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Abstract: Problem statement: T cell-mediated immunosuppression has been observed for decades 
without clarification as to which factor was responsible for this observation. The identification of 
CD4+CD25+ regulatory T (Treg) cells represents a milestone in the filed of immunology and provides 
an explanation for T-cell-mediated immunosuppression. Although Treg cells were originally identified 
for their ability to prevent organ-specific autoimmune disease in mice, emerging evidence suggests that 
Treg cells play a pivotal role in tumor immunity and contribute to tumor growth and progression, 
thereby having an important impact on the outcome of cancer patients. Approach:  This article 
reviewed the medical literature to describe how Treg cells affect anti-tumor immunity.  Results: Treg 
cells suppressed anti-tumor immunity by inhibiting the effector functions of tumor-specific T cells and 
NK cells. Importantly, tumor cells played an active role in recruiting and generating Treg cells and 
creating a suppressive tumor microenvironment. Strategies to deplete Treg cells or inhibit their function 
had yielded promising results by enhancing anti-tumor immunity in experimental studies as well as 
clinical practice. Conclusion: A better understanding of the pathophysiology of Treg cells not only 
increased our knowledge in a variety of aspects of immunology but also potentially benefited cancer 
patients. 
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INTRODUCTION 

 
 T cell-mediated immuno-suppression has been 
observed for decades. In 1970, Gershon et al.[1] found 
that there were populations of bone marrow-derived 
precursors of antibody-making cells (B cells) which 
could not be rendered tolerant to Sheep Red Blood 
Cells (SRBC) unless thymus-derived lymphocytes (T 
cells) were present. In 1972, Gershon et al.[2] further 
found that thymocytes were capable of suppressing the 
antigen-induced response of other thymocytes without 
the mediation of B cells and defined these thymocytes 
as suppressor T cells. Since then, T-cell-mediated 
suppression of immune response has been investigated 
under a variety of pathophysiological conditions 
including malignant transformation in animal model by 
in vitro  and in vivo studies. A series of studies by 
North et al.[3] has shown that the acquisition of 
suppressor T cells by a tumor-bearing host is 
responsible for the failure of passively transferred, 
tumor-sensitized T cells to cause regression of the 
tumor. The attempt to isolate suppressor T cells using 
different methods was unsuccessful simply due to a 
lack of phenotypic characterization in this subset. This 
hurdle persisted until a subset of CD4+ T cells 
expressing IL-2 receptor α-chain (CD25) were 

identified in 1995 and found to be critical in the control 
of self-tolerance[4]. In this study, Sakaguchi et al.[4] 
found that depletion of CD25+ T cells resulted in 
spontaneous development of autoimmune diseases and 
reconstitution of CD4+CD25+ cells prevented these 
autoimmune diseases in a dose-dependent fashion. This 
finding was subsequently confirmed by a study 
showing that CD4+CD25+ T cells inhibited both the 
induction and effector function of autoreactive T cells 
and suggested that CD4+CD25+ T cells represent a 
unique lineage of immunoregulatory cells[5]. Since then, 
tremendous effort has been put into investigating 
CD4+CD25+ T cells in a variety of settings. In this 
article, we will review recent advances regarding the 
role of CD4+CD25+ regulatory T cells in the cancer 
immunological response. 
 
Characterization of regulatory T cells: Regulatory T 
(Treg) cells were originally identified as a small subset 
of CD4+ T cells expressing IL-2 receptor α-chain 
(CD25) and represent approximately 5-10% of 
peripheral CD4+ T cells in both mice and humans. In 
addition to sustained high surface expression of CD25, 
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) 
and glucocorticoid-induced TNFR-related protein 
(GITR) expression are features of suppressive Treg 



Am. J. Immunol., 5 (1): 17-28, 2009 
 

18 

cells[6-8]. To date, it is generally believed that CD4+ Treg 
subsets include naturally occurring Treg cells and 
peripherally induced Treg cells. Naturally occurring Treg 
cells have a phenotype as originally identified, arise as 
a distinct lineage from the thymus and migrate into 
blood and peripheral tissues. These Treg cells are 
anergic in vitro and do not proliferate in response to T-
cell receptor (TCR) stimulation. This anergy can be 
overcome by the addition of high doses of exogenous 
IL-2 or the use of mature Dendritic Cells (DCs) as 
antigen-presenting cells. In addition to naturally 
occurring Treg cells, Treg cells can be induced in the 
periphery under particular conditions of antigenic 
stimulation[9-11]. The presence of inducible Treg cells in 
the periphery is supported by the observation in adult 
mice that depletion of Treg cells by means of an anti-
CD25 monoclonal antibody and thymectomy is 
followed by complete reconstitution within 48 days[12]. 
Studies have revealed that several molecules and 
signaling pathways are involved in inducing the 
development of Treg cells in the periphery. These 
include glucosteroids[13], estrogen[14], TGF-β[9,10] and 
IL-2 [10], as well as co-stimulatory molecules such as 
CD80/CD86[15] and CD70[16]. Along with naturally 
occurring Treg cells, peripherally induced Treg cells play 
an important role in suppressing the immune response, 
especially the anti-tumor immune response. 
 
Foxp3 identification: The forkhead/winged helix 
transcription factor family member Foxp3 (forkhead 
box P3) plays a critical role in suppression of immune 
system responses and inhibition of Foxp3 function 
results in significant immune dysregulation as 
illustrated by the following findings. A mutation in the 
gene Foxp3 carried by the mutant mouse strain scurfy 
results in a CD4+ T cell–mediated lymphoproliferative 
disease. Mutations in the human homolog of Foxp3 
lead to onset of a human genetic disease called immune 
dysregulation, polyendocrinopathy, enteropathy, X-
linked syndrome (IPEX) characterized by global 
immune dysregulation with autoimmunity. From these 
clinical observations, three studies[17-19] have 
independently shown that Foxp3 is specifically 
expressed in Treg cells and is necessary for Treg cell 
development and function. It has been convincingly 
shown that ectopic expression of Foxp3 in CD4+CD25- 
naive T cells by retroviral gene transfer can convert 
them to natural Treg-like cells functionally and 
phenotypically. Transgenic mice lacking Foxp3 lack T 
cells with regulatory function and have dysregulated T 
cell proliferation resulting in a severe autoimmune 
disease. These results indicated that Foxp3 is a master 
transcriptional factor for development and function of 

Treg cells and is now used as a specific marker for Treg 
cells. 
 
Regulatory property of Treg cells: CD4+CD25+ Treg 
cells have been demonstrated to suppress various types 
of immune responses, including autoimmune, 
antimicrobial and antitumor immune responses by 
inhibiting T cell, B cells and NK cells. Treg cells were 
originally identified as a subset of CD4+ T cells 
suppressing the proliferation and cytokine production of 
conventional CD4+CD25- T cells. Further studies found 
that Treg cells are also able to suppress the proliferation, 
cytokine production and granule secretion of CD8+ T 
cells. This suppression results in the prevention of 
CD8+ T cell-mediated graft rejection[20,21], inhibition of 
CD8+ T cell-mediated skin inflammation[22], 
maintenance of persistent hepatitis C virus infection[23] 
as well as elimination of tumor cytotoxicity by CD8+ T 
cells[24]. 
 In addition to the suppression of T cells, Treg cells 
can also suppress proliferation and immunoglobulin 
production of CD19+ B cells. Firstly, Treg cells can 
indirectly inhibit the B cell immunoglobulin response 
by suppressing CD57+ GC-TH cells, a subset of cells 
specifically present within GCs with highly efficient T 
helper function to stimulate B cells to produce 
immunoglobulin, thereby interfering with GC-TH cell-
stimulated B cell immunoglobulin production[25]. 
Secondly, Treg cells can also directly suppress the B cell 
immunoglobulin response without having to suppress 
TH cells. Under this circumstance, Treg cells directly 
suppress B cell class switch recombination and thereby 
regulate B cell immunoglobulin production[26].  
 In addition to suppressing adaptive immune cells, 
Treg cells also have an impact on innate immune cells. It 
has been reported that Treg cells inhibit the cytotoxicity 
of CD3-CD56+ NK cells[27-29] and steer monocyte 
differentiation toward alternatively activated 
macrophages (AAM), a subset of cells with immune 
regulatory properties that contribute to tumor 
promotion[30].  
 The mechanisms mediating these 
immunosuppressive effects still remain to be fully 
understood. Several studies suggest that the 
immunosuppression is cell contact-dependent, while 
other studies demonstrate that suppression can also be 
cell contact-independent. Cell contact-dependent 
mechanisms represent circumstances in which Treg cell-
mediated suppression cannot be abrogated by 
neutralizing soluble inhibitory cytokines and Treg cells 
cultured with CD4+CD25- T cells in a transwell system 
are unable to suppress the proliferation of responder 
cells[31,32]. In this regard, membrane-bound TGF-β has 
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been shown to play an important role in Treg cell-
mediated, cell contact-dependent suppression of T and 
B cells given that Treg cells express high levels of TGF-
β on the cell surface[33] and Treg cells mediate 
immunosuppression via cell surface presentation of 
TGF-β to TGF-βR on target cells. In contrast, soluble 
factors are involved in Treg cell-mediated cell contact-
independent mechanism. In this regard, the production 
of the immunosuppressive cytokines IL-10 and TGF-β, 
preferential IL-2 consumption by CD4+CD25+ Treg 
cells, or direct lysis of T cells via perforin and 
granzymes are involved in suppressive effects of Treg 
cells. For example, Grossman et al.[34,35] showed that 
human peripherally induced and naturally occurring Treg 
cells express granzyme-B upon activation and that these 
Treg cells display perforin-dependent cytotoxicity 
against autologous target cells, including activated 
CD4+ and CD8+ T cells. This finding has been 
confirmed by other studies showing perforin-granzyme 
B pathway can also be served as a suppressive 
mechanism for Treg cells in the murine system[36,37]. 
 
Reciprocal regulation of Treg and TH17: Treg cells and 
T-helper (TH) cells constitute two opposing immune 
responses. Newly-identified IL-17-secreting CD4+ 
helper T cells expand the family of TH cells into 3 
major lineages, TH1, TH2 and TH17 cells[38,39]. 
CD4+CD25+ Treg cells form the other major lineage of 
CD4+ T cells[40]. TH17 and Treg cells are critically 
involved in the modulation of inflammation induced by 
either autoimmunity or bacterial infection. TH17 and 
Treg cells develop from precursor naïve CD4+ T cells. 
The selective differentiation of precursor CD4+ T cells 
into TH17 or Treg cells is established during the initial 
priming of these cells and is influenced by a variety of 
extracellular factors, such as the cytokine environment, 
the dose of antigen and the source of costimulation. 
Among these, the most effective polarizing factor is the 
cytokine environment. The presence of TGF-β plus IL-
6 during activation drives the differentiation of 
precursor CD4+ T cells into TH17 cells in mice, whereas 
the presence of TGF-β alone promotes differentiation 
of Treg cells. Unlike mice, IL-1β (but not TGF-β) plus 
IL-6 have been demonstrated to drive the differentiation 
of TH17 cells in humans. The differentiation of 
precursor CD4+ T cells into Treg or TH17 cells is 
mutually exclusive. Tumor cells commonly participate 
in the generation of Treg cells, which provides an 
explanation for the observation that elevated numbers 
of Treg cells have been found in many types of cancers. 
It appears that TGF-β, secreted by the tumor itself or 
tumor-stimulated myeloid cells, plays a central role in 

tumor-mediated development of Treg cells by converting 
naïve T cells into Treg cells. 
 The decision of naive CD4+ T cells to become 
TH17 or Treg cell has important consequences in the 
success of an immune response and the progression of 
disease. CD4+ T cell infiltration into tissue occurs 
whenever pathological changes are initiated. These 
pathological changes include infection, autoimmunity 
and malignant cell transformation. Interestingly, 
infiltrating CD4+ T cells take distinct differentiation 
directions in different pathological scenarios. TH17 cells 
and Treg cells are prototypical subsets of CD4+ T cells 
whose infiltration in tissues with each of those 
pathological changes represents the result of CD4+ T 
cell differentiation affected by different pathological 
changes. CD4+ T cells migrating into tissue with 
autoimmune disease adopt a pro-inflammatory 
phenotype while CD4+ T cells invading into the tissues 
with malignant disease adopt an inhibitory phenotype. 
The mechanism responsible for the distinct 
differentiation direction of CD4+ T cells is largely 
unknown. 
 
Treg cells in the tumor microenvironment: Although 
infiltration by CTL and TH cells as well as other 
immune cells in tumor microenvironment is commonly 
seen, spontaneous clearance of established tumors by 
endogenous immune mechanisms is rare. The attempts 
at using immunotherapy to supplement essential 
immunogenic elements to boost tumor-specific 
immunity have shown limited clinical benefit. The 
generally accepted reason is that tumor cells develop 
diverse strategies that escape tumor-specific immunity. 
It has been shown that immunosuppression exists in the 
tumor microenvironment and contributes to the 
progression of cancer. Treg cells have profound 
inhibitory properties to suppress the function of effector 
T cells and account for a significant proportion of the 
immunosuppression in the tumor microenvironment. 
Indeed, emerging evidence suggests that Treg cells are 
involved in the regulation of antitumor immunity. 
Consistent with this concept, experimental depletion of 
Treg cells in mice with tumors improves immune-
mediated tumor clearance and enhances the response to 
immune-based therapy. Treg cells have been shown to 
suppress tumor-specific T-cell immunity and therefore 
may contribute to the progression of human tumors. 
Furthermore, tumor Treg cells are associated with a 
reduced survival in patients with various malignancies.  
 
The number of Treg cells in tumor 
microenvironment: Since Woo et al.[41] reported in 
2001 that CD4+CD25+ T cells exist in significant 
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numbers in tumor tissue from patients with early-stage 
non-small cell lung cancer or later-stage ovarian cancer, 
a number of studies have consistently found that 
CD4+CD25+ T cells as well as CD4+Foxp3+ T cells are 
highly represented in tumor tissue (tumor masses, 
ascites, draining lymph nodes and spleen) and 
peripheral blood from patients with a wide variety of 
cancers. CD4+CD25+ T cells from tumor-bearing mice 
and cancer patients show similar Foxp3 expression and 
suppressive activity in vitro when compared to 
naturally occurring Treg cells. Elevated numbers of Treg 
cells correlate with disease stage, histologic subtypes or 
overall survival of cancer patients. For example, it has 
been found that Treg cells are increased in patients with 
advanced-stage breast cancer and that HER+, but not 
HER-, tumors account for this increase[42]. Although it 
has been shown that the number of Treg cells is 
associated with overall survival in most studies, there is 
no agreement regarding whether elevated number of 
Treg cells predicts a poor or favorable outcome for all 
cancer patients. It appears that high numbers of Treg 
cells are associated with a poor prognosis in patients 
with most types of solid tumors. In contrast, highly-
representative Treg cells correlate with a favorable 
outcome in some patients with hematological 
malignancies[43-47]. The reason for this discrepancy is 
unknown. In hematological malignancies, malignant T, 
or B, or myeloid cells are the target of Treg cells. 
Because the malignant cells are immune cells, Treg cells 
may interact differently with these cells than with 
malignant cells in solid tumors. In fact, it has been 
shown that Treg cells directly suppress B cell-dependent 
immunoglobulin production and class switch 
recombination, without having to suppress TH cells[26] 
and can induce apoptosis of activated B cells via the 
upregulation of perforin and granzymes[37]. Treg cells 
may therefore directly suppress malignant cells in 
hematologic malignancies and this may explain, in part, 
why the increased percentage of tumor infiltrating Treg 
cells predicts a better overall survival in patients with 
hematological malignancies. 
 
Recruitment and generation of intratumoral Treg 
cells: Several mechanisms that may explain the 
elevated number of Treg cells in the tumor 
microenvironment have been proposed. Firstly, Treg 
cells express a number of chemokine receptors such as 
CCR2, CCR4, CCR5, CCR7, CCR8 and CXCR4 and 
are able to migrate in response to a variety of 
chemokines such as CCL22, CCL17, CCL1 and 
CCL4[48]. Among those chemokines and chemokine 
receptors, CCR4 and CCL22 are particularly important 
in terms of their role in attracting Treg cells into the 

tumor site. A study by Curiel et al.[49] showed that 
ovarian tumor Treg cells express functional CCR4 and 
migrate toward CCL22 in the tumor microenvironment. 
They showed that cancer cells and tumor-associated 
macrophages are the source of CCL22. These ovarian 
tumor Treg cells are functionally suppressive and able to 
block tumor-specific immunity, foster tumor growth 
and predict poor patient survival[49]. This finding has 
been also observed in other malignancies such as B-cell 
NHL[50], Hodgkin lymphoma[51] and gastric cancer[52]. 
In addition to the CCR4-CCL22 pair, other chemokines 
and receptors have been also found to play an important 
role in recruiting Treg cells into tumors. In pancreatic 
cancer patients, intratumoral Treg cells expressed high-
level of CCR5 and respond to CCL5 produced by 
pancreatic cancer cells[53]. Interestingly, disruption of 
CCR5-dependent homing of Treg cells by abolishing 
CCL5 expression in pancreatic tumor cells or blockade 
CCR5 expression on intratumoral Treg cells by CCR5 
antagonists inhibits tumor growth in a murine model of 
pancreatic cancer[53]. Furthermore, another study found 
that IL-2 stimulates CXCR4 expression on Treg cells 
and enables Treg cells to migrate toward CXCL12 in the 
tumor microenvironment thereby increasing Treg cell 
accumulation[54]. 
 A second mechanism for the increased number of 
intratumoral Treg cells is the expansion and de novo 
generation of Treg cells within tumors. As discussed 
above, naturally occurring Treg cells are anergic and do 
not proliferate in response to TCR stimulation unless in 
the presence of IL-2. However, naturally occurring Treg 
expansion has been reported in Hodgkin lymphoma and 
myeloma. In Hodgkin lymphoma, in vitro pre-exposure 
of PBMCs to a Hodgkin lymphoma cell line (HRS) 
supernatant significantly increased the expansion of Treg 
cells[55], which may explain the elevated number of Treg 
cells in Hodgkin lymphoma patients[56]. In myeloma, 
monocyte-derived DCs maintained and expanded 
CD4+Foxp3+ Treg cells under in vitro culture conditions. 
Furthermore, it has been found that injection of DCs 
matured by inflammatory cytokines into patients with 
myeloma in a clinical trial results in a rapid expansion 
of Treg cells seen within 1 week after DC injection[57]. 
These observations suggest that naturally occurring Treg 
cells can be expanded within the tumor 
microenvironment. In addition to expansion of Treg 
cells, de novo generation of Treg cells is another 
important mechanism and has been reported in several 
types of tumors. The tumor microenvironment is able to 
induce the development of Treg cells through converting 
CD4+CD25- T  cells into CD4+CD25+ T cells. 
Valzasina et al.[58] observed increased numbers of 
CD4+CD25+ cells in spleen and draining lymph nodes 
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of tumor-bearing mice and significant recovery of Treg 
cells in thymectomized mice with depletion of CD25+ T 
cells using an anti-CD25 antibody, suggesting tumor 
development in mice led to a de novo generation of Treg 
cells. Another study[59] described a subset of tumor-
induced CD25- regulatory T cells (TMTreg) in mice that 
arise after the mice are inoculated with lymphoma B 
cells. These TMTreg have increased expression of Foxp3 
and IL-10, develop independently of pre-existing 
natural Treg cells and maintain suppressive properties 
long term in the absence of antigen stimulation. In 
conjunction with naturally occurring Treg cells, TMTreg 
induced tumor-specific CD4+ T cell tolerance. In 
patients with B-cell NHL, several studies[16,60,61] have 
shown that lymphoma B cells induce Foxp3 expression 
in intratumoral CD4+CD25- T cells and participate in 
the generation of Treg cells, which may account for 
elevated number of Treg cells seen in B-cell NHL. 
 A number of additional mechanisms have been 
proposed to explain how Treg cells are generated in the 
tumor microenvironment. Given that TGF-β is able to 
convert CD4+CD25- T cells into Treg cells and tumor 
cells are a rich source of TGF-β, TGF-β can be the key 
factor contributing to tumor-mediated conversion of 
normal CD4+ T cells into Treg cells. Indeed, several 
studies have shown that tumor-derived TGF-β played 
an important role in the generation of Treg cells in the 
tumor microenvironment[62,63]. In addition, our group 
has found that CD70-expressing lymphoma B cells 
induced Foxp3 expression in intratumoral CD4+CD25- 
T cells and interaction between CD27-CD70 was 
involved in lymphoma B cell-mediated generation of 
Treg cells[16]. Although conversion of CD4+CD25- T 
cells to Treg cells has been described as a physiological 
process that maintains the peripheral Treg population, 
the data would suggest that this process is used by 
tumor cells to evade immune surveillance. 
 
Specificity of intratumoral Treg cells: Most CD4+ T 
cells persist as an antigen-specific subset, but it is not 
clear whether antigen-specific Treg cells exist. The 
observation that tumor cells are able to induce the 
development of Treg cells suggests that Treg cells may 
recognize tumor antigens and may be tumor-specific. It 
has been shown that specific recognition of tumor 
antigen led to differentiation of a subset of CD4+ T cells 
into cells capable of suppressing naïve and TH1 effector 
cells. These CD4+ T cells have increased expression of 
Foxp3 and IL-10 with suppressive activity and were 
described as tumor-induced regulatory T cells[59]. 
Further study showed that this de novo generation of 
Treg cells contributed to tumor-specific T cell 
tolerance[59,64]. Wang et al.[65,66] generated a panel of 

CD4+ T-cell clones isolated from a melanoma. One of 
the clones had a phenotype similar to Treg cells in that 
the cells expressed CD25, GITR and Foxp3 and 
recognized a tumor-specific antigen and this clone was 
shown to inhibit the proliferation of conventional CD4+ 
T cells. This result demonstrated that Treg cells 
recognizing tumor antigens can be generated in vitro. In 
ovarian cancer, it has been shown that tumor Treg cells 
disabled tumor antigen-specific T cell immunity in vivo 
and in turn allow tumor growth[49].  
 
Reversal and enhancement of function of Treg cells: 
The suppressive effect of Treg cells is a major obstacle 
to developing effective cancer immunotherapy. 
Although it has been shown that depletion of Treg cells 
led to inhibition and rejection of tumor growth in 
animal models and an increased anti-tumor immunity in 
cancer patients in some studies, Treg depletion with 
therapies targeting CD25 has not consistently improved 
the clinical outcome and overall survival of cancer 
patients. At least two reasons have been proposed to 
explain this. One explanation is that Treg cell depletion 
promptly induces conversion of peripheral precursors 
into Treg cells and the number of Treg cells will be 
restored over a period of time. Second is that some 
CD4+CD25- T cells in the tumor microenvironment also 
express Foxp3 and possess similar regulatory function 
to naturally occurring Treg cells. Therefore, while 
targeting CD4+CD25+ Treg cells may augment tumor-
specific immune responses, residual CD4+CD25-Foxp3+ 
cells capable of mediating immune suppression would 
still remain and would continue to inhibit the host’s 
anti-tumor response. 
 Inability of CD25-depletion to eliminate the Treg 
cells in the tumor microenvironment has led to a second 
strategy to reverse Treg cell function. Several groups 
have reported that the function of Treg cells can be 
reversed by Toll-Like Receptor (TLRs) ligation by 
CpG[67,68], OX40 costimulation[69], or functional 
blockade of galactin-1[70] or -10[71]. Toll-like receptors 
control activation of adaptive immune responses by 
Antigen-Presenting Cells (APCs) such as DCs. Ligation 
of TLRs on DCs overcomes CD4+CD25+ T cell-
mediated suppression[67]. Further study identified that it 
is TLR8 that is responsible for TLR-mediated reversal 
of CD4+ regulatory T cell function[68]. OX40 belongs to 
the TNF receptor family and co-stimulation of OX40 in 
vivo has been shown to prevent tolerance induction and 
to reverse lymphocyte hyporesponsiveness in 
experimental tolerogenic systems. Triggering OX40 
profoundly inhibited Foxp3 gene expression and 
abrogated the ability of naturally arising Foxp3+ Treg 
cells to suppress T effector cells without affecting their 
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proliferation or survival[69]. Importantly, OX40 
costimulation of T effector cells prevented the 
induction of new inducible Foxp3+ Treg cells[69] and 
facilitated tumor rejection[72]. In contrast to reversal of 
Treg cell function, the function of Treg cells can also be 
enhanced. It has been shown that tumor-derived 
prostaglandin E2 induced Foxp3 expression and 
enhanced the suppressive activity of CD4+CD25+ 
regulatory cells. Furthermore, inhibition of 
cyclooxygenase-2 reduced Treg cell activity and tumor 
burden in vivo[73]. The ability of these strategies to 
enhance or suppress Treg cell function may provide 
future options for modulating the antitumor immune 
response. 
Treg cells, tumor immunity and tumor growth: 
Before the recent expansion of interest and publications 
in Treg cells, there was already published evidence that 
suppressor T cells play a role in tumor growth. During 
1970s and 1980s, a number of studies revealed that 
tumor growth  was  influenced  by  suppressor T 
cells[74-78]. These studies observed that depletion of 
suppressor T cells led to an inhibition of tumor growth 
and that activation of suppressor T cells resulted in 
enhanced tumor growth in mouse models. Importantly, 
tumor growth favored the generation of suppressor T 
cells. These results indicated that T-cell-mediated 
immunosuppression had an impact on tumor growth. 
        Since the identification of CD4+CD25+ Treg cells, 
the role of this subset in tumor-immunity has drawn 
great interest. Although Treg cells were originally 
identified for their ability to prevent organ-specific 
auto-immune disease in mice, emerging evidence 
suggests that Treg cells are able to suppress tumor-
specific T-cell immunity thereby contributing to the 
progression of tumors. In vitro studies consistently 
showed that Treg cells isolated from tumor tissues 
exhibited profound inhibition of autologous 
intratumoral CD4+ and CD8+ T cells as well as NK 
cells. In vivo studies showed that depletion of 
CD4+CD25+ T cells augmented the generation of 
specific immune T cells in tumor-draining lymph nodes 
and facilitated immune responses to poorly 
immunogenic murine tumors[79-81]. These Treg cells 
abrogate CD8+ T cell-mediated tumor rejection by 
specifically suppressing the cytotoxicity of expanded 
CD8+ T cells[82]. In addition, release of suppression of 
NK cell function by depletion of Treg cells is another 
mechanism accounting for tumor regression. A study by 
Smyth et al.[27] showed that NKG2D-mediated NK cell 
cytotoxicity is suppressed by Treg cells and depletion of 
Treg cells and IL-12 therapy synergize to promote NK 
cell-mediated tumor suppression in mice. The IL-2 
immunotoxin, denileukin diftitox, depleted and 

prevented accumulation of Treg cells. This depletion was 
accompanied by increased Ag-specific immunity 
against the neu protein, a self Ag and markedly 
inhibited tumor growth of breast cancers in neu-
transgenic mice[83]. 
 The role of CD4+CD25+ Treg cells in human tumor 
growth is more difficult to address simply because 
human studies are more restricted and are largely 
observational in nature. Highly-representative Treg cells 
have been consistently found in tissues and peripheral 
blood from patients with a wide variety of types of 
cancers. These tumor Treg cells are functional and 
inhibit tumor-specific T cell immunity and contribute to 
growth of human tumors in vivo[24,49,84]. Using biopsy 
specimens from B-cell NHL, we have found that Treg 
cells are highly-represented in biopsy specimens and 
strongly inhibit the functions of CD4+ and CD8+ 
effector T cells, resulting in decreased lysis of human 
NHL B cells. Our previous studies have shown that 
NHL B cells play an active role in Treg cell-mediated 
inhibition of the immune response by recruiting natural 
occurring Treg cells and also generating inducible Treg 
cells in the tumor site[16,50]. 
 
Treg cells and therapeutic approaches in cancer 
patients: Studies in animal models have convincingly 
shown that depletion of Treg cells alone or combined 
with other therapeutical reagents results in elevated 
levels of anti-tumor immunity and longer survival of 
inoculated mice. Recent human cancer trials suggest 
that depletion of Treg cells can be clinically beneficial. 
Several studies observed that administration of 
dinileukin diftitox (Ontak) in cancer patients 
(melanoma, renal, ovarian, breast, squamous-cell lung 
carcinoma) effectively depletes Treg cells and leads to 
an increased tumor-specific CD4+ and CD8+ 
responses[85-88]. Studies showing that administration of 
denileukin diftitox depletes CD4+CD25highFoxp3+ Treg 
cells and enhances T-cell proliferation in normal 
donors[87-89] have significant implications for cancer 
vaccine strategies. Based  on  these  observations, 
Morse et al.[88] performed a phase 1 clinical trial of a 
DC vaccine modified to express carcinoembryonic 
antigen (CEA), which was administered to patients with 
advanced CEA-expressing malignancies (colorectal 
cancer or breast cancer) after denileukin diftitox 
administration in 2 different schedules (before the first 
dose of vaccine and before all 4 doses of the vaccine). 
They found that depletion of Treg cells by denileukin 
diftitox specifically enhanced the T-cell response to 
carcinoembryonic antigen CEA[88]. The importance of 
Treg cells in vaccine therapy was further shown in a 
pilot study[90] of 18 previously treated patients with 
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measurable indolent NHL. Patients were injected 
subcutaneously with DCs loaded with autologous heat-
shocked and UVC–treated tumor cells. The vaccination 
was well tolerated without autoimmune reactions and 
resulted in significant objective clinical responses. 
Interestingly, in patients with complete response, the 
number of CD4+CD25+Foxp3+ Treg cells significantly 
decreased 6 months after vaccination, while the number 
of CD4+CD25+Foxp3+ Treg cells did not change in 
patients with no response to the vaccine. In patients 
with a partial response, decreased Treg cells recovered 
12 months after vaccination. The finding that clinical 
responses were associated with a reduction in 
CD4+CD25+Foxp3+ Treg cells suggests that the 
decreased number of Treg cells contributed to favorable 
clinical responses to the vaccine.  
 A number of anti-cancer drugs have been shown to 
regulate Treg cells. Low dose administration of 
cyclophosphamide, a chemotherapy agent with 
tumoricidal activity, has been shown to selectively 
deplete Treg cells thereby enhancing antitumor 
immunity[91,92]. In contrast, rapamycin, a small 
molecule that inhibits signal transduction, has been 
shown to expand Treg cells thereby suppressing the 
immune response. Recombinant IL-2 induces clinical 
responses in malignant melanoma and renal cell 
carcinoma, suggesting that IL-2 therapy predominantly 
induces immune activation. But response rates to IL-2 
are low and some studies have shown reduced vaccine 
responses with IL-2 therapy. Studies that monitored Treg 
cells during immune reconstitution in individuals with 
cancer who did or did not receive IL-2 therapy found 
that CD4+CD25high cells underwent homeostatic 
peripheral expansion during immune reconstitution and 
in lymphopenic individuals receiving IL-2, the Treg cell 
compartment was markedly increased[93,94]. These studies 
suggest that IL-2 and lymphopenia are primary 
modulators of CD4+CD25+ Treg cell homeostasis. In 
addition to IL-2, IFN-α2b up-regulates STAT5 and 

down-regulates STAT3, resulting in up-regulation of Treg 
cells and inhibition of IL-17+ expressing lymphocytes in 
melanoma[95]. These observations suggest that selective 
inhibition of IFN-α and IL-2-mediated enhancement of 
Treg cells might be of therapeutic benefit.  
 

CONCLUSION 
 
 Experimental and clinical findings have 
demonstrated that profound immunosuppression is 
present in the tumor microenvironment and that Treg cells 
are a major factor contributing to this 
immunosuppressive tumor microenvironment. 
Significant interest has recently focused on the premise 
that tumors may subvert tumor immunity by promoting 
the expansion, recruitment and activation of Treg cells. 
Figure 1 provides a schematic diagram of tumor-
mediated generation of Treg cells and the consequence of 
elevated Treg cells in tumor microenvironment. Basically, 
tumor cells induce the generation of Treg cells through 
both cell contact-dependent and cell contact-independent 
mechanisms. Soluble proteins such as TGF-β produced 
by tumor cells promote the proliferation of Treg cells and 
induce the conversion of naïve CD4+CD25- T cells into 
Treg cells. Tumor cells also express surface proteins such 
as CD80/CD86 or CD70 and interact with naïve cells in 
a cell contact-dependent manner to convert these naïve T 
cells into Treg cells. In addition to tumor cells, dendritic 
cells are also able to convert naïve T cells into Treg cells 
and contribute to the elevated numbers of Treg cells seen 
in the tumor microenvironment. Elevated numbers of 
Treg cells participate in creating an immunosuppressive 
tumor microenvironment by suppressing the innate and 
adaptive immune responses thereby contributing to the 
progression of tumors. In contrast to inducing the 
generation of Treg cells, tumor cells may also inhibit the 
development of inflammatory immune cells such as 
TH17 cells. Along  with  elevated  number  of  Treg cells,  

 

 
 
Fig. 1: Tumor-mediated generation of Treg cells and the impact on the tumor microenvironment 
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an insufficient number of TH17 cells contribute to the 
inadequate immune response and the limited anti-tumor 
immunity. Strategies that deplete or inhibit Treg cells 
and thereby promote a competent immune response in 
the tumor microenvironment should be the goal in 
future immunotherapeutic studies in cancer patients. 
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