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Abstract: This research aims to analyze the efficacy of SHALSTAB, 
IPT, SAGA, SMORPH and modified SMORPH models in evaluating 
landslide susceptibility. Statistical analysis concerning both the efficacy 
of the models in the prediction of landslide risks and the concordance 
between the models according to landslide occurrence or non-
occurrence was performed. For this work, logistic regression, Receiver 
Operating Characteristic (ROC) curves, Kappa statistic and 
concordance analysis were used considering a sample of 15,544 
incidents reported during the period of 1996 to 2012 in the city of Juiz 
de Fora, Brazil. The analysis included 855 confirmed landslide 
occurrences and 14,689 unconfirmed occurrences. The need for the 
addition of new variables other than those included in the susceptibility 
analysis models was observed by the analysis of the historical ballast of 
occurrence. In many cases where SHALSTAB, IPT, SAGA, SMORPH 
and modified SMORPH models pointed to a low possibility of a 
landslide, many landslides of great significance occurred, which 
included casualties. The importance of this study is to assess the 
efficacy of these models through the indication of new complementary 
variables. The results show that an anthropogenic variable is necessary 
as slopes with similar geotechnical characteristics are submitted to 
different demands compared to natural conditions. 
 
Keywords: Landslide, Susceptibility Maps, Predictive Models, 
Efficacy 

 
Introduction 

In the last decades, urbanization has increased all 
over the world, mainly in developing countries. 
Nowadays half of the planet’s population lives in 
urban areas. Cities have become the main expression 
of the environmental modification made by human 
beings and they represent the troubled relationship 
between man and nature. 

In Brazil, this process is not different, especially 
after the intense urbanization that occurred in the 
post-World War II period. Most Brazilian cities 
expanded without adequate urban planning, resulting 
in the emergence and/or worsening of several 
environmental and social problems. However, 
environmental problems do not affect the entire urban 
space homogeneously in terms of distribution and 
intensity and are often related, in the Brazilian case, to 
the most undervalued areas whose physical spaces are 

occupied by underprivileged social classes. 
Socioeconomic and human losses are expected to 
increase because climate change will probably result 
in a higher frequency of landslides caused by rainfall 
increase and by social pressure, which drives people 
towards sloped areas (World Bank, 2010). 

The expansion of urbanized areas, characterized by 
the waterproofing of large occupied surfaces, directly 
affects the capacity of water infiltration into the soil, 
increasing superficial drainage and therefore changing 
the entire operation of the hydrological cycle in cities, 
with important consequences for the population 
residing there. Episodes of intense rainfall, 
characteristics of tropical regions, add to the 
intensification of the disordered occupation of sloped 
areas, the removal of vegetation cover, the misuse, 
mishandling and poor conservation of soil and 
contribute significantly to increase urban 
environmental problems related to mass movements. 
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Landslide susceptibility models are powerful tools 
for providing better knowledge of the dynamics of 
mass movements in urban areas located in tropical 
regions. These models may significantly help in 
identifying areas most prone to the occurrence of this 
phenomenon by using different techniques, such as 
the logistic regression applied in this study. The 
results from these models may also contribute to the 
better organization of the urban space.  

Logistic regression is known to be one of the most 
suitable methods for evaluating landslide 
susceptibility (Hosmer et al., 2013). Several 
comparative studies demonstrate the superior 
performance of this technique as compared to others 
(Guzzetti et al., 2005; Mathew et al., 2009; Rossi et al., 
2010; Vorpahl et al., 2012; Akgün, 2012;     
Felicísimo et al., 2013). 

The use of this multivariate technique to model 
landslide susceptibility is mainly due to its capacity to 
operate with any kind of independent variable (ratio, 
interval and ordinal or nominal scale), regardless of 
the deviation of predictors considered and of the 
residuals of a normal distribution. All discrete 
independent variables are binarized and transformed 
into dichotomous or polychotomous variables. The 
dependent variable is defined as a binary variable in 
terms of a stable or an unstable state of the mapping 
unit to be classified (Costanzo et al, 2014). 

The application of these techniques requires a series of 
comprehensive multi-temporal data that is not always 
available. The limitations of the databases described in 
literature refer to the integrality of the historical series, the 
exact location of time and space effects, the uncertainty 
about the number of people involved and the reliability of 
the sources (Petrucci and Pasqua, 2008; Petrucci and 
Pasqua, 2009; Jaiswal et al., 2010; Petrucci and 
Pasqua, 2012). The best way to verify the validity of a 
model is by using it in areas that are different from the 
ones it was designed for (Jaiswal et al., 2010). 

Different quantitative methods were applied all over the 
world in the last decades to evaluate landslide susceptibility, 
many of them based on statistical methods (Yin and Yan, 
1988; Carrara et al., 1991; Soeters and Westen, 1996; 
Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; 
Süzen and Doyuran, 2004). Approaches exclusively 
based on physical models are less frequent and the models 
published include the dSLAM (Wu and Sidle, 1997), as 
well as the SHALSTAB model (Dietrich and 
Montgomery, 1988; Montgomery and Dietrich, 1994; 
Calcaterra et al., 2004; Pack et al., 2005), SINMAP and 
the model TRIGRS (Iverson, 2000; Baum et al., 2008). 
These models are widely used, with special emphasis 
in the US, Brazil, China and Italy (Dietrich et al, 
1998; Montgomery et al., 1998; Fernandes et al., 
2001; Ramos et al., 2002; Guimarães et al., 2003; 

Savage et al., 2004; Salciarini et al., 2006; Santini et al., 
2009; Cervi et al., 2010; Vieira et al., 2010). 

One of the reasons why risk assessment and 
mapping still involve challenges is the lack of time 
data on landslide occurrence (Pellicani et al., 2014). 
In other countries, such as Portugal, the works of 
(Bateira, 2001; Teixeira, 2005; Pereira, 2009; Pereira et al., 
2012) indicate that landslide susceptibility models 
based exclusively on physical variables were still not 
applied and they report models based on mountain 
geomorphology and mechanical and hydrological 
information available on the surrounding massifs. 

Several existing studies point to the need to 
understand the assessments of landslide susceptibility 
and the relevance of models that produce effective 
results. In this sense, this research proposes to 
measure and compare the efficacy of the SHALSTAB, 
IPT, SAGA, SMORPH and modified SMORPH 
models to the real occurrence data, thus verifying the 
degree of efficacy between the landslide implied by 
the models and the actual risk. This way, whether the 
variables of these models respond properly to the 
landslide phenomenon may be also checked. Based on 
the results, it will be possible to identify the existence 
of false positives indicated by the models and if there 
is a historical dependency between the data of 
landslide occurrence or non-occurrence. 

Materials and Methods 

Our approach involved three steps: characterization 
of geoenvironmental context, data organization and 
application of landslide susceptibility models and 
comparative analysis of the efficacy of landslide 
susceptibility models (Fig. 1). 

Study Area 

The city of Juiz de Fora is located in the state of 
Minas Gerais, Brazil, where strong urban expansion over 
the past decades and the expressive population growth 
led to the occupation of steeply sloped areas, as well as 
to the consequent increase of mass movements. The 
city's population, which was of 169,440 inhabitants in 
1960, reached a total of 516,247 inhabitants in 2010 and 
the urbanization rate, which was of 74.46% in 1960, 
reached 98.86% in 2010 (IBGE, 2010). 

The study area corresponds to the eastern region of 
Juiz de Fora City, traditionally characterized by the 
occurrence of a large number of landslide events. 
Figure 2 presents this region, which is one of the most 
affected areas by the problem of mass movements in 
recent years. The Civil Defense reported in this area a 
total of 855 mass movement events during the period 
of 1996 to 2012, frequently followed by human and 
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material losses. Thus, the uneven topography, the presence 
of steep slopes, the high amount of summer rainfall, the 
sparse vegetation cover and the intense and disordered 
occupation of these areas by underprivileged social classes 

all constitute a framework that requires improved 
knowledge of these dynamics, in order to develop a series 
of measures of urban space management and planning that 
may mitigate the consequences of mass movements. 

 

 
 

Fig. 1: The research flowchart 
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 (b) 

 
Fig. 2: (a) Front view of “Três Moinhos” neighborhood slope showing signs of landslide; (b) Side view of buildings on slope 

showing signs of landslide 

 
The eastern area of Juiz de Fora is composed of 

15.62 km² of urban area and 10.24 km² of rural area. 
It is a significantly large area, between 694.9 m and 
1,043.4 m. Most slopes gather on plane areas with 
high slopes up to 35°C. However, there is a 
significant area with slopes greater than 45°C.  

About 60% of the slopes are less than 10 m high 
and only 20% in the eastern area are higher than 20 m. 
This represents a high potential for landslides. 

Data Organization and Application of Landslide 

Susceptibility Models 

Between 1996 and 2012, 855 georeferenced 
landslide occurrences were identified in the eastern 
region of Juiz de Fora. All registered cases were 
properly assessed and reported by an expert civil 
engineer in the geotechnical area. 

From aerial photogrammetric surveys and laser 
profiling, both executed in 2007, it was possible to 
perform the digital terrain modeling with 1 m pixel 
resolution throughout the study area. 

The municipal government already had a landslide 
susceptibility map, created using the SAGA/UFRJ 
model (Silva, 1990), in which four risk categories 
were described (low, medium, high and very high). 
Such categories were defined according to the IPT 
model (Carvalho et al., 2007). 

Through digital modeling of the terrain and physical 
data from the location, landslide susceptibility maps were 
developed using SHALSTAB (Dietrich and Montgomery, 
1988), IPT (Carvalho et al., 2007), SAGA/UFRJ 
(LAGEOP/UFRJ, 2007), SMORPH and modified 
SMORPH (Shaw and Johnson, 1995) models. 

From the SHALlow STABility Model, the model 
SHALSTAB merges the hydrological model to 
infinite slope stability. Dietrich and Montgomery 
(1988) first developed this model at the beginning of 
the 1990’s at the University of California at Berkeley. 

The SHALSTAB model is presented in Equation 1 
(Silva et al., 2013) defining for each pixel the 
landslide susceptibility: 
 

( )
sin tan

log 1
cos ² t/ an

s

w w

Q θ c' ρ θ

T a b ρ g z θ tg φ ρ φ

  
= ⋅ + ⋅ −  

′ ′⋅ ⋅ ⋅ ⋅   
 (1) 

 
Where: 
Q = Rainfall [mm]  
T = Soil transmissivity [m2·day−1]  
θ = Slope [°] 
a = Contribution area [m2]  
b = Is the contour length across which the flow is 

accounted for [m]  
c' = Soil effective cohesion [kPa]  
ρs = Density of the soil [kg·m−3]  
ρw = Density of the water [kg·m−3]  
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g = Gravitational acceleration [m·s−2]  
z = Soil thickness [m]  
φ' = Soil effective friction angle [°] 
 

The Instituto de Pesquisas Tecnológicas (IPT) 
model considers the forecast for landslides based on 
slope, slope curvature and soil state (soil-free, talus 
fragments and soil fractions altered areas).  

The SAGA/UFRJ is a Geographic Information 
System (GIS) for environmental applications to analyze 
conventional georeferenced data supplementing reports 
and maps to support decision making actions. 

The SMORPH model, which stands for Slope 
MORPHology (Shaw and Johnson, 1995), developed 
in the United States for forecasting superficial 
landslides, is an empirical model adapted to include 
the contributing area with the creeping process. This 
model only uses parameters derived from a Digital 
Elevation Model (DEM) to calculate susceptibility. 

SMORPH requires slope and curvature thresholds 
as inputs to define the surfaces with regard to 
landslide potential. Slope thresholds needed to be 
calculated for five slope ranges: Relatively flat, low 
steepness, moderate steepness, high steepness and 
extremely high steepness. 

Slopes with convex curvature tend to dispel the 
surface water, thereby not allowing an aquifer to form 
and making the development of pore water pressure 
under the soil difficult, which contributes to the 
instability of the slopes. Figure 3 presents the 
curvature types: slopes with flat, convex and concave 
shape make it easy for water to concentrate due to the 
surface and undersurface water accumulation. 

The modified SMORPH model, SMORPHM, 
proposes an evaluation of susceptibility for landslides 
by considering the possibility of Talus soil (a slope 
formed especially by an accumulation of rock debris 
at the base of a cliff). 

The environmental module has three basic 
geographical functions: 
 
• Signature: Is used to define the hypsometrical 

characteristics for specific areas selected by the 
user that allows the identification of important 
variables 

• Modification control: Is the continuous inspection 
of environmental phenomena through sequential 
time mapping 

• Evaluation: Is the superposition of maps used to 
combine weight and scale valuation for 
developing the potential risk factors in a new map 

 
Many data combinations may be developed this 

way and the maximum value of digital map 
distribution for environmental change may be 
produced and analyzed. This maximal contribution 

automatically allows the evaluation of all other class of 
map for maximum value. The algorithm of this 
evaluation is presented in Equation 2 (Silva et al., 2013). 

The distribution of occurrences was classified in a 
binary way as confirmed landslide occurrences and 
non-occurrences (when no landslides were identified). 
Out of a total of 15,544 incidents reported in the 
system by population request between 1996 and 2012, 
only 855 were confirmed occurrences and 14,689 
represented non-occurrences (i.e., occurrences that 
were reported but not confirmed when the Civil 
Defense staff visited the site). 

The word repetition refers to repeated landslides in 
the same area. Based on the Civil Defense’s database, 
the confirmation concerning occurrences and non-
occurrences regarding the reported events was verified 
by means of an engineer’s report, which is generated 
after the location is surveyed. The engineer’s reports are 
essential to confirm occurrences. After analyzing the 
georeferenced reports, we could identify the distribution of 
confirmed landslide surveys, named "occurrences", as well 
as the surveys that pointed to the: 
 

( )
1

n

ij k k

k

A P N

=

= ×∑  (2) 

 
Where: 
Aij = Georeferenced base pixel  
n = Number of maps 
Pk = Weight of each map "k", divided by 100 
Nk = Scale valuation for each map class 
 
Comparative Analysis of the Efficacy of Landslide 

Susceptibility Models 

Using a Geographic Information System (QGIS® 
version 2.18) crosschecks were performed with the 
susceptibility models, from records on landslide and 
non-landslide areas. 

Data regarding confirmed landslide occurrences in the 
eastern region of Juiz de Fora were annually grouped and 
are presented in Table 1, followed by the number of 
occurrences per year in the period of 1996 to 2012. 

An analysis of the data enabled us to identify a 
distribution of repeated occurrences in the same 
location, but the data presented in Table 2 did not 
indicate interference in the aims of this research on 
models for predicting landslide occurrences. 

So-called "non-occurrences" (i.e., cases in which 
the landslide occurrence was not confirmed). 

Repetition of landslide occurrences was identified 
in the same geographic location during the analysis of 
the database; however, such repetition was not 
considered statistically significant in regards to the 
focus of this study. 
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Fig. 3: Slopes D1, D2, D3 showing the process of water and debris dispel and accumulation (Carvalho et al., 2007) 

 
Table 1: Total number of occurrences from 1996 to 2012 
Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Number of 36 99 17 20 11 22 35 39 40 8 7 130 183 228 162 83 42 
occurrences 

 
Table 2: Distribution of repetition of occurrences 

Repetitions 1 2 3 4 5 6 7 8 Total 

Occurrences 657 131 45 9 7 4 0 2 855 

 
Logistic regression models (Kleinbaun and Klein, 2010) 

were developed to estimate the landslide risk according to 
diagnoses performed by the SHALSTAB, IPT, SAGA, 
SMORPH and modified SMORPH models. 

The statistical analysis consisted of two main 
steps: (i) Analyzing the efficacy of models for 
predicting the risk of slope failure; and (ii) analyzing 
the concordance between the models according to 
landslide occurrence or non-occurrence. 

In order to complement the analysis, Receiver 
Operating Characteristic (ROC) curves were built. 
These provide a graphical method of evaluation, 
organization and selection of diagnostic and/or 
prediction systems. A concordance analysis between 
the models was performed via Kappa statistic by 
considering all pair combinations of models. 

The ROC curves were obtained for the final model 
of landslide prediction by a binary classification, that 
is, two classes designated as positive and negative. 
The analyzed ROC curves results were relevant in the 
process of comparing the predictive efficacy of each 
model used in this study. 

The independence between observations in all 
analyses was considered; however, spatial statistical 
models can be adopted to incorporate georeferenced 
information, thus modeling the possible dependence 
between occurrences. 

Results and Discussion 

Analysis of the Efficacy of the Models in Predicting 

Occurrences 

The analysis of the efficacy of the SHALSTAB, 
IPT, SAGA, SMORPH and modified SMORPH 
models was developed individually at first. It was based on 
diagnoses of data from each model concerning landslide 

occurrences and non-occurrences, generating positive and 
negative results for efficacy of the occurrence data 
(Kleinbaun and Klein, 2010).  

Figure 4 to 8 presents the application results of the 
susceptibility model for soil landslides for the eastern 
region of Juiz de Fora according to the five different 
models utilized. For the development of the 
cartographic base, the geodesic reference was 
SIRGAS 2000, the Geocentric Reference System of 
the Americas 2000. And the coordinate system used 
was the Universal Transverse Mercator (UTM). 

From a color scale ranging from green to red there 
is, respectively, the indication of low to high 
susceptibility to the occurrence of landslides. The blue 
lines identify the water courses present in this region. 

It may be observed that in Fig. 6 the upstream part 
of the river basin is not filled with the landslide 
susceptibility distribution. It occurred because the 
necessary information for the operation of the 
SAGA/UFRJ model, such as soil geomorphology, was 
not available for the specific area. 

Table 3 resumes an analysis of SHALSTAB, IPT, 
SAGA, SMORPH and modified SMORPH models for 
their predictive efficacy of risk occurrence. The 
positive sign indicates the prediction of an occurrence. 
And the negative sign represents a diagnosis in which 
the model did not anticipate the occurrence. 

From the columns of the table, "prevalence" means 
the hit ratio of the cases in which the respective model 
classified them as positive and negative. The “odds” is 
defined as the risk of landslide occurrence, which is 
obtained through the ratio between the probability of 
occurrence and non-occurrence. 

The “odds ratio” value represents the odds ratio or 
relative risk, i.e., the possibility of an occurrence to 
take place when the model indicates the positive sign 
in detriment of when it indicates non-occurrence. 

D1 

D2 

D3 

D1 

D2 

D3 

D1 

D2 

D3 
D1 ≈ D2 ≈ D3 

D1 < D2 < D3 
D1 > D2 > D3 
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Fig. 4: Susceptibility SHALSTAB Map 
 

 
 

Fig. 5: Susceptibility IPT Map 
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Fig. 6: Susceptibility SAGA-UFRJ Map 

 

  
Fig. 7: Susceptibility SMORPH Map 
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Fig. 8: Susceptibility SMORPH Modified Map 
 
Table 3: Predictive efficacy of the susceptibility models 

Models Diagnosis Occurrence Non-occurrence Efficacy Ratio Total Prevalence* Odds** Odds Ratio 

SHALSTAB + 717.00 10,874 15.200 11,591 6.1900 0.0659 1.82 (1.51:2.2) 
 - 138.00 3,815 27.600 3,953 3.4900 0.0362 
IPT + 823.00 13,103 15.900 13,926 5.9100 0.0628 3.11 (2.18:4.60) 

 - 32.000 1,586 49.600 1,618 1.9800 0.0202 

SAGA + 524.00 7,700 14.700 8,224 6.3700 0.0681 1.44 (1.24:1.66) 
 - 331.00 6,989 21.100 7,320 4.5200 0.0474 

SMORPH + 723.00 8,854 12.200 9,577 7.5500 0.0817 3.61 (2.99:4.36) 

 - 132.00 5,835 44.200 5,967 2.2100 0.0226 
Mod. SMORPH + 686.00 10,686 15.600 11,372 6.0300 0.0642 1.52 (1.28:1.81) 

 - 169.00 4,003 23.700 4,172 4.0500 0.0422 

Total (for each model) 855 14,689 - 15,544 5.5000 0.0582 - 

* Occurrences per 100 diagnoses 

**Risk occurrence (probability of occurrence related to non-occurrence) 
 

The “efficacy ratio” was calculated through the 
ratio between the non-occurrence and occurrence 
cases, considering both signs indicated by the models, 
positive and negative sign. It represents the ratio in 
which landslide is more likely to occur than not to 
occur, or vice versa. Proportionally, the model better 
predicts the risk when the diagnosis refers to an 
occurrence compared to a non-occurrence diagnosis. 

Furthermore, in order to provide a more complete 
understanding of the efficacy of each model in 
predicting landslide occurrences, it was created a 
diagram that correlates sensitivity and specificity. The 
“sensitivity” corresponds to true positive, that is, the 

probability to predict the event. And the “specificity” 
corresponds to false positive. 

The summary of the analysis of SHALSTAB, IPT, 
SAGA, SMORPH and modified SMORPH models is 
presented in Fig. 9 to 13 as a ROC curve. 

The Area Under the ROC Curve (AUC) 
corresponds to the predictive power of the analysis 
and this value is always between 0 and 1. Thus, the 
larger the AUC, the higher the predictive power of the 
model related to the event occurrence. 

Analysis of SHALSTAB Model 

For the SHALSTAB model, it was verified that 
from a total of 11,591 cases, only 717 were confirmed 
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by the model; whereas in 10,874 cases identified as 
positive, according to the model, the landslide did not 
occur. Given a negative diagnosis, we have 138 
occurrences, that is, even when the model has a non-
occurrence as a result, it is still expected that 3.49% of 
landslides are to happen. 

The risk occurrence when the model indicates a 
positive diagnosis is 6.59%. Likewise, when the model 
points to a negative diagnosis, the risk of non-occurrence 
is 3.62%. Both results of occurrence and non-occurrence 
accuracy are low. 

Analyzing the “odds ratio”, it is 1.82 times higher than 
the chance of occurrence when the model points to non-
occurrence. The confidence interval is 1.51: 2.2, it is 
significant and does not include the 1.0 value.  

From the Fig. 9 for SHALTAB model, the maximum 
prediction value found is 0.035, which corresponds to 
the maximum value of the ROC curve. 

The area under the curve is 0.549, which is 
considered a low value (admitting 1.000 as maximum 
value). This value will be evaluated later in comparison 
with other models analyzed in this research. 

Analysis of IPT Model 

It was verified that only 823 of 13,296 cases were 
identified by the model, while in 13,103 cases, the 
landslide indicated as positive by the model did not 
occur. Of events given a negative diagnosis by the IPT 
model, there were 32 occurrences, that is, even when 
the model identifies a non-occurrence, 1.98% of 
landslides are still expected to occur.  

The risk occurrence when the IPT model performs 
a positive diagnosis corresponds to 6.28%. Likewise, 

there is a risk of 2.02% in the case of a negative 
diagnosis. As in the SHALSTAB model, the IPT 
showed low results (odds) of occurrence and non-
occurrence efficacy. 

The possibility of occurrence, when the model 
classifies it as positive, is 3.11 times higher than the chance 
for it to occur when the IPT points to a non-occurrence. The 
confidence interval is 2.18:4.60, which is significant and 
does not include the 1.0 value.  

A summary of the analysis is shown in Fig. 10. The 
maximum value of prediction corresponds to 0.020.  

The area under the ROC curve corresponds to the 
predictive power of the analysis, whose value is 
0.535, which is considered low and will also be 
evaluated later in comparison with the other models 
analyzed in this research. 

Analysis of SAGA Model 

It was verified that only 524 from a total of 8,224 
cases were confirmed by the model, while in 7,700 cases 
the landslide indicated as positive by SAGA did not occur. 
Given a negative diagnosis by the model, we have 331 
occurrences, that is, even when the model results in a non-
occurrence, 4.52% of landslides are still expected to occur. 

The risk occurrence corresponds to 6.81% when 
the model provides a positive diagnosis. Likewise, 
when the model provides a negative diagnosis, the 
risk is 4.74%. 

In this case, when the model classifies an 
occurrence as positive, we have a result 14.7 times 
more likely not to occur than to occur. When the model 
classifies an occurrence as negative, we have a result 
21.1 times more likely not to occur than to occur. 

 

 
 

Fig. 9: ROC curve considering the predictive efficacy of the SHALSTAB model 
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Fig. 10: ROC curve considering the predictive efficacy of IPT model 

 
A summary of the analysis is shown in Fig. 11, in 

which the maximum prediction value found corresponds 
to 0.045 and to the maximum value of the ROC curve. 
The area under the ROC curve corresponds to 0.544, 
which is considered low. 

Analysis of SMORPH Model 

It was verified that only 723 from a total of 9,577 
cases were confirmed as positive by the model, while 
the 8,854 landslides indicated as positive did not 
occur. Given a negative diagnosis by the SMORPH 
model, we have 132 cases of occurrence, that is, even 
when the model results in a non-occurrence, 2.21% of 
landslides are still expected to occur.  

Thus, “prevalence” means the hit ratio of 
occurrences related to the cases classified by the 
SMORPH model as positive (7.55%) and negative 
(2.21%). The risk occurrence corresponds to 8.17% 
when the model provides a positive diagnosis. 
Likewise, when the model provides a negative 
diagnosis, the risk is 2.26%.  

As in the SHALSTAB, IPT and SAGA models, the 
results of the accuracy of occurrence of the SMORPH 
model were low. 

From the Fig. 12, the maximum prediction value 
found corresponds to 0.022 and the AUC corresponds 
to 0.621, which is considered low value. Yet, it is the 
highest value of all models presented. 

Analysis of Modified SMORPH Model 

It was verified that, from a total of 11,372 cases, 
only 686 were confirmed by the model; while 10,686 
landslide cases classified as positive by the model did not 
take place. Given a negative diagnosis by the modified 
SMORPH model, we have 169 cases of occurrences, that is, 
even when the model results in a non-occurrence, 4.05% of 
them are still expected to occur. 

The odds correspond to 6.42% when the model 
provides a positive diagnosis. Similarly, the risk 
occurrence is 4.22% when the model provides a 
negative diagnosis. 

When the result of the model for an occurrence is 
positive, the result is 15.5 times more likely not to 
occur than to occur. When it points to the negative of 
a landslide occurrence, the result is 23.6 times more 
likely not to occur than to occur. 

For the modified SMORPH model, the area under 
the curve (Fig. 13) is 0.537 and its maximum value 
corresponds to 0.041. 

In order to streamline the comparison process 
between the results of odds ratios, Table 4 summarizes 
the analysis of the variation of risk occurrence, while 
Table 5 summarizes the analyzed predictions of the 
occurrences. According to the results, the models are 
presented in descending order in relation to their 
capacity to meet the requirement (that is, to point to the 
risk occurrence or to predict the occurrences). 
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The SMORPH model presents a higher predictive 
performance than the other models; however, this 
model could still be improved if it considered other 

variables, for instance, the use of soil. When the 
SMORPH model is compared to the others, it is 
observed that it fails less and succeeds more. 

 

 
 

Fig. 11: ROC curve considering the predictive efficacy of SAGA model 

 

 
 

Fig. 12: ROC curve considering the predictive efficacy of SMORPH model 
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Fig. 13: ROC curve by considering the predictive efficacy of modified SMORPH model 
 
Table 4: Ranking of variation of risk occurrence 

    Ranking of capacity to 
Models Odds Odds Odds Ratio indicate risk occurrence 

SMORPH 0.0817 0.0226 3.61 1st 
IPT 0.0628 0.0202 3.11 2nd 
SHALSTAB 0.0659 0.0362 1.82 3rd 
SMORPH-Modified 0.0642 0.0422 1.52 4th 
SAGA 0.0681 0.0474 1.44 5th 

 
Table 5: Ranking of the accuracy of the occurrence with the 

models 

  Ranking of 
 Area under the accuracy 
Models the curve of the model 

SMORPH 0.621 1st 
SHALSTAB 0.549 2nd 
SAGA 0.544 3rd 
SMORPH-Modified 0.537  4th 
IPT 0.535 5th 

 

Concordance Analysis of the Models According to 

the Type of Occurrence 

The following analyses were performed with pairs 
of models for the concordance evaluation by Kappa 
statistic, which has p-value as the descriptive 
significance level of the test. The standard significance 
levels frequently used have p-value lower than 5%. 

From the occurrence and non-occurrence data, 
when the models predict if there will be an occurrence 
or not, we intend to identify the concordance between 
the models when both of them predict the occurrence 
and the non-occurrence. 

Based on the results of concordance analysis by 
Kappa statistic (Z = −0.731 and p-value = 0.7676) of 

SHALSTAB and IPT models, it is possible to 
conclude that there is no significant evidence of 
association and the concordance may be considered 
random or, in other words, casual. The concordance 
results between SHALSTAB and IPT diagnoses for 
non-occurrences by Kappa statistic were Z = 0.395 
and p-value = 0.3464, which indicates a concordance 
considered random (casual). 

The concordance analysis of SHALSTAB and 
SAGA models for the occurrences may be considered 
random (casual) by Kappa statistic (Z = 0.9102, p-
value = 0.1814). However, for the respective models 
analyzed to non-occurrence, there is a significant 
concordance between the diagnoses with Z= 3.3617 
and p-value = 0.0003873. 

After that, SHALSTAB and SMORPH models were 
analyzed and the concordance may be considered 
random (casual) for the occurrence diagnoses (Z = 1.346, 
p-value = 0.08915) and also for non-occurrence (Z = 
−6.1508, p-value = 1). 

The analysis of SHALSTAB and modified SMORPH 
models indicates a random concordance between the 
occurrence diagnoses by Kappa statistic (Z = −0.9412, p-
value = 0.8267), as well as between the non-occurrence 
diagnoses (Z = −4.8248, p-value = 1). 
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Table 6: Concordance analysis of the models 

 Occurrence   Non-occurrence 
 -------------------------------  ------------------------------------ 
Models Z P-Value Concordance Z P-Value Concordance 

SHALSTAB × IPT -0.7310 0.767600 Random 0.39500 0.346400 Random 
SHALSTAB × SAGA 0.91020 0.181400 Random 3.36170 0.0003873 Significant 
SHALSTAB × SMORPH 1.34600 0.089150 Random -6.15080 1.0000000 Random 
SHALSTAB -0.9412 0.826700 Random -4.82480 1.0000000 Random 
× Modified SMORPH 
IPT × SAGA -0.0543 0.5217000 Random 16.13010 2.2e-16 Significant 
IPT × SMORPH 1.7900 -0.036730 Significant -21.9032 2.2e-16 Significant 
IPT × SMORPH 3.4121 0.0003223 Significant 35.88570 2.2e-16 Significant 
SAGA×SMORPH 4.0022 3.138e-05 Significant 29.66260 2.2e-16 Significant 
SAGA 0.7697 0.220700 Random -21.0080 2.2e-16 Significant 
× Modified SMORPH 
SMORPH 4.6543 1.626e-06 Significant 36.65830 2.2e-16 Significant 
×Modified SMORPH 

 
The concordance between the diagnoses of IPT and 

SAGA may be considered random for the occurrences 
(Z = −0.0543, p-value = 0.5217), which is significant 
to the data related to non-occurrences (Z = 16.1301, p-
value<0,001). 

Considering the analysis of IPT and SMORPH for 
occurrences and non-occurrences, the concordance results 
were significant, presenting (Z = 1.79, p-value = 0.03673) 
and (Z = −21.9032, p-value<0,001), respectively. 

The analysis between IPT and modified SMORPH 
was considered significant to the concordance of 
occurrences (Z = 3.4121, p-value<0,001) and also to 
non-occurrences (Z = 35.8857, p-value<0,001). 

SAGA and SMORPH models showed significant 
concordance in the diagnoses between occurrences (Z 
= 4.0022, p-value<0,001) and non-occurrences (Z = 
29.6626, p-value<0,001).  

The concordance between the diagnoses from 
SAGA and modified SMORPH may be considered 
random (casual) for the occurrences (Z = 0.7697, p-
value = 0.2207), which is considered significant to the 
non-occurrences (Z = −21.008, p-value<0,001). 

The analysis between SMORPH and modified 
SMORPH models indicated a significant concordance 
between the models for the occurrences (Z = 4.6543, 
p-value<0,001) and also for the non-occurrences (Z = 
36.6583, p-value<0,001). 

The analyses presented here reflect the 
concordance between models in the diagnoses 
according to the type of occurrence. Therefore, it can 
be observed when two models indicate a positive 
prediction and what degree of concordance they had 
in the diagnoses generated. 

Table 6 summarizes the analysis results of 
concordance between the models, according to the 
type of occurrence. 

Conclusion 

Through the presented analysis, especially through 
ROC curves, this research concludes that the accuracy of 

models is relevant; however, it is still low due to a large 
number of false positives indicated by all models. In all 
landslide models, anthropogenic variables - such as soil 
use-are not considered in the analyses. When analyzing 
those variables “in loco” in these landslide cases, they 
were verified as one of the most important determining 
factors contributing to the occurrence of geotechnical 
instability processes on the slopes. It is important to 
highlight that civil engineers, who confirmed the 
information validity, countersigned all 855 landslides cases. 

It may be observed that the predictive power of the 
studied models is only slightly different, ranging from 
0.535 to 0.621, which demonstrates the need for new 
variables to be included in the structure of the models. 
For the area in question, the SMORPH model provided 
the most significant result, although barely. Substantial 
differentiation is not observed between models. 

The results indicated various confirmed cases of 
landslides while the models did not predict the existing 
risk. Thus, the analyses of the results aiming at 
identifying the existence of false positives and true 
negatives indicated high indexes, reflecting conservative 
models that require revision of model variables.  

The research allowed us to verify the inexistence of a 
geographical recurrence relationship of a given occurrence 
when analyzed in the context of a historical series. 

The event reported in the past does not necessarily 
imply a new occurrence. The fact that the analyzed place 
is an area of lower purchasing power points to a lack of 
retaining and drainage structures in particular areas, 
which could minimize landslide circumstances. 

That being said, this research confirmed that the 
variables considered in these models do not respond 
properly to the phenomenon, indicating the need for a 
more detailed analysis that can associate the 
anthropogenic dynamics, as well as the social pattern of 
the area. The physical variables alone are unable to 
predict the proper efficacy of risk indicators. The 
presented result support the adoption of the models 
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studied but with the inclusion of anthropogenic variables, 
which would increase the efficacy of the models. For this 
purpose, in-depth studies are recommended on the 
influence of the relief amplitude, geomorphology, 
lithology and its structural aspects, as well as soil use. 
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