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Abstract: A slope assessment is to estimate the probability of occurrence and likely severity of 
landslides in a given area. This study evaluates two existing Slope Assessment Systems (SAS) for 
predicting landslide at the micro level of assessment developed by the Public Works Department of 
Malaysia, namely the Slope Information Management System (SIMS) and the Slope Management and 
Risk Tracking System (SMART). From the results of this study, it appears that none of the existing 
SAS is satisfactory for predicting landslide in granitic formation, for various reasons such as the use of 
hazard score developed from another country and use of data-base derived from different rock 
formation. A new SAS was developed using nine-parameters equation that was based on the stepwise 
discriminant analysis. The new SAS appears to show a good capability in predicting landslides in 
granitic formations.  
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INTRODUCTION 
 
Landslide is defined as the movement of a mass of 
rock, debris or earth down a slope [1]. The word 
landslide also refers to the geomorphic features that 
result from the event. Other terms used to refer to 
landslide include slope failures, slope instability and 
terrain instability [2]. Landslide may occur almost 
anywhere, from man-made slopes to natural, pristine 
ground. Most slides often occur in areas that have 
experienced sliding in the past.  All landslides are 
triggered by similar causes.    
Landslides have caused large numbers of casualties and 
huge economic losses in hilly and mountainous areas of 
the world. In tropical countries where annual rainfall 
can reach as high as 4500mm and high temperatures 
around the year caused intense weathering to their soil 
and rock profile where in certain location can reach 100 
m in depth [3]. With these set of climate and geological 
condition, combined with other causative factors, 
landslide is one of the most destructive natural disasters 
in tropical region. Malaysia is one of the countries 
located in the tropical region. From 1993 to 2004, there 
were 13 major landslides reported in Malaysia, 
involving both cut and natural slopes with a total lost of 
more than 100 lives. 
Social and economic losses due to landslides can be 
reduced by means of effective planning and 
management which involved landslide hazard 
assessment, slope assessment for landslide prediction, 
mitigation measures and warning systems [4, 5].  

Slope Assessment System (SAS) for estimation of the 
probability of occurrence and likely severity of 
landslides in a given area can be carried out by various 
approaches. According to Varnes [6], Soeters and Van 
Westen [7] there are four methods of slope hazard 
assessment, namely landslide inventory, heuristic 
approach, statistical approach and deterministic 
approach. Hussein et al. [8] described another 
assessment method called the overall score evaluation 
method. Irigaray and Chacón [9] discussed six methods 
of assessment namely percentage of rupture zones, 
intervals of critical slope angle, matrix, indexing, value 
of information and multiple regression. Ali [10], 
Rosenbaum et al. [11] and Tangestani [12] described an 
attempt to use of fuzzy set theory analysis for 
evaluating landslide hazard. Fractal dimension, a 
mathematical theory that describes the quality of 
complex shapes of images in the nature is claimed to be 
suitable for measuring landslides complex topography 
as reported by Kubota [13] and Yi et al. [14].  Results 
of these SAS can be presented in form of landslide 
hazard map, useful in development planning and in 
slope maintenance and management. It also can be 
combine with landslide consequences analysis to 
produced landslide risk map which can be used in 
prioritizing of maintenance works and in emergency 
and rescue preparedness.  
In Malaysia, there are several government departments 
with different disciplines involved to reduce landslide 
hazard and their consequences, namely the Department 
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of Mineral and Geosciences (DMG), Center of Remote 
Sensing (MACRES) and the Public Works Department 
(PWD). The SAS developed by MACRES and DMG 
are meant for macro level of assessment whereas the 
SAS developed by the PWD are meant for micro level 
of assessment.  
To date, reliability or accuracy of the existing SAS in 
predicting the landslide occurrences in Malaysia are 
never really tested and are therefore questionable. 
Accuracy or reliability in predicting future landslide is a 
crucial part of any SAS. Missed prediction will exposed 
lives and economy to danger or hazard if a slope or an 
area that should has a High Hazard Level is missed 
predicted as Low Hazard Level. On other hand, if a 
slope or an area that should has a Low Hazard Level is 
missed predicted as High Hazard Level, it will be 
exposed to loss in term of money spending to 
‘stabilized’ the stable slope, or money spending on any 
effort to lower down the risk of landslide that actually 
will not occur.  
This study presents an attempt to evaluate the reliability 
and accuracy of two existing SAS in predicting 
landslide at the micro level of assessment. They are the 
Slope Information Management System (SIMS) and the 
Slope Management and Risk Tracking System 
(SMART).  
 
Slope Assessment Systems and Field Sites: In 
evaluating the reliability and accuracy of the existing 
slope assessment systems in predicting landslides, field 
data were collected from existing cut and natural 
slopes. The number of recent landslides or failed slope 
is then compared with the number of slopes classified 
as high and very high hazard that actually failed. A 
good prediction is of course when many, if not all, the 
predicted slope will actually failed (or have actually 
failed for the case of back analysis). There are four 
Slope Assessment Systems (SAS) that have been 
developed by the Public Works Department (PWD) of 
Malaysia for predicting landslide at the micro level. 
They are the Slope Maintenance System (SMS), Slope 
Priority Ranking System (SPRS), Slope Information 
Management System (SIMS) and the Slope 
Management and Risk Tracking System (SMART). The 
two later systems, that are currently in used, i.e. the 
SIMS and the SMART, are evaluated and discussed in 
detail in this study.  
The Slope Information Management System (SIMS) 
was developed in 2002 as a cooperation effort between 
the Public Works Department and the Japanese 
International Cooperation Agency [15]. The hazard 
score used was adopted from Japanese experience in 
Japan. Parameters considered include topography, 
geometry, material, geological structure, deformation, 
surface condition and countermeasure effectiveness. 
The Slope Management and Risk Tracking Systems 
(SMART) is the latest slope management system 
developed by the PWD. The hazard score or instability 

score [IS] ranges from 0 to 1 and is derived through the 
integration of results from three assessment methods:- 
statistical method (using stepwise discriminant function 
analysis and then converted into probability), 
deterministic method (the factor of safety determine by 
combined hydrology and stability model or CHASM 
and then converted to the probability using Monte-
Carlo Analysis) and if when appropriate, expert 
knowledge [16]. The system was developed based on 
the Tamparuli-Sandakan road in Sabah, Malaysia, 
where there have been numerous failures. This road is 
underlain largely by the meta-sediment formation.  
Roads are the main type of transportation system in 
most countries of the world. In Malaysia, the total 
length of roads has been increased by more than three 
folds, from 21,914km in 1980 to 78,433km in 2003 
[17]. About 30% of these roads traversed through or 
located on hilly and mountainous areas. Landslides 
occurrences along these hilly and mountainous roads 
have been reported from time to time, in both cut and 
natural slopes. Normally landslides occurred during the 
wet (rainy) season, from October to January every year. 
Study conducted in year 2000 along 6 selected hilly and 
mountainous roads  shows  that  out of 444 various 
types of  landslides,  420  occurred  in  cut  and  natural 
slopes [17].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Locations of Field Sites and General Geology 

of Peninsular Malaysia [9] 
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Granite is the major rock that dominates virtually all the 
major mountain ranges with summits exceeding 2,000 
meter in Malaysia [18]. More than 75% of the roads 
that traversed through the hilly and mountainous areas 
are cut through and/or underlain by the granitic 
formation. At least four major trunk roads and highway 
traversed through the Main Range granite formation of 
Peninsular Malaysia, namely the East-West highway 
(Gerik-Jeli), the Tapah-Cameron Highland road, the 
Kuala Kubu Baru-Gap road and the Kuala Lumpur-
Bentong Old road, as shown in Fig. 1. These four roads 
experienced numerous numbers of landslides 
occurrences in the past, which was caused disruption, 
injuries and losses to life and economy. 
For evaluating the accuracy and reliability of the 
existing SAS in predicting landslides, slope assessment 
data along three different sites underlain by granitic 
formation, namely the Gunung Raya road in Langkawi 
Island, Malaysia (Site A) and the East-West highway 
(Gerik-Jeli, Site B) and the Kuala Kubu Baru-Gap road 
(Site D) of the Main Range granite, as shown in Fig. 1, 
were used. The slope inventory data such as slope 
height, slope angle, soil type, weathering grade, was 
collected/compiled over a ten-year period, from 1994 to 
2004. These data were obtained from previous record as 
well as through site visit (walkthrough survey). 
Landslide occurrences were determined either from 
written history record, difference in aerial photo, or 
difference in sketches of the data collection performa 
and the current site condition. Data prior to the 
occurrence of the landslides were used as input for the 
SAS. 
For the case of the Gunung Raya road (Site A), there 
are 15 numbers of past and 10 numbers of recent 
landslides that occurred after a period of heavy rainfall 
in September 2003. Generally the type of landslide that 
occurred along this road was shallow slides and severe 
sheet erosion. One big deep-seated landslide occurred at 
KM 5.9 that caused one fatality. Data from 10 of the 
landslides were used as input for the evaluation of the 
existing SAS. For the case of the East-West highway, 
20 numbers of past and 12 numbers of recent landslides 
were reported between the periods of 1994 to 2001. 
Due to heavy rainfall in November 2003, more than 100 
recent landslides occurred along the Kuala Kubu Baru-
Gap road (Site D). Data from 21 of the recent landslides 
and 31 numbers of past landslide, mostly shallow 
slides, were used in this study as input for evaluating 
the existing SAS.  
 
Evaluation of the Existing SAS: Thirty four (34) 
number of cut and natural slopes along the Gunung 
Raya road, 53 number of cut and natural slopes of the 
East-West Highway and 52 number of cut and natural 
slopes along the Kuala Kubu Baru-Gap Road was 
assessed using two slope assessment systems, namely 
the Slope Information Management System (SIMS) and 
Slope Management and Risk Tracking System 

(SMART). The results obtained in term of number of 
slopes classified as high and very high hazard and 
numbers  of   slopes  that actually fail are shown in 
Table 1.  
 
Table 1: Summary of Comparative Study on Existing 

SAS in Predicting Landslide 
Prediction SIMS  SMART 
Number of slopes assessed 139 139 
Numbers of recent landslide 
or failed slope  44 44 
Numbers of slope classified 
as High and Very 
High Hazard 2  72 
Number of slopes classified 
as High and Very 
High Hazard that actually failed 1  27 
Percentage of (4) compared with (2)  2%  61% 
 
From the table above, it can be seen that the SMART 
over-predict the number of slopes with high and very 
high hazard compared to the actual failure, while the 
SIM gives a gross under-prediction. In term prediction 
accuracy, which is defined as percentage of number of 
slopes classified as high and very high hazard that 
actually failed, the SMART gives 61% compared with 
SIMS of only 2%.  
For the case of the SIMS, it uses hazard score 
developed from other country. This appears to be its 
main defect. While for the case of the SMART, its 
current database derived only from the meta-sediment 
formations is apparently not sufficient to be 
extrapolated to the granitic formation considered in this 
study. 
 
Development of the New SAS: Because of the 
apparent lack of accuracy of the existing SAS in 
predicting landslides, an attempt is made in this study to 
develop a new SAS.  The same slope inventory data of 
failed and stable slopes (or without sign of failure) was 
analyzed using the stepwise discriminant analysis, 
similar to that used in the SMART. Statistical analysis 
is chosen because there are abundance of slopes 
inventory and landslides database collected for the past 
ten years that can be used. Furthermore, the statistical 
analysis can easily be conducted based on ‘black-box’ 
approaches to determine the significant slopes 
parameters and its coefficients that will be used in the 
linear model. The linear model produced by the 
statistical analysis can easily be applied and verified by 
others. This is good in term of objectivity compared to 
other methods such as heuristic method where it 
depends on experience of geomorphologists and where 
the results will vary and cannot be verified by other 
geomorphologists.  
In the stepwise discriminant analysis, data on numerous 
slope parameters (such as slope angle, slope height, 
percentage of slope uncovered) prior to landslide or 
slope failure occurrences are complied/collected,  
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Table 2: Sub-Parameters of Slope Feature Used in the Model Development 
Sub-Parameters Ranges (Classes) Sub-Parameters Ranges (Classes) 
Slope feature  Near crest (1)  Main cover type  Trees (1) 
location/position Mid-slope (2)  Shrub (2) 
 Near toe (3)  Grass (3) 
Height of slope (m)  <10 (1)  Artificial cover (4) 
 10 to 20 (2) % of Feature Uncovered  < 10 (1) 
 20 to 30 (3)  10 to 30 (2) 
 > 30 (4)  > 30 (3) 
Slope angle  <45 (1) Soil type  Sandy (1) 
 45 to 63 (2)  Silty (2) 
 >63 (3)  Clayey (3) 
Feature Aspect in  0 to 90 (1) Presence of Rock  Yes  (0) 
Degrees 90 to 180 (2) Exposure No (2) 
 180 to 270 (3) % Rock Exposure 0 to 25 (1) 
 270 to 360 (4)  26 to 50 (2) 
Plan profile  Convex (1)  51 to 75 (3) 
 Concave (2)  76 to 100 (4) 
 Straight (3) Weathering grade I to II (1) 
Cross profile shape  Convex (1)  III to IV (2) 
 Concave  (2)  V to VI  (3) 
 Straight (3) Rock Condition Profile Grade III or less (1) 
Feature Area (m2)  < 2,500 (1)  Grade III and Grade IV (2) 
 5,000 to 7,500 (2)  Grade IV to Grade VI (3) 
 7,500 to 10,000 (3)  Grade IV to Grade VI with 
   corestone boulders (4) 
 >10,000 (4)  Colluvium (5) 
Distance to Ridge (m)  < 50 (1) Bench Drain Yes (0) 
 50-149 (2)   No (2) 
 150-249 (3) Horizontal drain Yes (0) 
 > 250 (4)  No (2) 
Batter / Bench  < 5 (1) Roadside drain/Toe Yes (0) 
Height (m) 5-9.9 (2)  drain No (2) 
 10-14.9 (3) Number of water courses 0 (0) 
 15-19.9 (4) within features 1 (1) 
 > 20 (5)  2 (2) 
Slope shape  Simple (1) Erosion No (0) 
 Planar (2)  Yes (2) 
 Asymmetrical (3) 
 Compound (4) 

 
 separated into failed and stable group and analyzed. 
Through the analysis, the significant parameter(s) in 
discriminating the failed and stable group and their 
regression  coefficient  as  the  best  predictors of future 
landslide occurrences are determined. In this analysis, a 
model of discrimination is built step-by-step. 
Specifically, at each step all parameters are reviewed 
and evaluated to determine which one that will 
contribute most to the discrimination between the 
groups. That parameter will then be included in the 
model and the process starts again. The general 
regression model used for the computation of 
discriminant function (Y) representing the instability 
score is as shown below;   
 
Y = d1V1 + d2V2 +... + dnVn + C (1) 
 
Where,  d1,  d2… dn  are  discriminant coefficient, V1, 
V2,…Vn are significant variables / parameters and C is a 
constant or model error.  

One hundred and thirty nine (139) numbers of cut and 
natural slopes feature underlain by granitic formation 
from the three sites; the Gunung Raya road (Site A), the 
East-West  highway (Site B)  and  the Kuala Kubu 
Baru-Gap road (Site D) were used in the development 
of the new SAS. The slopes features were then divided 
into two groups; 86 numbers of past and recent failed 
slopes and 53 numbers of stable slopes.  
From the available data, 22 numbers of parameters or 
variables for every slope features that related to the 
landslide occurrence was selected in the development 
model as listed in Table 2. All slope data in form of 
continuous variables or parameters was transformed 
into various classes and it was used in the statistical 
analysis and regression equation for the computation of 
instability score (individual discriminant and regression 
function scores).  
Twenty two numbers of slope parameters of failed and 
stable slopes were analyzed using the stepwise 
discriminant analysis in an attempt to determine 
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parameters that can best discriminates the failed and 
stable slopes. The analysis was conducted using 
significant value of 0.15 to enter and 0.20 to remove the 
parameters in the analysis. The result of the analysis 
showed that there are nine significant parameters that 
can separate the failed and stable slopes, namely; slope 
angle, feature area, distance to ridge, slope shape, % of 
feature uncovered, presence of rock exposure, bench 
drain, horizontal drain and erosion. Discriminant 
function is then calculated using general regression 
formula (equation 1) and using canonical discriminant 
function coefficients as shown in Table 3.  
 
Table 3: Canonical Discriminant Function Coefficients 

for the New SAS 
Parameter/Variable  Label Function 
Slope angle Angle 0.482 
Feature area Feat-are 0.601 
Distance to ridge dst_ridg 0.329 
Slope shape slp_shp -0.210  
% of feature uncovered uncover 0.419 
Presence of rock exposure rexp 0.444 
Presence of bench drain bench_d 0.743 
Presence of horizontal drain hori_d 0.372 
Presence of erosion erosion 0.747 
Constant  -6.328 
 
The nine-parameter equation produced from the 
analysis is as follows: 
 
Y = 0.482(angle) + 0.601(feat-are) + 0.329(dst_ridg) – 

0.210(slp_shp) + 0.419(uncover) + 0.444(rexp) + 
0.743(bench_d) + 0.372(hori_d) + 0.747(erosion) – 
6.328 (2) 

 
Discriminant function of both the failed and stable 
slopes  then  can  be  computed  using  this  equation 
(Eq. 2). The boundary of discriminant function 
separating these two groups (failed and stable) is 
calculated using average of this two groups mean, 
which can be determined statistically as shown in the 
histogram and normal curve plots in Fig. 2 and 3.  
Groups mean for stable and failed slopes are -0.88 and 
0.54 respectively. The value of discriminant function 
separating these two groups (noted as g) can be 
calculated using Eq. 3 as follow: 
 
g = (Yf + Ys) / 2, (3) 
 
Where, Yf = Mean of failed group 

Ys = Mean of stable group 
Value of g for the new SAS is: 
g = (0.54 - 0.88)/2  
   =-0.17 

 
Using this g value, the boundary condition separating 
failed and stable slopes is as follow: 

Stable if Y < -0.17, Otherwise failed. 
The hazard rating is designed using the maximum and 
minimum value of discriminant function. The 
maximum value of discriminant function is 4.497 and 
minimum value is -5.337. Table 4 below shows the 
designed hazard rating. 
 
Table 4: Designed Hazard Rating  
Range of Y Rating  
2.164 to 4.497 Very High 
-0.17 to 2.164 High 
-2.584 to -0.17 Low 
-5.337 to -2.584 Very Low 
 
Table 5: Accuracy and Percentage of Correct Classification 

of New SAS in Predicting Landslides  
 New SAS 
Number of slopes assessed 139 
Numbers of actual landslide or failed slope 86 
Numbers of slope classified 
as High and Very High Hazard 74 
Number of slopes classified as High  
and Very High Hazard  that actually failed 66 
Percentage of (4) compared with (2)  77% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Histogram Plot and Normal Curve of Stable 

Slope  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Histogram Plot and Normal Curve of Failed 

Slope 
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Table 6: Comparison of the Existing SAS with the New SAS for Predicting Landslides for 2 New Sites 
 New SAS  SIMS SMART 
Number of slopes assessed 36 36 36 
Numbers of recent landslide or failed slope 25 25 25 
Numbers of slope classified as High and Very High Hazard 28 0 8 
Number of slopes classified as High and very High Hazard that actually failed 24 0 7 
Percentage of (4) compared with (2)  96% 0 28% 
 
Table 5 shows a summary result of slope assessment 
using  the  new  SAS  on  139  numbers  of slopes under 
study. As  shown  the  number  of slopes classified with 
high to very high hazard is reasonably close to the 
number of slopes that have actually failed. In term of 
prediction accuracy, the new model appears to be able 
to achieve an accuracy of 77%, which is better than the 
existing SAS considered in this study. 
 
Comparison of the Existing SAS with the New SAS: 
It is of interest to compare the performance of the two 
existing SAS with the new SAS is predicting landslide 
for sites other then the one used for the development of 
the new SAS to eliminate biasness in the statistics. For 
this purpose, two new sites underlain by granitic 
formation are considered. Data from 21 slopes along 
the Tapah-Cameron Highland road (Site C) and 15 
slopes  along  the  Kuala  Lumpur-Bentung old road 
(Site E, Fig. 1) were used. Heavy rainfall caused a 
number of landslides along both roads. Some 13 recent 
landslides occurred along the Tapah-Cameron Highland 
road from 1994 to 2000. For the case of the Kuala 
Lumpur-Bentung old road, 12 recent landslides 
occurred a period of heavy rainfall in November 2003.  
The  results  of the comparative study are shown in 
Table 6.  
As shown, the new SAS appears to show a good 
capability in predicting landslides in the granitic 
formation. The numbers of slopes classified with high 
to very hazard match closely those of the actual failure. 
Likewise the percentage of correct prediction is over 
90%. The accuracy of the existing SAS such as the 
SMART is only a low 28%. This again reinforced the 
earlier argument that system developed for different 
rock formation could not be used. So is the case of the 
SIMS that utilized hazard score developed from another 
country. 
 

CONCLUSION 
 
From the results of this study, it appears that none of 
the existing SAS, i.e. the Slope Information 
Management System (SIMS) and the Slope 
Management and Risk Tracking System (SMART), is 
satisfactory for predicting landslide in granitic 
formation.  

The reasons for the apparent poor predicting capability 
of the existing SAS are several. For the case of the 
SIMS, it uses hazard score developed from another 
country. While for the case of the SMART, it current 
database, which is derived from the meta-sediment 
formations, is apparently not suitable to be extrapolated 
for the granitic formation considered in this study. 
A new SAS was developed using nine-parameters 
equation that is based on the stepwise discriminant 
analysis. The new SAS appears to show a much better 
capability in predicting landslides in granitic 
formations.  
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