
American Journal of Economics and Business Administration 3 (1): 58-65, 2011
ISSN 1945-5488
© 2010 Science Publications

Corresponding Author: Hossein Tohidi, Faculty of Computer Science and Information Technology,
 University Putra Malaysia Serdang, Malaysia

58

Using Unique-Prime-Factorization Theorem to Mine Frequent

Patterns without Generating Tree

Hossein Tohidi and Hamidah Ibrahim
Department of Computer Science

Faculty of Computer Science and Information Technology,
University Putra Malaysia Serdang, Malaysia

Abstract: Problem statement: Ffrequent patterns are patterns that appear in a data set frequently.
Finding such frequent patterns plays an essential role in mining associations, correlations and many
other interesting relationships among data. Approach: Most of the previous studies adopt an Apriori-
like approach. For huge database it may need to generate a huge number of candidate sets. An interest
solution is to design an approach that without generating candidate is able to mine frequent patterns.
Results: An interesting method to frequent pattern mining without generating candidate pattern is
called frequent-pattern growth, or simply FP-growth, which adopts a divide-and-conquer strategy as
follows. However, for a large database, constructing a large tree in the memory is a time consuming
task and increase the time of execution. In this study we introduce an algorithm to generate frequent
patterns without generating a tree and therefore improve the time complexity and memory complexity
as well. Our algorithm works based on prime factorization and is called Prime Factor Miner (PFM).
Conclusion/Recommendations: This algorithm is able to achieve low memory order at O(1) which is
significantly better than FP-growth.

Key words: Data mining, frequent pattern mining, association rule mining

INTRODUCTION

 Frequent patterns are patterns (such as itemsets,
subsequences, or substructures) that appear in a data set
frequently. For example, a set of items, such as milk
and bread that appear frequently together in a
transaction data set is a frequent itemset. A
subsequence, such as buying first a PC, then a digital
camera and then a memory card, if it occurs frequently
in a shopping history database, is a (frequent)
sequential pattern. Finding such frequent patterns plays
an essential role in mining associations, correlations
and many other interesting relationships among data.
Moreover, it helps in data classification, clustering and
other data mining tasks as well. Thus, frequent pattern
mining has become an important data mining task and a
focused theme in data mining research (Patel et al.,
2005; Ren et al., 2006; Verkhovsky, 2009; Zubair
Rahman and Balasubramanie, 2008).
 Frequent itemset mining leads to the discovery of
associations and correlations among items in large
transactional or relational data sets. With massive
amounts of data continuously being collected and
stored, many industries are becoming interested in
mining such patterns from their databases. The

discovery of interesting correlation relationships among
huge amounts of business transaction records can help
in many business decision-making processes, such as
catalog design, cross-marketing and customer shopping
behaviour analysis.
 A typical example of frequent itemset mining is
market basket analysis. This process analyzes customer
buying habits by finding associations between the
different items that customers place in their “shopping
baskets”. The discovery of such associations can help
retailers develop marketing strategies by gaining insight
into which items are frequently purchased together by
customers. For instance, if customers are buying milk,
how likely are they to also buy bread (and what kind of
bread) on the same trip to the supermarket? Such
information can lead to increased sales by helping retailers
do selective marketing and plan their shelf space.

MATERIALS AND METHODS

 Most of the previous studies adopt an Apriori-like
approach, which is based on the anti-monotone
Apriori heuristic: “If any length k pattern is not
frequent in the database, its length (k+1) super-pattern
can never be frequent”.

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

59

 The essential idea is to iteratively generate the set
of candidate patterns of length (k+1) from the set of
frequent-patterns of length k (for k≥1) and check their
corresponding occurrence frequencies in the database.
The Apriori candidate generate-and-test method
significantly reduces the size of candidate sets, leading
to good performance gain. However, it suffers from two
nontrivial costs:

• It may need to generate a huge number of

candidate sets. For example, if there are 104
frequent 1-itemsets, the Apriori algorithm will need
to generate more than 107 candidate 2-itemsets.
Moreover, to discover a frequent pattern of size
100, such as {a1…a100}, it has to generate at least
2100-1~1030 candidates in total

• It may need to repeatedly scan the database and
check a large set of candidates by pattern matching.
It is costly to go over each transaction in the
database to determine the support of the candidate
itemsets

 Can we design a method that mine the complete set
of frequent itemsets without candidate generation? An
interesting method in this attempt is called frequent-
pattern growth, or simply FP-growth, which adopts a
divide-and-conquer strategy as follows. First, it
compresses the database representing frequent items
into a frequent-pattern tree, or FP-tree, which retains
the itemset association information. It then divides the
compressed database into a set of conditional databases
(a special kind of projected database), each associated
with one frequent item or “pattern fragment,” and
mines each such database separately. The FP-growth
method transforms the problem of finding long frequent
patterns to searching for shorter ones recursively and
then concatenating the suffix.
 When the database is large, it is sometimes
unrealistic to construct a main memory based FP-tree.
An interesting alternative is to first partition the
database into a set of projected databases and then
construct an FP-tree and mine it in each projected
database. Such a process can be recursively applied to
any projected database if its FP-tree still cannot fit in
main memory. A study on the performance of the FP-
growth method shows that it is efficient and scalable for
mining both long and short frequent patterns and is
about an order of magnitude faster than the Apriori
algorithm. It is also faster than a tree-projection
algorithm, which recursively projects a database into a
tree of projected databases.
 FP-growth uses the least frequent items as a
suffix, offering good selectivity. The method
substantially reduces the search costs. For the given
suffix like “I j” FP-growth finds all possible prefix for

“I j” which their support count is greater than minimum
support count. But for this operation a tree must be
created and updated which for large database it needs
high amount of memory.
 This study is to design an approach for the frequent
pattern mining without candidate generation which is
efficient and fast even for large database. The most
significant benefit of this approach is low memory
complexity as compared to FP-growth. Our approach
called Prime Factor Miner (PFM) is similar to FP-
growth where the least frequent item is candidate as a
suffix then all frequent patterns which end with the
given suffix are generated. The PFM is based on the
prime factorization from the number theory and does
not require the creation of a tree structure.
 This study is organized as follows. First the related
study is presented and the FP-growth algorithm is
discussed and explained by an example. After that our
proposed approach is presented while result section
presents the result and discuss about time and memory
complexity. Discussion and conclusion are given in the
final sections.

Related study: We have categorized previous studies
into two parts. The first part focuses on the FP-growth
algorithm and explains the algorithm through example
while the second part focuses on some previous works
related to this study.

FP-growth algorithm: For this part we examine the
FP-growth algorithm over a hypothetical dataset for a
sailing company. This example is picked up from the
textbook Data-Mining Concepts and Techniques (Han
and Kamber, 2006). The dataset is a collection of
transaction records. Each transaction has a unique ID
and each item is represented by an index Ij. The dataset
is represented in Table 1.
 The algorithm starts with the first scan of the
database which derives the set of frequent items (1-
itemsets) and their support counts (frequencies).Let the
minimum support count is 2. The set of frequent items
is sorted in the order of descending support count. This
resulting set or list is denoted as L. Thus, we have:

L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2}

 An FP-tree is then constructed as follows. First,
create the root of the tree, labeled with “null”. Scan
database D a second time. The items in each transaction
are processed in L order (i.e., sorted according to
descending support count) and a branch is created for
each transaction.

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

60

Table 1: Transactional data for a sailing company
TID List of items IDs
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

Fig. 1: An FP-tree registers compressed, frequent

pattern information

 For example, the scan of the first transaction,
“T100: I1, I2, I5,” which contains three items (I2, I1, I5
in L order), leads to the construction of the first branch
of the tree with three nodes, <I2:1>, <I1:1> and
<I5: 1>, where I2 is linked as a child of the root, I1 is
linked to I2 and I5 is linked to I1. The second
transaction, T200, contains the items I2 and I4 in L
order, which would result in a branch where I2 is linked
to the root and I4 is linked to I2. However, this branch
would share a common prefix, I2, with the existing path
for T100. Therefore, besides of incrementing the count
of the I2 node by 1, a new node, <I4:1> is created
which is linked as a child of <I2:2>.
 In general, when considering the branch to be
added for a transaction, the count of each node along a
common prefix is incremented by 1 and nodes for the
items following the prefix are created and linked
accordingly.
 To facilitate tree traversal, an item header table is
built so that each item points to its occurrences in the
tree via a chain of node-links. The tree obtained after
scanning all of the transactions is shown in Fig. 1 with
the associated node-links. In this way, the problem of
mining frequent patterns in databases is transformed to
that of mining the FP-tree.

Table 2: Mining the FP-tree by creating conditional (sub-) pattern
bases

 Conditional Conditional Frequent
Item pattern base FP-tree pattern
I5 {{I2, I1: 1}, <I2: 2, I1: 2> {I2, I5: 2},
 {I2, I1, I3: 1}} {I1, I5: 2},
 {I2, I1, I5: 2}
I4 {{I2, I1: 1}, {I2:1}} <I2: 2> {I2, I1:2}
I3 {{I2, I1: 2}, <I2: 4, I1: 2>, {I2, I3: 4},
 {I2: 2}, <I1: 2> {I1, I3: 4},
 {I1: 2}} {I2, I1, I3: 2}
I2 {{I2: 4}} <I2: 4> {I2, I1: 4}

 The FP-tree is mined as follows: Start from each
frequent length-1 pattern (as an initial suffix pattern);
construct its conditional pattern base (a “subdatabase”
which consists of the set of prefix paths in the FP-tree
co-occurring with the suffix pattern), then construct its
(conditional) FP-tree and perform mining recursively
on such a tree. The pattern growth is achieved by the
concatenation of the suffix pattern with the frequent
patterns generated from a conditional FP-tree. Mining
of the FP-tree is summarized in Table 2.
 We first consider I5, which is the last item in L,
rather than the first. The reason for starting at the end of
the list will become apparent as we explain the FP-tree
mining process. I5 occurs in two branches of the FP-
tree of Fig. 1. (The occurrences of I5 can easily be
found by following its chain of node-links.) The paths
formed by these branches are <I2, I1, I5: 1> and
<I2, I1, I3, I5: 1>. Therefore, considering I5 as a suffix,
its corresponding two prefix paths are <I2, I1: 1> and
<I2, I1, I3: 1>, which form its conditional pattern base.
Its conditional FP-tree contains only a single path,
<I2: 2, I1: 2>; I3 is not included because its support
count of 1 is less than the minimum support count. The
single path generates all the combinations of frequent
patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.
 For I4, its two prefix paths form the conditional
pattern base, {{I2 I1: 1}, {I2: 1}}, which generates a
single-node conditional FP-tree, <I2: 2> and derives
one frequent pattern, <I2, I1: 2>. Similar to the above
analysis, I3’s conditional pattern base is {{I2, I1: 2},
{I2: 2}, {I1: 2}}. Its conditional FP-tree has two
branches, <I2: 4, I1: 2> and <I1: 2>, as shown in Fig. 1,
which generates the set of patterns, {{I2, I3: 4}, {I1, I3:
4}, {I2, I1, I3: 2}}. Finally,
I1’s conditional pattern base is {{I2: 4}}, whose FP-
tree contains only one node, <I2: 4>, which generates
one frequent pattern, <I2, I1: 4>.

Pervious works: FP-growth (Han et al., 2000) is a
well-known algorithm that uses the FP-tree data
structure to achieve a condensed representation of the
database transactions and employs a divide-and-conquer

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

61

approach to decompose the mining problem into a set of
smaller problems. In essence, it mines all the frequent
itemsets by recursively finding all frequent itemsets in
the conditional pattern base which is efficiently
constructed with the help of a node link structure. A
variant of FP-growth is the H-mine algorithm (Pei et al.,
2001). It uses array-based and trie-based data structures
to deal with sparse and dense datasets, respectively.
Patricia Mine (Pietracaprina and Zandolin, 2003)
employs a compressed Patricia trie to store the datasets.
FP-growth (Grahne and Zhu, 2003) uses an array
technique to reduce the FP-tree traversal time. In FP-
growth based algorithms, recursive construction of the
FP-tree affects the algorithm’s performance.
 Eclat (Zaki et al., 1997) is the first algorithm to
find frequent patterns by a depth-first search and it has
been devised to perform well. It uses a vertical database
representation and counts the itemset supports using the
intersection of tids. However, because of the depth-first
search, pruning used in the Apriori algorithm is not
applicable during the candidate itemsets generation.
The Eclat (Zaki et al., 1997) uses the vertical database
representation. They store the difference of tids called
diffset between a candidate k itemset and its prefix k-1
frequent itemsets, instead of the tids intersection set.
They compute the support by subtracting the cardinality
of diffset from the support of its prefix k-1 frequent
itemset. This algorithm has been shown to gain
significant performance improvements over Eclat
(Grahne and Zhu, 2003). However, when the database
is sparse, diffset will lose its advantage over tidset.
 VIPER (Shenoy et al., 2000) and Mafia (Burdick
et al., 2005) also use the vertical database layout and
the intersection to achieve a good performance. The
only difference is that they use the compressed
bitmaps to represent the transaction list of each
itemset. However, their compression scheme has
limitations especially when tids are uniformly
distributed. The search strategy of the algorithm
integrates a depth-first traversal of the itemset lattice
with effective pruning mechanisms that significantly
improve mining performance.
 The dEclat algorithm (Zaki and Gouda, 2003)
makes use of the vertical database representation where
each item maintains a set of transaction ids where this
item is contained. They store the difference of ids,
called the diffset, between the candidate itemset and its
prefix frequent itemsets, instead of the ids intersection
set. They compute the support by subtracting the
cardinality of diffset from the support of its prefix
frequent itemset.

Table 3: Variable and their definition
Symbol List of items IDs
L Set of all frequent itemsets with length 1.
SUP Support count of an itemset like “T” or an item like “I”.
T A pattern or itemset like {a, b, c}.
M Set of all possible patterns or itemsets.
FP A frequent pattern like “T” which SUP (T)
 > minimum support.
Fj Set of all frequent patterns which end with “Ij”.
F Set of all possible frequent patterns (Definition 2.5)
 over the set “M” (Definition 2.3).
Fi Set of all frequent patterns which their last item is “Ij ∈ L”.
Ij An item

The proposed approach: The fundamental theorem
of arithmetic says that every positive integer has a
unique prime factorization. What the FP-growth does
is getting a common suffix and then extracts all
possible prefixes and after joining them to the suffix a
frequent pattern is created. In the FP-growth algorithm
it is not important that we are looking for all frequent
patterns end to a particular suffix like “I5” or we want
to extract all of the frequent patterns. In contrast with
FP-growth our algorithm for mining of all frequent
patterns end to a particular suffix like “I5”, does not
create entire of the tree but just focuse on prefixes
related to that particular suffix.
 Without generating a tree, our algorithm called
Prime Factor Miner (PFM) extracts the frequent
prefixes and generates the frequent itemset which end
with that suffix. In Table 3 all of the used symbols and
acronyms which are used are presented.
 The following provides some primitive definitions
which are necessary to clarify the frequent pattern
mining problem.

Definition 1: “L” is defined as a set of all frequent
itemsets with length 1 and is denoted as follows:

L = {I1: SUP (I1), I2: SUP (I2), …, In: SUP (In)}

Where:
Ii = A frequent itemset with length 1
“SUP(Ii)” = A support count of itemset
 “Ii” = Greater than minimum support count
“L” = Sorted descending based on support

count, which means SUP (Ii) > SUP
(Ii+1)

 For instance referring to Table 1 the L set is
{I2:7, I1:6, I3:6, I4:2, I5:2}.

Definition 2: A pattern or itemset “T” with length m is
represented as T = {I1, I2, …, Im} such that “Ij”
represents the item in “jth” position of “T”. For example

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

62

if T = {a, b, c} then “I1” is the item “a”. All of the
patterns “Ti” is sorted in “L” order which means SUP
(Ii) > SUP (I (i+1)).

Definition 3: Set “M” is defined as a set of all patterns
or itemsets which is also called the transaction table and
is represented as:

M = {T1, T2, …, Tn}

 Where, “T” is a pattern or itemset (Definition 2.2).

Definition 4: A frequent pattern “FP” is a pattern like
T = {I1, I2, …, Ik} such that the “SUP (T)” is greater
than minimum support count.

Definition 5: The set “Fj” is defined as a set of all
frequent patterns where their last item is “Ij” that
“Ij ∈ L”. It means “Ij” is a suffix for all of the patterns in
“Fj” set. For example if “I3” is “h” then “F3” is set of all
frequent patterns like “abh” or “asdfh” where the last
item is “h”. Note that when “i ≠ j” then “Fj∩Fi = ∅”
which means there is no frequent pattern like “T” that at
the same time ends with two different items “Ii” and “Ij”.

Definition 6: The set “F” is a set of all possible
frequent patterns (Definition 5) over the set M
(Definition 3). It is clear that we can partition all of the
frequent patterns or set “F” by their last item such as
Definition 5. Therefore set “F” is represented as
F = {F1, F2, …, Fm} such that:

• m ≤ number of items = |L|
• Fi ∩ Fj =∅.
• Fi = {T1,T2, …, Tk} such as

• “Fi” is a set of all frequent patterns ends with
“Ii” (Definition 6)

• “Ti” is a frequent pattern
• “Ti” = {I1, I2, …, Ii}

Frequent pattern mining problem: The problem of
mining the frequent patterns of set “M” is reduced to
the problem of mining “Fj” sets. Frequent pattern
mining for “Fj” is achieved by extracting all prefixes
(subpattern) such that if joining the prefixes to the
related suffix “Ij” the result pattern is a frequent pattern.
In the following the PFM algorithm is explained. The
Fig. 2 presents the first phase of the algorithm.
 The first phase of PFM is similar to the FP-growth.
In this phase PFM derives the set of frequent items (1-
itemsets) and their support counts (frequencies) which
are greater than the minimum support count. This set is
called “L” and is sorted in the order of descending
support count. For example by considering Table 1 the
result is L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2}.

Fig. 2: The first phase of PFM (data pre-processing)

Table 4: Sorted transactional data based on “L” set order (descending

on support count)
TID List of items Ids
T100 I2, I1, I5
T200 I2, I4
T300 I2, I3
T400 I2, I1, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I2, I1, I3, I5
T900 I2, I1, I3

 In addition in the scanning process, each transaction
record is sorted based on the “L” set order. For example
in Table 1 the transaction “T100” is “I1, I2, I5” thus
according to the “L” set order it is sorted to “I2, I1, I5”.
The result of sorting is presented in Table 4.
 Fig. 3 presents the flows for the second phase
which consists of 7 main steps:

Step 1: In this step the last item or the most

minimum support count in the set “L” is
selected as the suffix, rather than the first.
Then, when PFM finds all of the prefixes
for this suffix, the next last item from the
“L” is selected and the same process is
repeated until there is no more unvisited
item in “L”.

Steps 2, 3, 4: After selecting a suffix such as “Ik” PFM
scans the transaction table (DB) or set
“M” (Definition 2.3). From each itemset
or pattern that contains “Ik” the related
prefix which is called Candidate Prefix
(CP) is extracted. For example by
considering the transaction “T100” in
Table 4 if the “Ik” is “I5” then “I2, I1” is
the candidate prefix.

 Instead of using a tree for counting the pattern
support, PFM uses prime numbers and prime
factorization. Each item in “L” is assigned a prime

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

63

Table 5: Function H(x) structure
x I2 I1 I3 I4 I5
H(x) 2 3 5 7 11

number in ascending order. For instance in our example
after assigning the prime numbers, the L set becomes
{I2 (2), I1 (3), I3 (5), I4 (7), I5 (11)}:

Step 5: When all of the candidate prefixes have been

extracted then for each candidate prefix like “Pi”
a unique number called “GENE” is generated as
follow:

 For Pi = {Pi1, Pi2, …, Pik}, Pij∈ L

GENE (Pi) =
k

ijj 1
H(P)

=∏ (1)

 The “H(x)” function is just a simple mapping that
for a given item like “x” it returns the related prime
number for the item. The function H(x) for the example
in Table 5 is presented.
 According to the fundamental theorem of
arithmetic there are no two different rows with the same
“GENE” number:

Step 6: The generated “GENE” numbers will be

multiplied together. The result is called the
“Genome” of the given suffix. The
mathematical representation of “Genome”
function is follows:

iLen (p)n

k ij
i 1 j 1

Genome(M,l) H(P)
= =

=

∏ ∏ (2)

Where:
“n” = The total number of patterns
“Len (Pi)” = The number of items for the pattern “Pi”

 The processes of steps 2, 3, 4, 5 and 6 are repeated
for all of the container rows or patterns and at the end
of each cycle the value of “Genome” will be updated
and multiplied with new “GENE” value.
 Again consider the Table 4. We assume that the
given suffix is “I5”. We can see there are two container
patterns (T100, T800) for “I5”. The result of computing
the “Genome” is presented in Table 6. For each container
row the candidate pattern is marked by underline.
 The “Genome” is a multiplication of these
“GENE” numbers. In this example it would be
(2*3)*(2*3*5) which can be simplified to 22*32*5
which is a numerical representation for all of the
prefixes that by joining to the “Ik” (in this example
“I5”) the result is a frequent pattern.

Table 6: PFM process over Table 4
TID Patterns Gene
T100 I2, I1, I5 H (I2)*H (I1) = 2*3
T200 I2, I4
T300 I2, I3
T400 I2, I1, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I2, I1, I3, I5 H (I2) *H (I1) *H (I3) = 2 * 3 * 5
T900 I2, I1, I3

Fig. 3: The second phase of PFM (Generate frequent itemset)

 The multiplicity or power of each prime factor in
the Genome is the support count of the related item to
that prime factor. This support count is just among the
container patterns which contain “Ik”. Also all of the
prime factors with multiplicity lower than minimum
support must be removed.

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

64

 According to the computed “Genome” for the
Table 6 the power of prime factor 3 which is for item
“I3” is 1 where it is lower than minimum support thus
the prime factor 5 must be removed. Finally the result
of “Genome” for “Ik” after removing 5 is equal to
22*32. The multiplicity of prime factor 2 which is for
item “I2” shows that “I2” is repeated two times as part
of prefix for the patterns that have “I5” as their suffix:

Step 7: Finally PFM maps the prime factors to their

related item. Thus from 22*32 we have
{I2:2, I1:2} and this is known in FP-growth as
Conditional FP-tree and we call it Frequent
Prefix. Finally PFM generates all of the subsets
for this set and add the given suffix to the end of
each subset, the same as in FP-growth.

 In this example the subsets are {I2}, {I1},
{I2, I1},{} and by adding “Ik” which is I5 three
frequent patterns {I2, I5}, {I1, I5}, {I2, I1, I5} are
generated. For the support count it is clear that for each
frequent itemset like {I2, I1, I5} the support count is
the minimum support count between items. For instance
the pattern {I2, I1, I5} has the support equal to 2.

RESULTS

 Our evaluation for PFM is done by computing the
time and memory complexity. For the purpose of the
evaluation, the algorithm is evaluated starting from the
step where a suffix is given to the PFM algorithm. Given
“Ik” all of the transaction rows or patterns must be
checked to extract all of the container patterns, therefore
in the worst case all of the rows must be checked. For
each row or pattern which includes the “Ik” the “GENE”
for that pattern must be computed. In the worst case we
assume that the length of each pattern is “m” and it is the
length of the longest pattern. According to equation (F2),
we should change the “Len (Pi)” to “m”:

n m

k ij
i 1 j 1

Genome(M,l) H(P)
= =

=

∏ ∏

 Therefore the time complexity for this algorithm is
O (n2).
 For memory complexity it is clear that the
maximum data we should keep in the memory is just a
simple integer number for the Genome. But in contrast
for FP-growth because of the FP-tree, for a transaction
database with n records and maximum m items for each
record we need a memory from O (n2), whereas as
mentioned earlier, for PFM the memory order is O (1).

It means we do not need to keep a bunch of data in a
particular data structure like tree or array.

DISCUSSION

 Our result confirms that, the significant objective
of this study is satisfied. This objective is achieving an
algorithm with low memory consumption, which can be
considered as the main benefit in compare with
FP-Growth.
 As mentioned through introduction chapter, when
the database is large, it is sometimes unrealistic to
construct a main memory based FP-tree. Especially if
we are interested in long frequent patterns, the memory
consumption becomes a critical problem.
 PFM is based on number theory which means in
this study a numerical approach to present and extract
frequent patterns is devised. Hence, the maximum
needed memory space is equal to the memory which is
needed for numerical computations.
Majority of numerical approaches, have this benefit,
that they are free from high memory consumption, as
well as PFM.
 Moreover, must of previous studies, did not focus
on a numerical approach, and this is one of the
difficulties to decrease the memory consumption.
 Therefore, it would be expected result to have O(1)
as memory order and this result is proved in the
result section.

CONCLUSION

 The main aim of PFM is to reduce the memory and
time complexity. Without generating any tree PFM is
able to extract all of the frequent patterns. Thus for a
large database no tree data structure is required in the
memory. Removing the tree generation step has
definitely increases the speed of the approach.
 FP-growth is a noble approach that allows frequent
patterns to be identified without generating candidate.
But for large database and frequently changing or real
time database, creating this tree can be a time
consuming process.
 Frequent pattern mining using prime factorization
is a fast and simple approach. Also when the database is
changed, only the rows that have been changed are
considered. This makes PFM algorithm suitable for real
time transactional frequent pattern mining where
modifications and frequent pattern mining are common.

REFERENCES

Burdick, D., M. Calimlim, J. Flannick, J. Gehrke and T.

Yiu, 2005. MAFIA: A maximal frequent itemset
algorithm. IEEE Trans. Know. Data Engineer., 17:
1490-1504. DOI: 10.1109/TKDE.2005.183

Am. J. of Economics and Business Administration 3 (1): 58-65, 2011

65

Grahne, G. and J. Zhu, 2003. Efficiently using prefix-
trees in mining frequent itemsets. Proceeding of the
ICDM 2003 Workshop on Frequent Itemset
Mining Implementations, 19 December 2003,
Melbourne, Florida, USA, pp: 90. DOI:
10.1.1.3.6241

Han, J. and M. Kamber, 2006. Data Mining Concept
and Techniques. 2nd Edn., Morgan Kaufman,
ISBN: 978-1558609013, pp: 242-245.

Han, J., J. Pei and Y. Yin, 2000. Mining frequent
patterns without candidate generation. Proceeding
of the ACM SIGMOD International Conference on
Management of Data, ACM Press, Dallas, Texas,
2000, pp: 1-12. DOI: 10.1145/342009.335372

Patel, R., S.S. Rana and K.R. Pardasani, 2005. Model
for load balancing on processors in parallel mining
of frequent itemsets. Am. J. Applied Sci., 2: 926-931.
ISSN: 1546-9239

Ren, J., X. Zhang and H. Peng, 2006. MFTPM:
Maximum frequent traversal pattern mining with
bidirectional constraints. J. Comput. Sci., 2: 704-709.
DOI: 10.3844/jcssp.2006.704.709

Shenoy, P., J.R. Haritsa, S. Sudarshan, G. Bhalotia and
M. Bawa et al., 2000. Turbo-charging vertical
mining of large databases. Proceeding of the ACM
SIGMOD International Conference on
Management of Data, ACM Press, Dallas, Texas,
2000, pp: 22-23.
DOI: 10.1145/335191.335376

Verkhovsky, B.S., 2009. Integer factorization: Solution
via algorithm for constrained discrete logarithm
problem. J. Comput. Sci., 5: 674-679. ISSN: 1549-
3636

Zaki, M.J. and K. Gouda, 2003. Fast vertical mining
using diffsets. Proceeding of the 9th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, D.C.,
ACM Press, New York, pp: 326-335.
DOI: 10.1145/956750.956788

Zaki, M.J., S. Parthasarathy, M. Ogihara and W. Li,
1997. New algorithms for fast discovery of
association-rules. Proceeding of the 3rd
International Conference on Knowledge Discovery
and Data Mining, AAAI Press, pp: 283-286. DOI:
10.1.1.42.3283

Zubair Rahman, A.M.J.M. and P. Balasubramanie,
2008. An efficient algorithm for mining maximal
frequent item sets. J. Comput. Sci., 4: 638-645.
ISSN: 1549-3636

