
self-MHC to indirect pathway T cells (Wang et al., 
2006). Interestingly, splenic transgenic CD4+ T cells 
specific for indirect pathway Ag proliferated in 
response to injection of BALB/c apoptotic splenocytes, 
but did not upregulate expression of the T cell 
activation markers CD25, CD44, CD69 and CD152 and 
secreted lower amounts of IL-2 and IFN-γ upon ex vivo 
re-stimulation when compared to controls. Importantly, 
the defective activation of anti-donor indirect pathway 
CD4+ T cells resulted in their peripheral deletion, as 

their numbers decreased significantly in spleen, LN, 
blood and peripheral tissues, 14 d after administration 
of apoptotic cells.  
 Besides inducing peripheral deletion of donor-
reactive T cells, administration of donor apoptotic 
splenocytes in combination with suboptimal CD40-
CD154 blockade promotes differentiation/expansion of 
donor-specific CD4+ Treg (Wang et al., 2006), reduces 
significantly the level of circulating alloAb in cardiac 
allograft recipients (Wang et al., 2006) and in aortic 
allograft transplantation, a model of chronic rejection, 
results in significant inhibition of the histopathological 
features of chronic vascular arteriopathy, the classic 
feature of chronic rejection (Wang et al., 2009). 
 
Dendritic cell-based therapies in transplantation of 
solid organ allografts: DC are a heterogeneous 
population of hematopoietic-derived APC that 
orchestrate the adaptive immune response to self- and 
foreign-Ag. DC are defined by surface expression of 
MHC class-II molecules, expression of the integrin and 
complement receptor CD11c (in mice) and their unique 
ability to stimulate naïve T cells (Banchereau et al., 
2000). DC respond to both endogenous and exogenous 
danger signals such as pathogen-associated molecular 
patterns on microorganisms, products secreted by 
activated MΦ and parenchymal cells and stimulatory 
signals from activated T cells (Banchereau et al., 2000). 
Since they are the only APC capable of priming naïve T 
cells, they serve as a crucial link between innate and 
adaptive immunity (Banchereau et al., 2000; 
Banchereau and Steinman, 1998).  
 In the periphery, DC exist in 3 different stages of 
activation/maturation: immature, semi-mature or 
quiescent and mature or activated (Fig. 3). In the 
steady-state, quiescent DC are highly phagocytic and 
express low surface levels of MHC : peptide complexes 
and the co-stimulatory molecules CD80 and CD86 
(Banchereau et al., 2000; Banchereau and Steinman, 
1998; Cella et al., 1997). DC mature upon exposure to 
pro-inflammatory stimuli. During maturation, DC 
decrease phagocytic ability and increase their surface 
expression of MHC class-I and -II: peptide complexes, 
CD40, CD80 and CD86 (Cella et al., 1997). The MHC: 
peptide complexes presented by DC bind the T cell 
receptor (TCR) (signal 1), while CD80 and CD86 bind 
CD28 (signal 2) on the surface of the T cell. This 
induces secretion of IL-2, which is a potent agonist for 
T cell activation/proliferation (Lenschow et al., 1996). 
Additionally, the interaction between CD40 on the DC 
and CD40Ligand (CD40L or CD154) on the T cell 
surface further enhances DC and T cell stimulation 
(Grewal and Flavell, 1998).  
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Fig 3: Stages of DC maturation. DC can exist as either immature (express low levels of MHC: peptide complex 

without co-stimulatory molecules CD80 or CD86), semi-mature or quiescent (express low levels of 
MHC:peptide complex along with low levels of co-stimulatory molecules), or mature or activated (express 
high levels of MHC:peptide complex and high levels of co-stimulatory molecules). 

 
Mature DC secrete soluble mediators (signal 3) which 
help direct the immune response, such as IL-12p70, 
which polarizes T cells toward a Th1 response 
(Banchereau et al., 2000; Banchereau and Steinman, 
1998; Cella et al., 1997). 
 
DC as inducers of T cell tolerance: Although most T 
cells recognizing self-peptides with high affinity are 
eliminated centrally in the thymus through negative 
selection (Brocker et al., 1997), a percentage of self-
reactive T cells escape thymic deletion and access the 
periphery. An efficient mechanism in the periphery is 
therefore necessary to prevent activation of self-reactive 
T cells and avoid autoimmunity.  
 
Quiescent DC expressing MHC: Peptide complexes 
(signal 1) with low levels of co-stimulatory signals 
(signal 2) provide sub-threshold stimulation to auto-
reactive T cells, resulting in defective T cell activation 
(Schwartz, 1990; Steinman et al., 2003; Steinman and 
Nussenzweig, 2002). Incomplete T cell activation 
results in poor cellular proliferation followed by 
deletion, anergy and likely differentiation/expansion of 
Treg cells, all mechanisms leading to T cell hypo-
responsiveness or tolerance (Steinman et al., 2003; 
Steinman and Nussenzweig, 2002). 
 
DC therapies in transplantation of solid organ 
allografts: The ability of DC to tolerize T cells in an 
Ag-specific manner, coupled with the ability to 
propagate large numbers of DC in vitro, has heralded 
the use of tolerogenic/immunosuppressive DC as 
therapeutics for transplantation and autoimmunity. 
Tolerogenic DC are in an immature or quiescent state, 
in that they express low levels of MHC: peptide 

complexes with or without low amounts of co-
stimulatory molecules (Fig. 3) and are impaired in their 
ability to produce the Th1-driving cytokine IL-12p70. 
A number of methods, including culture-conditioning 
with different cytokines or growth factors, treatment 
with various pharmacologic agents and genetic 
engineering (Table 1) (Morelli and Thomson, 2007) 
have been developed to increase DC tolerizing potential 
and/or render tolerogenic DC resistant to maturation, to 
combat the risk of in vivo maturation of the 
administered DC and thus patient sensitization.  
 These pharmacologic or genetic manipulations 
affect DC differentiation and function by various 
mechanisms (Morelli and Thomson, 2007). Some 
tolerogenic DC express high levels of co-inhibitory 
molecules such as PD-L1 on their surface, or have a 
lower net ratio of co-stimulatory to co-inhibitory 
molecule expression (i.e., CD86 : PD-L1). Secretion of 
inhibitory cytokines/mediators also is variable, as some 
tolerogenic DC release IL-10, which has been shown to 
inhibit T cell expansion (Li et al., 2005). Further, 
tolerogenic DC can induce activation-induced cell death 
through FasL expression or induce Treg through IDO 
expression (Bohana-Kashtan and Civin, 2004; Mellor et 
al., 2004). A number of different types of tolerogenic 
DC, many with different phenotypic and functional 
characteristics have been studied in mouse models of 
heart transplantation using a heterotopic cardiac 
allograft model. These tolerogenic DC therapies 
prolong allograft survival with a Mean Survival Time 
(MST) between 20 and 50 days (Emmer et al., 2006; 
Lan et al., 2006; O’Connell et al., 2002; Tang et al., 
2006; Turnquist et al., 2007). Typically, an increased 
percentage of Treg is observed along with decreased T 
cell effector responses.  
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Table 1: Methods of generating tolerogenic DC in vitro 
Cytokines, growth factors Pharmacologic mediators  Genetic engineering  

↓GM-CSF Immunosuppresstive or anti-inflammatory drugs Recombinant viral vectors or naked DNA: 
↑IL-10 Cyclosporine CD95L (FasL) 
↑TGFβ1 Rapamycin CTLA4-Ig 
↑VEGF Tacrolimus IL-10 
 Deoxyspergualin TGFβ1 
 Mycophenolate mofetil IDO 
 Sanglifehrin A Soluble TNFR 
 Corticosteroids CCR7 
 A spirin Dominant-negative IKB 
 1 α, 25-dihydroxyvitamin D3 Kinase 
 N-acety-L-cysteine ODNs; 
 Cyclic AMP inducers  NF-Kb-specific decoy 
 Glucosamine RAN interference: 
 Cobalt protoporphyrin RELB 
 ILT receptor ligands IL-10 

 
Although these different tolerogenic DC vary 
phenotypically in vitro, the similar effect on allograft 
survival and anti-donor T cell responses suggests 
similar mechanism of action in vivo.  
 It has been assumed that therapeutic tolerogenic DC, 
once administered i.v. to prospective graft recipients, 
interact directly with anti-donor T cells. Given the 
preponderance of the direct pathway in acute allograft 
rejection, it has further been assumed that the ability to 
down-modulate the direct pathway response makes DC 
therapies superior to alternative cellular therapies (DST 
and apoptotic cell therapy) in transplantation.  
 Our group has investigated the mechanisms by 
which DC therapy functions in vivo to prolong cardiac 
allograft survival in a mouse model. We demonstrated 
that donor-derived DC rapidly die once transfused into 
the prospective graft recipient and that apoptotic cell 
fragments derived from the injected therapeutic DC are 
taken up by the recipient’s DC and processed into donor 
alloAg for presentation via recipient MHC molecules to 
indirect pathway CD4+ T cells (Divito et al., 2010). If the 
recipient DC are quiescent, then this process induces 
defective activation of indirect pathway CD4+ T cells 
with preferential survival of Treg (Divito et al., 2010). 
We have further shown that recipient DC are necessary 
for DC therapy prolongation of allograft survival using 
CD11c-DTR bone marrow chimeric mice to selectively 
deplete recipient but not donor DC (Wang et al., 2012). 
Finally, we showed that apoptotic cell therapy, DST and 
DC therapy all act via the same mechanism of action, 
that is, they serve as a source of donor alloAg for 
recipient DC, rather than through direct interaction with 
anti-donor T cells (Divito et al., 2010). 
 
A brief statement on T cell-based therapies in 
transplantation: In addition to the above named 
cellular therapies, the possibility of employing 
regulatory and/or anergic T cells generated and 

expanded in vitro, ex vivo, or even in vivo, to modulate 
the anti-graft response has received great attention over 
the past decade. Various methodologies of generating 
regulatory and/or anergic T cells have been studied in 
multiple animal models of organ transplantation with 
initial promising results (reviewed by (McMurchy et 
al., 2011)) and Tregs generated in vitro have been 
utilized in clinical trials for graft-versus-host disease in 
stem cell transplantation, demonstrating its clinical 
feasibility (Brunstein et al., 2011; Ianni et al., 2011; 
Trzonkowski et al., 2009). Given the expanse of 
literature on T cell based-therapies in transplantation, as 
well as in autoimmunity and graft-versus-host-disease, 
they will not be discussed further here, except to say that 
T cell-based therapies are a major area of research in the 
transplantation community and warrant further research. 
 

CONCLUSION 
 
 Despite the promising results of cell-based 
therapies in animal models, it is important to 
acknowledge caveats to current research and roadblocks 
to clinical translation. First, most research on cellular 
therapies in transplantation has been conducted using 
young inbred mice maintained in clean or nearly 
pathogen-free conditions, which therefore may 
possess low numbers of memory T cells compared to 
outbred animals. Comparatively, transplant rejection 
in humans is mediated by both naïve and memory T 
cells and as such, the ability of cellular therapies to 
tolerize not only recipient DC-naive T cell interaction, 
but also other non-professional recipient APC capable 
of activating anti-donor memory T cells, will likely be 
critical for successful therapy.  
 Second, safety is a major area of concern. What if a 
preparation of cellular therapeutic contained traces of 
effector cells? Or if a batch of the tolerizing agent was 
ineffective? And if administration of a cellular therapy 
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had a deleterious effect, could the adoptively transferred 
cell be eliminated from the patient? In reality, it is likely 
that cellular therapeutics would never be instituted in the 
clinic as a single therapy, but rather in combination with 
additional pharmacologic immunosuppression. This may 
help alleviate some of the risks associated with cellular 
products. Further, clinical experience with cellular 
therapeutics is being gained from the fields of stem cell 
transplantation and cancer.  
 Solid organ transplantation remains a clinical 
challenge despite its increasing prevalence. Many 
questions remain in regards to the immunopathogenesis of 
allograft rejection and whether cellular therapies will 
ultimately have a role in preventing rejection. Regardless, 
optimization and application of cellular therapies 
represents an active area of research in transplant 
immunology and still holds promise for clinical use. 
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