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Abstract: This study presents a three dimensional model for the transport of conservative 
contaminants, which can be used for bodies of water which are affected by winds and/or tides. The 
model solves the equation of mass transport, based on results obtained using a hydrodynamic model 
for shallow waters that works in a finite volume scheme and a type of hierarchical grid, called multi-
quadtree, which is adaptable to the bathymetry. To solve the vertical coordinates, the coordinate z is 
transformed into a sigma (σ) coordinate, thus allowing the same number of layers in the vertical, 
regardless of depth. This hydrodynamic model is validated using two cases: a long wave propagated in 
a channel of variable width and bottom and wind action in a rectangular basin. Finally, the results 
obtained are presented for a hypothetical single port outfall in the bay of Campeche, México. The 
model developed here is both quick and easy to use and is efficient when compared with models 
presented by other authors since it uses adaptable grids which allow detailed solutions to be obtained 
for areas of interest such as coastlines and the area around an outfall. 
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INTRODUCTION 

 
 The run-time and solution accuracy of a 
computational fluid mechanics model depends, 
essentially, on both the numerical scheme used and the 
quality of the mesh over which the governing equations 
and boundary conditions are discretized.  
 In this article a multi-quadtree, finite volume 
approach for modelling coastal hydrodynamics and 
water quality is presented. Compared to the use of finite 
difference methods, hydrodynamic modelling using a 
finite volume method appears, at first sight, to be more 
computationally intensive. However, in the multi-
quadtree case, it is seen that modelling is not only 
faster but also gives a more accurate representation of 
the hydrodynamics than finite difference methods using 
regular grids.  
 The multi-quadtree has been developed from the 
quadtree approach. This uses an adaptive mesh 
generation based upon iterative subdivision of a square 
domain to produce a hierarchical solution grid for the 
model. The resolution of the grid is determined by the 
gradients of the properties being represented, such as 
velocity, concentration of polluting agents and 
temperature. Where large gradients exist, the mesh 

density is greatest, whereas in areas where the gradients 
of the properties are small, the grid is coarse. This 
minimises unnecessary computational effort and 
reduces the time needed to run the model.  
 The  quadtree  technique  has  been  applied  in 
recent  years  to  the  study  of  an  increasing  number 
of   fluid   mechanics   problems   such   as   bifurcation 
in channels, river flow, coastal hydrodynamics, 
transport  of  pollution and so on, enabling 
improvements in accuracy to be made in shorter 
timescales. 
 The multi-quadtree presented here has the 
advantage over the quadtree in that it permits a 
subdivision of the entire modelling domain. This 
enables rectangular and other shaped domains to be 
modelled using a number of square quadtree sub-
domains. This new technique also has a simplified and 
more efficient numerical scheme. 
 The main features of the multi-quadtree approach 
are as follows: 
 
� The generation of the multi-quadtree mesh is very 

fast: this minimises the need for extensive 
computational resources. 

� The mesh is dynamic: it can be updated during 
modelling to give an improved representation of 
the phenomenon under study. 
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� This type of mesh can be applied to any study 
region. 

 
 This chapter is divided into four sections. In the 
first one, the quadtree and multi-quadtree mesh 
generation is presented and the latter demonstrated with  
a case study. The second section describes the 
numerical model. The last two sections describe the 
validation of the model and its application to a study of 
the Campeche coast, Mexico. 
 

HIERARCHICAL MESHES OF 
MULTI-QUADTREE TYPE  

 
 The generation of a hierarchical multi-quadtree 
mesh begins with the division of the entire region of 
study, such as a river or a coastal lagoon, into a number 
of adjoining square sub-regions. For each of these sub-
regions a quadtree mesh is then generated.  
 Each sub-region is scaled to a unit square which is 
then iteratively subdivided into 4 sub-squares. This 
continues at each locality in the domain until either the 
maximum specified level of mesh density is reached or 
else specific criteria are locally satisfied. These criteria 
are derived from quantities such as the local depth, 
vorticity or velocity fields. In this way the quadtree 
mesh is produced. 
 The generation of a sub-region quadtree mesh 
requires 2 steps: initial generation and regularization. 
Ancillary procedures to assign the geometrical and 
topological descriptions of the grid are also performed. 
After the generation of the sub-region quadtrees a third 
step, verification, is then necessary in order to ensure 
that the sub-regions are mutually compatible, leaving 
the final multi-quadtree mesh.  
 There are several examples of quadtree generators 
which may be found in Greaves[1], Borthwick et al.[2], 
Rogers[3] and Stallard[4]. The generator used in this 
article is based on that proposed by Stallard[4]. The 
improvements and additions are described in the 
following sections. 
 It might also be noted at this stage that whilst the 
quadtree technique is used to solve problems in 2D, it 
can be extended to 3D. In this case an octree mesh 
could be used, based on the iterative sub-division of a 
unit cube into 8 smaller cubes. 
  
Initial generation: The objective of this process is to 
produce a mesh of variable density by subdividing the 
region according to the initial data or seed points. These 
initial data comprise the following three types. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Quadtree with one cell for each seed point  
 
� 3D Cartesian coordinates of all topography and 

location of features (coastline, islands, outfall, 
etc.);  

� m�n: number of sub-regions (quadtrees) into which 
the study area will be subdivided:  

� Limiting values of the property under study (e.g., 
pollutant concentration, maximum velocity, etc.). 

 
 For each of the m�n sub-regions the seed points are 
plotted and the sub-region  is  scaled  to  a  unit  square. 
Then, the first two seed points are considered and the 
iterative division of the sub-region proceeds until either 
of the following criteria is satisfied: 
 
� The maximum level of subdivision is reached. 
� Only one single point exists inside any cell. 
 
 Ubsequent pairs of seed points are then taken and 
the process of subdivision continues for all the points in 
the sub-region. Figure 1 shows an example quadtree 
mesh generated around 4 points. 
 During the model runs, the level of subdivision 
may also be dictated by the magnitude of variables in 
that locality. That is, if during the modelling a 
parameter value exceeds a predetermined threshold, 
then the mesh density is automatically set to the 
maximum level of subdivision.  
 For each cell of the final mesh the following data 
are obtained: cell reference (identification number), cell 
coordinates, cell width, level of subdivision and also the 
coordinates and level of subdivision of the 
neighbouring cells. 
 
Cell Numeration: The subdivision of a cell consists of 
the creation of  four  new  cells  that  represent  the  four  
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Fig. 2: Numeration convention 
 
orthogonal quadrants of the initial cell. These new cells 
are known as daughter cells and the initial cell is known 
as the father cell. 
 To each daughter cell a positional index Nm is 
assigned for each level of subdivision, m, according to 
the convention in Fig.2 The complete cell reference, N, 
for the cell in Fig. 1 that contains point A is thus 1411 
and for point D, 1423. The advantage of this over other 
Quadtree generators is that it more compactly describes 
the cell location. That is only a single number is 
required for each daughter cell in the range 1-4 and not 
coordinate numbers. Posada et al.[5]. 

 
Geometry: The x and y coordinates of the centre of 
each cell are recovered from the cell reference numbers, 
N, using the following formulae: 
 

 
M

M m
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m 1

1 N 1
x 0.5 2INT 1

2 2+
=

� �−� �= + −� �� �
� �� �

�  (1) 

 

  
M
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where, M is the level of subdivision and INT returns the 
integer from the number in parenthesis. 
 
Width: The level of subdivision is equal to the number 
of digits of the cell reference. The width of a cell of 
level of subdivision, M, is obtained with the following 
expression. 
 

M

1
l

2
∆ =  (2) 

 
Regularization: The objective of regularization is to 
balance the model efficiency and mesh uniformity by 

prohibiting rapid spatial variations in cell size. In 
practice, the mesh obtained after initial  generation  is 
re-adjusted so that neighbouring cell dimensions do not 
differ by more than a factor of two, i.e. the difference in 
subdivision of neighbouring cells cannot be more than 
one level. In this way, the need for complex 
interpolation is avoided. 
 The process begins by selecting a cell that has the 
highest level of subdivision. The neighbouring cells are 
then adjusted, as required, until they are within one 
level of subdivision. The process is then continued for 
the neighbours of the neighbours of each cell. 
 
Verification: The third step for the creation of a multi-
quadtree mesh is the verification that all the sub-regions 
have the same cells in common. For this procedure, a 
new list is created of the coordinates for the centres of 
all the cells that form the boundaries of two sub-
regions. These points are added to the original list of 
points, then the duplicated points in this combined list 
are erased and the whole process is repeated until the 
sub-regions agree. 
 
Summary of advantages: The advantages of the 
quadtree and multi-quadtree approaches are: 
 
� Despite the apparent complexity of the resulting 

meshes, the generation of the mesh is automated. 
� The structure of the data for the flow variables is 

arranged hierarchically. 
� The ease with which the method can be refined and 

adapted for areas where the local gradients of 
quantities are strong. 

� No transformation of coordinate systems is 
required 

� The multi-quadtree can be used to model non-
square domains, it provides improved efficiency 
for modelling large rectangular domains. However, 
the authors have found that if the relation between 
sides in a rectangular cell is greater than 3, 
numerical problems may be appear. 

 
 The main feature of the multi-quadtree method is 
that the mesh can be repeatedly and rapidly updated 
according to pre-established criteria derived from flow 
quantities such as vorticity, velocity and depth. The 
calculation time for refining and updating the mesh is 
insignificant compared with the overall modelling time, 
yet significantly improves the model performance. 
 
Interpolation: Following the generation of a multi-
quadtree mesh many adjoining cells will be of different 
sizes.   The   regularisation   process   ensures   that   the 
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difference in size is limited to a factor of two. This 
results in a virtual node on the boundary of the larger 
cell. The use of straightforward linear interpolation for 
the creation of this node has been shown to provide 
sufficient model accuracy Rogers[6]. 
 

MULTI-QUADTREE MESH 
EXAMPLE: ACAPULCO BAY  

 
 By way of an example, the multi-quadtree mesh 
generation is now applied to the Bay of Acapulco, 
México, (Fig. 3). For this illustration the study region is 
first divided into 2�2 square sub-regions. These are 
numbered using the father-daughter convention (Fig. 2). 
 Figure 4 shows how the process of verification 
regularizes the mesh across the boundaries  of  the  four 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Bathymetry of Acapulco bay 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Fig. 4: Acapulco Bay: final multi-quadtree mesh after 

verification 

sub-regions to provide the final multi-quadtree mesh. 
For example, note how the mesh at the centre of the 
entire region has been adjusted. 
 

2D AND 3D NUMERICAL MODELS AND 
CONTAMINANT TRANSPORT MODEL 

 
 In this article, the hydrodynamic behavior of a 
body of water is obtained using the technique of 
splitting, which allows the division of a 3D model into 
two sub-models. In the first one, the depth averaged 
equations are resolved in the vertical, obtaining the 
mean velocities in the X and Y directions for each cell. 
The velocity in the X direction is known as U and that 
of the Y direction, V. The variation of the free surface 
in relation to the mean sea level is known as �. In the 
second sub-model the results of the 2D model are 
considered as the initial data and from these the 
velocities for each cell in the x, y and z directions, 
referred to as u, v and w, are obtained. 
 
Background: Amongst the numerical schemes that can 
be implemented to solve the non-linear shallow water 
equations there are three common approaches: finite 
differences; finite element; finite volume. In recent 
years, the finite volume method has been used more 
frequently due to improvements in computational 
resources and its superior handling of discontinuities 
and flows in closed boundaries.  
 
2D model: The numerical model solves the governing 
equations with a finite volume scheme in two 
dimensions. This is based on a Godunov scheme using 
the hierarchical mesh. To solve in-viscid flows we 
employ a Riemman solver to calculate the 
approximation proposed by Roe, in a similar way to 
Posada[7]. The time integration is carried out with a 
first-order Adams-Bashforth technique.  
 The depth-averaged equations, solved by the model 
in 2 dimensions are: 
 
Continuity equation: 

 

                   ( ) ( )UH VHH
0

t x y
∂ ∂∂ + + =

∂ ∂ ∂
 (4) 

Where, 
H = h + � 
� = Free surface elevation with respect to the mean 

water level. 
h = The bottom depth with respect to the mean water 

level.  
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Momentum equation in X-direction: 
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Where, 
u’

i,k = Vertical variation of velocity with respect to 
depth-averaged value 

f = Coriolis factor 
Cd = Wind drag coefficient 
CD = Bottom friction coefficient 
�h = Eddy viscosity coefficient 
 
Momentum equation in Y-direction: 

 
 
 
 
 

 (6) 
 
 
 
 
 

 
Boundary condition 2D model: The boundary 
conditions employed by the model are as follows: 
 
Closed boundaries: It closed boundaries, the normal 
component of the velocity is set to zero whilst a slip 
condition preserves the tangential velocity.  
  
Open Boundaries 
Open lateral boundaries: In the case of open borders 
two boundary conditions are considered. First, for the 
free surface and the parallel components of velocity, the 
boundary is totally absorbing so that these boundary 
values are set to zero. Secondly, for the perpendicular 
velocity components, the border is totally transmissive, 
thus these components are unaffected across the 
boundary. 
 
Upper open boundary: The shear stress due to the 
wind is of the form 

( ) d a xxz C W Wητ = ρ                             (7) 

 
Where Cd is the drag coefficient of the wind, which has 
a value of 0.0026[8]. The shear stress due to friction at 
the sea bed is calculated with the expression  
 

                                ( )

_

o D hxz h C v u−−τ = ρ               (8) 

 
where, CD is the friction coefficient, which is a function 
of the Chezy coefficient 
 

          D 2

g
C

C
=  (9) 

 
Eddy viscosity coefficient in 2D: The numerical model 
provides two options. The first is to consider this 
coefficient a constant. The second is to consider the 
viscosity coefficient as a variable, calculated with the 
following expression. 
 

     
1 22 22

2
h

U V 1 U V
l

x y 2 y x

	 
� � � �∂ ∂ ∂ ∂� �
� �ε = + + +� � � �� �∂ ∂ ∂ ∂� �� �� � � � �

         (10) 

 
where, 2l 0.1 x y= ∆ ∆ according to Blumberg[9]. 
 
3D model: The 3D model works on sigma coordinates 
(σ) to represent the vertical coordinate. The horizontal 
gradients are calculated using Cartesian coordinates[10]. 
Working with sigma coordinates allows the model to 
have the same number of layers, regardless of water 
depth. This is not the case with the 3D models which 
work with Cartesian coordinates, so that in deep waters 
there are a greater number of layers than in shallow 
waters. 
 In   order   to   use   the  sigma  coordinates  (σ)  it 
is   necessary   to   transform   the   equations   that 
govern the flow. This procedure is given in detail in 
Posada et al.[7]. The sigma transformation is defined as: 
 

       z
h

− ησ =
+ η

             (11) 

 
 There z = depth of the layer with respect to the 
mean sea level.  As can be seen, � varies between 0.0 
and -1.0, 0.0 for the free surface and -1.0 for the 
bottom, as observed in Eq. 11. The transformation of 
the equations is made with the following expressions: 
 

1 H
x * x H x * x *
∂φ ∂φ ∂ ∂η ∂φ� �= − σ +� �∂ ∂ ∂ ∂ ∂σ� �

            (13) 
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Fig. 5: Diagram of variable decomposition 
 

1
z H

∂φ ∂φ=
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            (14) 
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            (15) 

 
There: 
 

x x *; y y*; t t *;
z H ; = Analysed variable

= = =
= σ + η φ

 

 
 The continuity equation, transformed into 
sigma coordinates (σ) is: 
 

u v 1 w
0

x y H
∂ ∂ ∂+ + =
∂ ∂ ∂σ

            (16) 

 
 The equations of angular momentum in directions 
X and Y are respectively: 
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     (18) 

 These three-dimensional equations are solved with 
an algorithm in finite differences which calculates, 
implicitly, the vertical diffusion with a Crank-
Nicholson scheme. The vertical convective acceleration 
is calculated with a first order upwind scheme, as 
proposed by Castanedo[10]. 
 From the equations of angular momentum in 
directions X and Y the total provisional velocities, 

i ,k

(1)u , 

are obtained. To assure the correct connection between 
the two and three dimensional models, the vertical 
variations of the velocity with respect to the depth-
averaged value, u’

i,k, are calculated with the following 
expression: 
 

( ) ( )
i ,k i ,k

1 1´
i,k T 1

i h

1
u u u dz

H

η

+
−

= − �             (19) 

 
 Finally definitive velocities are calculated with the 
next expression:  
 

      ´
i,k i i,ku U u= +              (20) 

 
Where, Ui = Depth-averaged velocity calculated with 
the 2D model. 
 Figure 5 shows the decomposition scheme of 
variables. Once the horizontal velocities  and  for each 
layer are obtained, the vertical velocity is calculated 
from the continuity equation.  
 

1 w u v
H x y

� �∂ ∂ ∂= − +� �∂σ ∂ ∂� �
            (21) 

 
Coefficient of eddy viscosity: In this article a 
coefficient of eddy viscosity is adopted with a parabolic 
vertical profile. This coefficient is calculated with the 
following formula: 
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         ( )*
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� �
            (22) 

 
Where, k = Von Kármán constant 
 

( )b s
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u max u , u
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=

τ τ= =
ρ ρ

            (23) 

 There �by �w are calculated with Eq. 7 and 8, 
respectively. 
 
Model for conservative contaminant transport: Once 
the velocities u, v y w, and the coefficients of eddy 
viscosity in the three directions are obtained, equation 
24 is solved explicitly, to obtain the transport of a 
conservative pollutant. 
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x

y z
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t x y z x x
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� �∂ ∂ ∂ ∂� �+ ε + +� � � �∂ ∂ ∂ ∂� �� �

            (24) 

 
 There G(n,z,t) considers the discharge of a 
pollutant agent in cell n and layer z. 
 

VALIDATION OF THE 
HYDRODYNAMIC MODEL 

 
 In this section the hydrodynamic numerical model 
is validated with analytical solutions and compared 
with other published results. The 2D model is compared 
with the analytical solution of a long wave propagating 
through a channel with variable width and depth. The 
3D model is compared with the solution by Koçygit[11],  
where the effect of the wind in a rectangular basin is 
evaluated. 
  
Propagation of a long wave in a channel of variable 
width and depth: For this case a long wave with 
amplitude of 0.02 m and period of 100 sec, is generated 
in a channel with the following dimensions: length  
2500 m, width b = nx, where n = 0.2 and the initial 
depth at the channel mouth is 25 m. The depth, h, varies 
along the length of the channel according to, h =  mx, 
where m = 0.01. The analytical solution presented by 
Rahman[12] is used. This does not include dissipative 
terms so these are neglected. 
 
Bathymetry: For this validation, the length of the 
channel is 4 times greater than its width. Thus  a  multi- 
quadtree mesh of 4 by 1 was specified with the seed 
point depths in the range from 25.0 to -0.1 m.  Figure  6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Channel of variable width and depth
 
 
 
 
 
 
 
 
 

Fig. 7: Multi-quadtree mesh  (4�1) for channel of variable width and depth 
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Fig. 8: Free surface in channel at maximum elevation 
 
shows the bathymetry divided into the four sub-regions. 
Multi-quadtree mesh employed 
 The generated mesh (Fig. 7) has the following 
characteristics: The four sub-meshes (left to right) have 
982, 826, 634 and 430 cells respectively. The smallest 
cells are 19.6�19.6 m, whereas the largest are 
76.8�76.8 m. 
 
Results: Figure 8 shows the variation of the free 
surface of the water in the channel at maximum level. 
These extreme values are reached where the channel is 
narrow and shallow. The maximum and minimum free 
surface values obtained with the numerical model are 
0.181 and -0.226 m. Note that 3 tidal waves fit in the 
channel. 
 The velocity field in each of the 4 quadtree sub-
meshes are shown in Fig. 9. These results show the 
point of maximum free surface height, for which a 
corresponding maximum velocity of 0.30 m sec�1 is 
observed. At the  point  of  minimum  surface  elevation  
the maximum velocity observed is 1.0 m sec�1. It 
should be mentioned that the velocity is greater in the 
case of the minimum free surface elevation since the 
water depth of this cell is small. In fact this cell is 
almost dry. 
 In each sub-mesh the multi-quadtree method 
dictates that the flow speeds are normalized. Thus in 
Fig. 9 the velocity scale varies between sub-meshes (as 
indicated by the labelled vector above each plot).  
These different scales have been retained for the 
purpose of visualization. 
 
Analytical solution: Rahman[12] proposes the following 
expression for calculating the free surface in a channel 
with variable width and depth 
 

  
( )
( ) ( )

1 2 1 2
1

1 2
1

J 2 x L
a cos t kx

xJ 2 L

λ � �η = σ +� �λ � �
            (25) 

 
Here J1 is the first order Bessel function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Velocity field at point of maximum free surface 

elevation 
 
Comparison with analytical solution: Figure 10 
presents a comparison of numerical results with the 
analytical solution. In this figure the effect of three 
waves is observed. In particular, it can be seen that in 
the first half of the channel both solutions are 
practically identical. When comparing the numerical 
maximum free surface elevation with the analytical 
form, its amplitude is slightly smaller.  
 
3D circulation induced by wind: In order to illustrate 
the circulation induced by wind in a rectangular lake a 
comparison with the example proposed by Koçyigit[11] 
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Fig. 10: Comparison between numerical and analytical 

solutions for maximum of free surface 
elevation 

 
 
 
 
 
 
Fig. 11: Velocity field, three dimensional model 
 
 
 
 
 
 
Fig. 12: Numerical solution, Koçyigit et al 2002 
 
was made. The length of the lake is 10 m, with a width 
of 1.4m and a depth of 10 m, 20 layers are considered, 
and the predominant wind is of 10 m sec�1. 
 Figure 11 and 12 show the longitudinal pattern 
flows. It is observed that the surface velocities follow 
the wind direction while at the bottom they go in the 
opposite direction. At the borders the flow changes 
direction 90 degrees to follow, first, the contour of the 
wall and later the bottom. This pattern agrees with that 
obtained by Koçyigit[11], but with a better representation 
of the flow close to the walls, in the model of 
Koçyigit[11] velocity vectors jump at bottom, whereas in 
this model the transition is gradual. 

APPLICATION TO REAL BATHYMETRY 
 
 In this section the 3D hydrodynamic model is 
applied to a real case study: Campeche Bay, in the state 
of Campeche, Mexico. The objective of this case is to 
see whether the artificial port of El Embutido acts as a 
barrier between a contaminant discharge to the west and 
the protected area to the east. 
 
Bathymetry of Campeche Bay: Figure 13 shows the 
bathymetry which covers an area 25.5 km in length and 
12.5 km in width.  The maximum depth of 5.0 m is 
located in the northwest corner. The coastline runs 
between the port known as El Embutido and the 
Mexican Naval base of Lerma, indicated by means of 
the blue ellipse in Fig. 13. 
 
Multi-quadtree mesh: The model domain was sub-
divided longitudinally into 2 meshes (Fig. 14).  These 
are labelled, West to East, as sub-regions 1 and 2 with 
2173 cells and 2389 cells, respectively. The maximum 
spatial  resolution  was  required  between  depths  of 
0.80 m and -1.5 m and correspond to cells of dimension 
49.9 and 49.2 m in the X and Y directions, respectively. 
The largest cells have dimensions of 3192 by 3146 m. 
A time step of 1.0 sec was used. 
 
Hydrodynamic modelling: In order to study the 
hydrodynamic behavior of Campeche Bay an 
astronomical tide of amplitude 0.65 m incident on the 
northern boundary borders of each one of the meshes 
was modeled. The following results correspond to the 
fifth tide cycle obtained by the bidimensional model, 
when the solution has already stabilized. 
 
High tide: The maximum elevation appears in mesh 1 
and  is  equivalent  to  0.28  m. The highest value in 
mesh 2 is 0.2 m. Next, the velocity fields in the two 
sub-meshes are shown, (Fig. 15) Maximum bi-
dimensional speeds are found in mesh  2,  equivalent  to 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Final bathymetry of Campeche Bay 
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Fig. 14: Multi-quadtree mesh used to represent Campeche Bay 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15: Velocity field at high and low tides 
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Fig. 16: Velocity field at high tide, Layers 01, 03 and 05 
 
0.39 m sec�1.  To aid visual comparison the fields in the 
two meshes are given the same scale. 
 
Low tide: The maximum tidal amplitude is -0.36 m in 
sub-mesh 1 and -0.27 m in sub-mesh 2. Figure 15 
shows  the  corresponding  velocity  field  at  low tide, 
again for one fifth of the tidal cycle. The velocity 

vectors are opposite to those obtained at high tide. The 
maximum velocity of 0.4 m sec�1 occurs in sub-mesh 2. 
 The velocity values calculated with the numerical 
model are coherent with the process modelled. In high 
tide the vectors move inland, while in low tide the 
direction is seaward, with maximum values near to the 
coast, in the shallow waters of the domain.  



Am. J. Environ. Sci., 4 (3): 245-258, 2008 
 

 256  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Comparison between 2D and 3D models 
 

Three dimensional model: Figure 16 presents the 
hydrodynamic behavior obtained by the three-
dimensional model for three different layers, (upper, 
middle and bottom) at high tide. The pattern of 
circulation in all the layers is similar to that obtained by 
the bidimensional model, but magnitudes of vectors are 
not. For upper layers, these are greater than the average 
speed, while the lower ones are of smaller magnitude, 
maintaining the same direction.  
 In   layer   01  the  maximum  velocity  calculated 
is  close  to  0.60  m sec�1, in the intermediate layer, 
0.40 m sec�1, while for layer 5 the speed is 75% less 
than that calculated in layer 01, due to the effect of 
friction.  
 These results are shown in Fig. 17 in which the 
results obtained with the models in two and three 
dimensions are compared. The corresponding cell is 
1500 m off the beach in mesh 2. The bidimensional 
model predicts an average velocity of 38 cm sec�1. In 
the three-dimensional model for layer 01 the velocity is 
57 cm sec�1 and  for  the  layer  nearest  the  bottom, 
0.10 cm sec�1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18: Contaminant  field  at  the  sixth  high  tide, layer 01 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19: Contaminant field at the sixth high tide, layer 03 
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Fig. 20:Contaminant field at the sixth high tide, layer 05 
 
Submerged discharge model: An outfall discharge is 
considered in cell 1966 of mesh 2 (with the coordinates 
15759 and 2163 m). This is 1000 m off the coast with a 
depth of 1,2 m. The outfall starts discharging at the 
beginning  of  the  fifth  tidal   cycle  in  layer  5  with  a 
100 mg L�1 concentration. The following figures 
present the concentration patterns for the upper, middle 
and bottom layers at high tide of the sixth tidal cycle.  
 Figure 18-20, show the behavior of the polluting 
agent (mg L�1) for the high tide of the sixth tidal cycle, 
15 h after the beginning of the discharge. Analysing the  
distribution of the contaminant it is concluded that the 
port of El Embutido is not an efficient barrier; in all the 
layers significant concentrations of the polluting agent 
are present near the beach and on the rotected eastern 
side. 
 

CONCLUSIONS 
 
 Mesh system, based on the quadtree technique has 
been presented.  This allows a region to be subdivided 
into several square sub-meshes. This allows non-square 
domains to be modeled and also improves numerical 
efficiency, since calculation time increases non-linearly 
with the mesh dimensions, providing considerable 
savings in calculation time over regular meshes.  
Furthermore, as the mesh is quick to generate, adaptive 
meshes able to update between model steps can be 
employed at little time cost.  
 The numerical solutions obtained with quadtree 
meshes are of similar accuracy to regular meshes and 
enable the use of the most sophisticated finite volume 
modeling approach. However, one of the disadvantages 
of the approach presented here is that the solutions are 
not always well-matched at boundaries where the mesh 
is coarse. 

 To demonstrate the possibilities of working with 
multi-quadtree meshes, a 3D finite volume 
hydrodynamic model was developed from the shallow 
water equations.  
 This model was shown to be fast and stable. 
 The model was validated with two idealized cases: 
firstly,  the case of a long wave propagation in a 
channel  of variable width and depth; second, the case 
of wind driven currents in an enclosed rectangular 
basin. In both cases, numerical results were in good 
agreement with the analytical and other numerical 
solutions. 
 Finally the hydrodynamic behavior of Campeche 
Bay response to an astronomical tide was presented. 
The numerical model predicted amplitude for this tide 
of 0.65 m at the coast, which agrees well with the field 
measured value of 0.70 m. 
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