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Abstract: Problem statement: The dispersion of radioactive materials in the environment related to 
escaping of noble gases, halogens and aerosols of non-volatile radioactive materials, from the reactor 
containment during normal operations, or in the event of a sever reactor accident. Approach: 
radionuclide dispersion in the environment is demonstrated by mathematical tools which are the partial 
differential equations, mainly the diffusion equation. A mathematical model to calculate the 
concentration of nuclear pollutants (radioactivity) with certain boundary conditions is constructed. 
Results: Solving the mathematical model and using some approximations lead to a distribution 
represents a model for plume of radioactive pollutants dispersed in two dimensions normal to the wind 
direction in which the plume moves as an entire non-dispersible unit. Conclusion: The obtained result 
theoretically are very close to those achieved experimentally. 
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INTRODUCTION 

 
 The artificial creation of radionuclides may result 
from physical processes involving nuclear fission, 
nuclear fusion and neutron activation. The most 
important source of artificially created radionuclides is 
neutron-induced nuclear fission. The chemical and 
physical forms of the active species determine 
deposition, migration and uptake are radioactivity by 
living organisms. 
 A variety of systems and processes may introduce 
radioactivity into the environment. Human activities 
involving nuclear weapons and the nuclear fuel cycle 
(including mining, milling, fuel enrichment and 
fabrication, reactor operation, spent fuel storage and 
reprocessing and waste storage), leading to significant 
creation and release of radioactivity. Human technology 
also releases pre-existing natural radionuclides, which 
would otherwise remain trapped in the earth’s crust[1].  
 The physical and chemical form of radionuclides 
may vary depending on the release and transport 
conditions in addition to the element properties. A 
general distinction can be made between gases, aerosols 
and particulate material. The most serious dispersion of 
radioactive materials in the environment is that related 
to escaping of noble gases, halogens and aerosols of 
non-volatile radioactive materials, from the reactor 
containment in the event of a sever reactor accident[1]. 
In this study we try to make a mathematical simulation 
of radionuclide dispersion in the environment by 

matching the mathematical tools which are the partial 
differential equations, mainly the diffusion equation 
and the technical data of the nuclear reactors. This 
simulation may help in determination of radiation dose 
may received by the public during a sever reactor 
accident. A demonstration, with a computer program, 
reflecting the Jordanian atmosphere, will be carried out; 
the results from this demonstration will be compared 
with real data taken from the field. The study is 
arranged as follows. First, we introduce the main 
concepts of the Partial Differential Equations (PDEs) 
and their applications. Then, we introduce the main 
features of transport phenomena with emphasis on the 
diffusion equation and its application in dispersion of 
radioactive materials as atmospheric pollution. Finally, 
arithmetic calculations related to Jordan atmosphere is 
carried out.  
 

MATERIALS AND METHODS 
 
Partial differential equations: A PDE is an equation 
that contains partial derivatives, in which the unknown 
function depends on several variables, e.g., temperature 
depends both on location x and time t. The variables x 
and t are called independent variables, whereas the 
unknown variable which we differentiate, e.g., 
temperature, is called dependent variable[2-4].  
 Most physical phenomena, whether in the domain 
of fluid dynamics, electricity, magnetism, mechanics, 
optics, or heat flow, can be described in general by 
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Partial Differential Equations (PDEs). Simplifications 
can be made to reduce the equations in question to 
ordinary differential equations, but, nevertheless, the 
complete description of the systems resides in the 
general area of PDEs. Most of the natural laws of 
physics, such as Maxwell's equations, Newton's laws of 
motion and Schrödinger equation, are stated, or can be, 
in terms of PDEs, that is, these laws describe physical 
phenomena by relating space and time derivatives. 
Derivatives occur in these equations because the 
derivatives represent natural things, like velocity, 
acceleration, force, friction and current. Hence, we have 
equations relating partial derivatives of some unknown 
quantity that we would like to find[2-4]. 
 The most important PDEs in physical sciences are 
Equation of continuity: For a fluid of density (r, t)ρ

�
, 

which has an element velocity v(r, t)
��  at the position r

�
 

at the time t. The rate of increase of mass per unit 
volume equals the net rate of mass addition per unit 
volume by convection, or: 
 

( v) 0
t

∂ρ + ∇ ⋅ ρ =
∂

� �  (1) 

 
Equation of diffusion or heat flow: The basic process 
in the diffusion phenomenon is the flow of the fluid 
from a region of higher density to one of lower density. 
The flow vector J v= ρ

� �  can be represented as: 
 

2J a= − ∇ρ
� �

 (2) 
 
where, 2a  is the diffusion constant of the medium. With 
the use of Eq. 1 and 2, we get the equation of diffusion: 
 

2 2a 0
t

∂ρ − ∇ ρ =
∂

 (3) 

 Denoting the temperature function by u(r, t)
�

, the 
flow of heat from regions of higher temperature to 
those of lower temperature may be described by the 
equation of heat flow: 
 

2 2u
a u 0

t
∂ − ∇ =
∂

 (4) 

 
where, Ka = σρ , with K, σ and p are the thermal 

conductivity, the specific heat and density of the 
material, through which the heat flows, respectively. 
 Schrödinger equation for a free particle: With a 
simple division, the Schrödinger equation for a single 
particle of mass m in the absence of any applied force 
field can be rewritten in the following way: 

 2i
0

t 2m
∂Ψ − ∇ Ψ =
∂

�  (5) 

 
Where: 
I = The unit imaginary number,  
�  = Planck's constant divided by 2� and 
Ψ  = The wave function of the particle 
 
 This equation is a mathematical analogue of the 
particle diffusion equation, which one obtains through 
easy transformation[2-4]. 
 In addition to the above mentioned equations, there 
are many equations like the vibrating string equation, 
Laplacee's equation, longitudinal vibrations of a beam, 
transverse vibrations of a beam and many other PDEs 
that represent physical phenomena. 
 To solve a PDE there are many methods, the most 
important of them are those that change PDEs into 
Ordinary Differential Equations (ODE). The method of 
separation of variables which reduces a PDE in n 
variables to n ODEs, almost is the first and famous 
technique to solve a PDE. Other methods are integral 
transforms, change of coordinates, transformation of 
dependent variables, numerical methods, perturbation 
methods, integral equations, calculus of variations 
methods and eigenfunction expansion[2-4]. 
 All physical problems have boundaries of some 
kind, called boundary conditions, so we must describe 
mathematically what goes on there in order to adequate 
the problem. These problems must start from some 
value of time, generally assumed t = 0, so we must 
specify the physical apparatus at this time. By writing 
the PDE which represents the physical problem and the 
equations of boundary and initial conditions, we have 
what is called an Initial-Boundary-Value Problem 
(IBVP).  
 
Transport phenomena: The subject of transport 
phenomena includes three closely related topics: fluid 
dynamics, heat transfer and mass transfer. Fluid 
dynamics involves the transport of momentum, heat 
transfer deals with the transport of energy and mass 
transfer is concerned with the transport of mass of 
various chemical species. These three transport 
phenomena should be studied together for the following 
reasons: 
 
• They frequently occur simultaneously in industrial, 

biological, agricultural and meteorological 
problems 

• The basic equations that describe the three 
transport phenomena are closely related. This 
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similarity of the equations under simple conditions 
is the basis for solving problems "by analogy" 

• The mathematical tools needed for describing these 
phenomena are very similar 

• The molecular mechanisms underlying the various 
transport phenomena are very closely related. All 
materials are made up of molecules and the same 
molecular motion and interactions are responsible 
for viscosity, thermal conductivity and diffusion 

 
 The description of our physical problem requires 
three types of equations: 
 
• The PDE describing the physical phenomenon of 

diffusion 
• The boundary conditions describing the physical 

nature of our problems on the boundaries 
• The initial conditions describing the physical 

phenomenon at the start of the experiment[5] 
 
Diffusion equation: the basic equation of one-
dimensional diffusion is the relationship: 
 

2
2

2a 0
t x

∂ρ ∂ ρ− =
∂ ∂

  (6)                                   

 
Which relates the quantities: 
 

t
∂ρ
∂

 = The rate of change in density with respect to 

time measured in particle per unit of volume 
per second 

2

2x
∂ ρ
∂

 = The concavity of the density profile p(x, t), 

which essentially compares the density at one 
point to the density at neighboring points. Eq. 6 
is extended to Eq. 3 in three dimensions[2-5] 

 
 When nuclear pollutants released from the nuclear 
reactor to the atmosphere, atmospheric eddy currents 
causes a turbulent diffusion, which makes a pure 
mathematical description of the phenomenon is not 
completely expressed by the diffusion equation. Hence, 
approximations should be made and predictions of 
some semi-empirical models like the Gaussian plume 
model. Or, to treat the problem as an ideal situation and 
then try to introduce other parameters that affect the 
results as what we are going to do here. The 
atmospheric concentration of a nuclide is expressed by 
the diffusion equation: 

2 2 2

x y z2 2 2

N N N N
K K K

t x y z
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

  (7) 

 
Where: 
N(x, y, z, t) = The concentration of the nuclide in 

Becquerel per cubic meter 
Kx, Ky and Kz = The diffusion coefficients in the x, y 

and z directions, respectively 
 
 The initial conditions could be written as: 
 

( ) ( )(x , y,z, t o) Q x (y) zΝ = = δ δ δ   (8) 

 
where, we have assumed that the instantaneous release 
of Q  Becquerel (Bq) occurs at x = y = z = t = 0  and 

( )xδ , (y)δ  and ( )zδ  are the Dirac delta functions. The 

boundary conditions are ( )x, y,z, t oΝ = and: 
 

o as x, y,z
x y z

∂Ν ∂Ν ∂Ν= = = → ∞
∂ ∂ ∂

  (9) 

 
 Using the method of separation of variables, Eq. 7 
will have the three dimensional spatial solutions as: 
 

( )
2

2

x

2

x

1
N x e

2

−
σ= ⋅

πσ
 (10) 

 

( )
2

2

y

2

y

1
N y e

2
− σ=

π σ
 (11) 

 
and  
 

2

2

z

2

z

1
N(z) e

2
− σ=

π σ
 (12) 

 
 It is easy to find that, the standard deviation which 
represents the dispersion coefficient is: 
  

2Ktσ =  (13) 
 
 This leads to the general solution: 
 

( )

22 2

yx z

yx z
4k t4k t 4k t

x y z

e e e
x,y,z, t Q

4 k t 4 k t 4 k t

−− −

Ν = ⋅
π π π

 (14) 

 
 This solution could be modified for insertion of 
wind speed, u and the height of the release point from 
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the ground surface h, which changes the main spatial 
variables as follows: 
 
x x ut

z z h
y y

= + �
�= + �
�= �

 (15) 

 
 Substitution of these new variables in Eq. 14 
yields: 
 

( )
2 2 2

y z

(x ut ) y z h)( ) (4k t 4k t )4kxt

x y z

e e e
x,y,z, t Q

4 k t 4 k t 4 k t

− − −−

Ν = ⋅ ⋅
π π π

 (16) 

 
RESULTS 

 
 By assuming the speed wind is highly effective 
than self-diffusion. Eq. 16 is reduced to: 
 

 ( )
2 2

2 2
y z

y (z h )
( )

2 z

y z

Q x
x,y,z, t e ( t)

2 u v

− −−
σ σΝ = ⋅ δ −

π σ σ
 (17) 

 
which describes a plume of polluting radionuclide 
moving in the x direction as an entire unit, while 
spreading by diffusion in the two other directions. 
 If the source is continuously releases pollutant 
radionuclide, Q (t)′ , the concentration on the surface of 
Earth, z = 0, is given by: 
 

( )
2 2

2 2
y z

y h

2 2

y z

Q (t) x
x,y, t e t

u v

� �
� �− +
� �σ σ	 


′ � �Ν = ⋅ δ −� �π σ σ 	 

 (18) 

              
with an accumulative, time-independent, pollution 
concentration: 
 

2 2

2 2
y z

y h

2 2

y z

Q
N(x, y) e

u

� �
� �− +
� �σ σ	 
=

π σ σ
 (19) 

 
 By differentiating Eq. 19, the maximum surface 
concentration could be obtained if the release point 
height is: 
 

zh 2= σ  (20) 
 
 In reference to Eq. 19, it is noticed that the surface 
pollutant concentration depends inversely on σy and σx. 
So, in order to get surface pollutant concentration at any 
point (x, y), we should get σy and σx using the Fig. 1. In 
Fig. 1, there are six types of weather conditions[6]: 

A. Extremely unstable conditions 
B. Moderately unstable conditions 
C. Slightly unstable conditions 
D. Neutral conditions 
E. Slightly stable conditions 
F. Moderately stable conditions 
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Fig. 1: Horizontal dispersion coefficient σy (left) and 

vertical dispersion coefficient σx (right), versus 
downwind distance from source for different 
turbulence categories[6] 

 
 In the last 30 years, the average wind speed in 
Jordan was about 2m s−2, hence the best situation to 
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describe Jordan weather conditions is C-Slightly 
unstable conditions. 
 

DISCUSSION 
 
 In Jordan, there are no nuclear reactors, but, if any 
nuclear pollution occurs, it must come out of boarders, 
where the nearest  nuclear  reactor  is  Dimona 26  MW 
rector located in the southern part of Israel. By 
choosing Cs137 nuclide which has a long half life, about 
30 years, so the calculations will not be affected by the 
radioactive decay of this radionuclide. Part of Cs137 

produced inside the reactor will be ordinarily released 
at a rate of 3.15X106 Becquerel's (Bq) per MW per 
Year, thus for a period of 5 years,  4.1X108 Bq are 
assumed to be released from the 26 MW reactor. Using 
the aforementioned numbers in application of Eq. 19 in 
calculating surface concentration of Cs137 nuclide at a 
point located at 25 km east of the reactor, with 2 km 
width, y = 1, leads to: 
 

( ) 2x,y 36Bq / mΝ =  (21) 
 
 If the width is to be more than 2 km, y>1, the 
surface concentration is: 
 

( ) 2x, y 2Bq / mΝ =  (22) 
 
 To give a general application o Eq. 19, a computer 
C++ program is introduced below. Results are 
represented in Table 1. Results in the Table 1 showed 
that the surface concentration is increasing as we go 
from 500 m-4000 m and then start increasing. The 
maximum surface concentration is transformed from 
the distance h

2
, as represented in Eq. 21, to 4000 m 

due to effects of wind speed. This will make the 
pollutant distribution go far from the normal 
distribution. Also, the increase pattern of concentration 
on the left side of the line, that represent the maximum, 
is faster than the decrease pattern on the right side of 
the line, i.e., the distribution  curve  is  not symmetric 
about the line 4000 m. 
 
Table 1: General application: Result of C++ program 
X Y SY SZ Result/(Bq m−2) 

500 0 29 14 4.50x10−3 
1000 0 50 23 13.59 
2000 0 100 37 55.00 
4000 0 190 54 118.32 
8000 0 340 78 70.00 
4500 50 205 60 115.10 
Q = 4 x 107  Bq sec−1. u = 4 m sec−1. h1 = 75 

CONCLUSION 
 
 Using the diffusion equation, a mathematical 
model to calculate surface concentration of nuclear 
pollutants is constructed. Solving the equation by 
separation of variables and using some approximations 
leaded to a distribution represents a model for plume of 
radioactive pollutants dispersed in two directions 
normal to the wind direction in which the plume moves 
as an entire non-dispersible unit. Atmospheric eddy 
currents causes a turbulent diffusion, which makes the 
surface concentration results go far away from those of 
the pure mathematical description of the phenomenon 
as expressed by the diffusion equation. The result 
obtained here are very near to those achieved 
experimentally. 
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