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Abstract: Reinforced concrete is one of the most common structures in the 

world. These structures may be under extreme loading conditions such as 

earthquake or they may confront with other flooding, impact or even the 

fire load. In the term of fire load, RC structures are very sensitive and due 

to the brittle behavior, the fast collapsing happens. In this research, two 

experimental setups are validated: (1) RC frame and (2) RC column. The 

Reinforced Concrete (RC) frame is modeled using finite element ABAQUS 

software and validated with experimental program. The RC frame 

validation is subjected to lateral and vertical loads. On the other side, RC 

column is also modeled and validated using ABAQUS software. The RC 

column is subjected to fire load. The results of validations show that the 

simulation techniques are accurate to perform the further investigation. The 

RC frames are retrofitted by FRP sheets and reinforced using steel or FRP 

bars. The angle of FRP sheets is both convergent and divergent. The fire is 

applied at the inside surface of the frame by 200, 400, 600, 800 and 1000C 

and lateral displacement-control load is considered, concurrently. Force-

displacement diagrams have been evaluated to check the load capacity, 

ductility, stiffness, seismic factor and crack propagations. The results show 

that using FRP has better performance at the lower fire temperature.  

 

Keywords: Reinforced Concrete (RC) Frame, Fire and Displacement 

Loading, FRP Bars and Sheets, Finite Element Method 

 

Introduction 

The structures are encountered with natural problems 

such as earthquake, flooding and specially, extreme 

loading conditions. In fact, the structural elements may 

be affected by fire or impact loading or the simultaneous 

loads of earthquake and fire in disastrous manner. 

According to disastrous events during the last two decades 

like fire and explosion, the necessity of strengthening of 

structures plays a vital role. So, understanding the 

structural behavior and damage criteria of the existing 

structures can be useful to avoid collapsing and improve 

their capability (Fallahi et al., 2019; 2018; Maranan et al., 

2016; Soleimani and Sayyar Roudsari, 2015; Soroushnia 

et al., 2011; Xiao et al., 2016). There are many studies 

for evaluating RC structures under extreme loading 

conditions like fire, air blast and so on.  

Kodur et al. (2003) performed an experimental study 

on five different concrete columns under fire loading 

condition. The investigated cases were Normal Strength 

Concrete (NSC) and High Strength Concrete (HSC) by 

using steel and polypropylene fibers. The results showed 

that the column with NSC material had better 

performance. Also, using polypropylene fibers could 

increase the ductility and load capacity. In this case, the 

load capacity of HSC columns was higher than columns 

with normal concrete. Anil and Altin (2007) had 

experimental investigation on infilled RC frames. The 

aim of their research was to find out the ductility 

behavior of RC frames under lateral cyclic loading. Nine 

one-story RC frames were tested in the laboratory under 

cyclic loading conditions. They casted one RC frame 

without infilled part called bar frame and eight other 

frames were infilled. The results showed that infilled 

frame had brittle behavior than bar frame. However, the 

initial stiffness and energy absorption of infilled frames 

is higher than bar frame. Also, the larger aspect ratio of 

infilled frame causes increasing lateral strength of 

infilled RC frame. Moreover, infilled RC frames have 

more stiffness and load capacity than simple frames. Al-

Kamaki et al. (2015) studied on circular cross-section 

RC columns damages under temperature loading 
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conditions. Twenty large size RC columns with 750204 

millimeters in dimensions, were tested. Six of those 

columns were considered as control group and fourteen 

columns were heated fewer than 30% of maximum load. 

Also, eight of these columns were wrapped using Carbon 

Fiber Reinforced Polymer (CFRP). The results showed 

that using CFRP sheets can increase the durability of RC 

columns after 600, 800 and 1000C. Some of the 

researches indicated the effect of extreme loading 

conditions in normal RC members and investigated any 

deterioration and defects inside or on the surface of the 

concrete (Goldston et al., 2016; Pham and Hao, 2016; 

Sayyar Roudsari et al., 2019a; 2019b; 2019c; 2020a; 

Soleimani et al., 2019; Soleimani and Sayyar Roudsari, 

2019; Tang and Saadatmanesh, 2003). However, different 

studies also undertook to find out the effect of HSC and 

high-performance materials under fire condition. These 

studies were done by applying different fire temperatures 

in various elements (Baant et al., 1996; Hamoush et al., 

2019; Khaliq and Kodur, 2011; 2013; Kodur and Sultan, 

1998). Gyu-Yong et al. (2009) studied on the behavior of 

HSC under 700C to find out the effect of fire resistance 

of concrete. The results showed that the concrete strength 

reduced significantly after 400C. The reduction of 

module of elasticity also was evaluated under different 

temperature loading conditions (Castillo, 1987; Persson, 

2004). Tan and Nguyen (2013) investigated RC columns 

under the combination of uniaxial eccentricity and 

temperature loading conditions. The authors used 29 and 

55 MPa of compressive strength of concrete to test under 

elevated temperature. The RC column had a square 

cross-section of 300 and 3300 mm height. The results 

showed that applying simultaneous uniaxial eccentricity 

and temperature loads caused the faster failure of 

concrete. Roudsari and Abu-Lebdeh (2019) did 

analytical study on the effect of fire temperature loading 

(ASTM, 1990) time on reinforced concrete column 

behavior. His results show that by increasing the time of 

fire load, the stiffness is reduced. 

This paper focuses on RC frame under concurrent fire 

and lateral loading conditions. Two different validation of 

models are done: One as a frame without fire load and 

others as a sample with fire load. Different variables such 

as the type of material of bars like steel and Carbon 

Reinforced Polymer (CFRP) as well as the retrofitting 

pattern are used as the convergent or divergent angle. The 

pattern of wrapping is the state-of-the-art method is this 

research. Beside the fire and lateral load, the pressure 

load is applied on the beam, too. Different target 

temperatures are used including 200, 400, 600, 800 and 

1000C. The models are 5 control samples, 15 retrofitted 

models with CFRP sheets and 11 reinforced models with 

CFRP bars. The FRP sheet’s angles are 0, 45 and 90 

degrees for beam and columns. In this research, ABAQUS 

software is used. The Concrete Damage Plasticity Model 

(CDPM) is used in order to define compressive strength, 

tensile strength and its damage parameters. The numerical 

results showed very good agreement with experimental 

output. This paper provides information as load capacity, 

ductility, stiffness regarding the effect of fire load and 

retrofitting method of these elements.  

Materials and Methods 

In order to use ABAQUS software, the validation of 

FEM with an experimental program is essential. In this 

study the experimental test performed by (Hemmati et al., 

2016) is considered. In this research, two different 

concrete compressive strengths are used; at first a 

High-Performance Fiber Reinforced Cementitious 

Composite (HPFRCC) with 24 MPa used for beam-

column joint-connection and 48 MPa as normal 

concrete for other section areas. The geometry and 

reinforcement details are shown in Fig. 1 and 2. Also, 

the loading conditions of experimental set up can be 

seen in the original article. 

In this section, the concrete parameters are defined 

using the work performed by (Roudsari et al., 2019; 

Sayyar Roudsari et al., 2018). They used MATLAB 

toolbox to compute different concrete parameters 

including compressive and tensile strain- stress and the 

corresponding damages. In research conducted by 

(Roudsari et al., 2019), he developed a model to employ 

the compressive strength and the failure strain of 

concrete. In this regard, the strain rate increment is 

computed based on division of failure strain to small 

number. Sayyar Roudsari et al. suggested the small 

number should be at least one-tenth of failure strain. In 

this step, the number of increments can be calculated. 

Then, the elastic and plastic strains are computed in both 

tensile and compressive. After computing the strains, the 

corresponding stresses are computed. In this step, the 

linear and nonlinear should be separated. Because, based 

on his novel theory, concrete damage plasticity model of 

ABAQUS should use the plastic side of stress-strain 

data. In order to adjust the boundary, 45% of 

compressive stress is considered. After modifying and 

generating the plastic stress-strain data, the damage 

parameters of tensile and compressive sides are also 

computed. These parameters can be used in ABAQUS 

software. The ABAQUS input data for 24 and 48 MPa is 

shown in Fig. 3 (Roudsari et al., 2019). 
The material properties of steel bars as the yield stress, 

module of elasticity and ultimate strain are reported 400 

MPa, 200 GPa and 14.5%, respectively (Obaidat et al., 

2010). The CFRP sheets for retrofitting of the RC frame is 

one layer with 2 mm thickness. The ultimate tensile stress 

(ffu) of CFRP and elasticity modulus are 3500 MPa and 

230 GPa, respectively and the width of sheet is 150 mm. 

The CFRP mechanical properties are demonstrated in the 
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Table. 1. The mechanical properties of CFRP bars are 

2900 MPa and 300 GPa (as ultimate stress and module of 

elasticity, respectively). 

The fire criteria are considered by ASTM E119 

standard (ASTM, 1990) to define the temperature-time 

amplitude (Fig. 4).  
 
Table 1: Mechanical properties of CFRP Layers (Kheyroddin and Naderpour, 2008)  

Tensile strength Compressive strength Tensile strength Compressive strength longitudinal Transvers 

-parallel of layer – parallel of layer -perpendicular of - perpendicular of shear strength shear strength 

direction )MPa( direction ) MPa( layer direction )MPa( layer direction )MPa( )MPa( )MPa( 

3500 1985  133 536 4/117`  4/117  

 

 
 

Fig 1: Geometry details of RC frame 
 

 
 

Fig 2: Reinforcement details of RC frame 
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(a) 

 

  
(b) 

 
Fig. 3: Concrete Compressive and Tensile Stress-Strain for (a) 24 MPa (b) 48 MPa 

 

 
 

Fig 4: Time-Temperature Diagram (ASTM, 1990) 
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2016) using ABAQUS software. The C3D8R (8-node 
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employed for CFRP sheets and modeling of bars and 

stirrups. The Embedded Region Coupling has been 

utilized to create bonding conditions between bars and 

concrete elements. The interaction between CFRP sheets 

and concrete surface is subjected to Tie interaction. The 

interaction modeling is shown in Fig. 5a. The Non-

Linear General Static analysis is used for modeling of 

RC frame. This RC frame is without fire load. The 

boundary conditions are divided into two different 

loading categories. The first load is pressure loading (at 

the center-top of the beam). The lateral load is applied 

using displacement-control by defining the 

Displacement/Rotation category. U1, U2 are fixed and 

U3 is released. This issue is taken into account by 

defining a Set of Nodes using ABAQUS tools. The 

bottom surface of slab is pinned (U1, U2 and U3 = 0). 

The lateral constant load and pressure are considered 

65.5 mm and 1 MPa, respectively. Figure 5b shows the 

boundary conditions of RC frame. 

After analysing the RC frame, the shear force-

displacement diagram is carried out. This validation is 

shown in Fig. 6. According to Fig. 6, the FEM modeling 

has a very good accuracy with experimental tests. By 

comparing the maximum load capacity, it can be 

declared that the maximum load capacity in laboratory is 

65.31 kN while this parameter is 65.25 kN in ABAQUS 

(the difference is just about 0.01%). 

 

 
(a) 

 

  
(b) 

 
Fig. 5: The ABAQUS model (a) Interaction Modeling (b) Boundary Conditions 
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Fig. 6: Validation of Experimental test - versus ABAQUS Software – Without Fire Load 

 

 
 
Fig. 7: RC Column modeling under both fire and lateral load 

 

 
 
Fig. 8: Validation RC Column -Experimental test versus 

ABAQUS - under both Fire and Lateral Load 
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modeling are shown in Fig. 8. The load-displacement 

diagram indicates very good agreement of fire modeling 
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angle of CFRP is different in the beam and columns. The 
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model 3. These models have specific configurations 

which are shown in Fig. 9. It should be noted that the 

layout direction is divergent. In other word, looking to 
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Fig. 9 and for example the model 1, the left and right 

columns have divergent layout direction. Moreover, in 

models 2 and 3, the same concept is considered. In the 

Table 2 the description of wrapping and reinforcing 

models by CFRP is shown. It should be noted that the 

model’s name with steel bars under temperature analysis 

is called M200 (200C), M400 (400C), M600 (600C), 

M800 (800C) and M1000 (1000C). 

 
Table 2: Models Description Details and Names 

M-0 Reinforced by steel bars without temperature loading 

M-200 Reinforced by steel bars under 200 Celsius degree loading 

M-400 Reinforced by steel bars under 400 Celsius degree loading 

M-600 Reinforced by steel bars under 600 Celsius degree loading 

M-800 Reinforced by steel bars under 800 Celsius degree loading 

M-1000 Reinforced by steel bars under 1000 Celsius degree loading 

FC-C45B90 Strengthening with CFRP, Column 45-degree, Beam 90 degree 

FC-C45B45 Strengthening with CFRP, Column 45-degree, Beam 45 degree 

FC-C0B45 Strengthening with CFRP, Column 0-degree, Beam 90 degree 

F-CB-Total Reinforcing by CFRP bars in both Beam and Column 

F-CB-Beam Reinforcing by CFRP bars in the Beam  

F-CB-Beam-Bot Reinforcing by CFRP bars in the Tensile zone of the Beam 

 

 
 (a) (b) 

 

  
 (c) (d) 

 
Fig. 9: Geometry Details of Retrofitting distribution of RC Frame (a) Original RC Frame (b) Model 1; the layout direction for 

column and beam is 45 and 90 degree, respectively (c) Model 2; the layout direction for column and beam is 45 degrees (d) 

Model 3; the layout direction for column and beam is 0 and 45 degree, respectively 
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In order to apply the fire load in these models, the 

same features of first validation model (RC frame) are 

considered and some other fire load criteria are applied 

as the Temperature-Dependent Data is provided. The 

initial fire temperature is zero and the maximum target 

one depends upon the fire temperature, for instance at 

200C, it should be 200. Also, the Specific Heat is 

considered 5700 for bars, 6000 for CFRP sheets and 

1000 for concrete using Constant Volume criteria. The 

range of conductivity for FRP bars and layout are 0.003-

0.0057 and 0.035-0.006, respectively. The conductivity 

for steel bars is 0.04-0.0518 and the specific heat is 

5255. The conductivity parameters for concrete is 

0.0005-0.00114. The Hashin Damage parameters are 

used to define the tensile and compressive behavior of 

FRP layout (the longitudinal tensile strength is 1278 

MPa and its elasticity modulus is 46000 MPa). In terms 

of fire analysis, the Coupled Temp-Displacement 

(Transient) Analysis is used to apply for simultaneous 

fire and lateral displacement. It should be noted that, the 

time of fire depends on the amount of temperature. Figure 

10 shows the time-amplitude of temperature analysis.  

Also, the Max Allowable Temperature Change Per 

Increment is applied 10C. In the interaction module, the 

Surface Film Condition as the Film Coefficient and Sink 

Temperature are considered 0.01 and 25, respectively. 

The lateral and pressure loading are considered as the 

same as validation model. In the loading module also, 

the Predefined Field is created to make environment 

temperature of Concrete Frame by applying 25C. The 

fire load is utilized by choosing Other/Temperature from 

Boundary Condition, applying at the inside surface of 

frame. Each temperature has its own amplitude using 

Fig. 10. Also, the Heat Flux is applied “10“for all 

elements (Sayyar Roudsari et al., 2020b). 

 

 
 

Fig. 10: Time-amplitude changes (ASTM, 1990) 
 

  
 (a) (b) 

 
Fig. 11: The ABAQUS model (a) temperature, pressure and lateral displacement loading conditions (b) meshing 
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Figure 11a demonstrates the temperature, pressure and 

lateral displacement loading conditions of RC frame. 

Eventually, in the term of meshing criteria, the mesh study 

is used to verify the mesh seed size. Also, the Mesh Type 

is Coupled-Temperature-Displacement (Fig. 11b). 

Results and Discussion 

In this section, the results of RC frames are 
discussed. The RC frame is evaluated under 200, 400, 
600, 800 and 1000C. Then, the RC frame is reinforced 

by CFRP bars under the same loading temperature 
conditions and eventually, the RC frames are 
strengthened using CFRP sheet. The load-displacement 
diagrams are evaluated in this section by considering the 
load capacity, ductility, energy absorption and stiffness. 
The load-displacement diagram shows in Fig. 12 is 
regarding the RC frame models without and with fire 
loading condition. It should also be noted that these 
samples are modeled using only steel bars. The model’s 
name indicates the fire loading; as an illustration, M-200 
means 200C applied as fire temperature and so on.  

 

 
 

Fig. 12: Load displacement diagram for model with steel bars under different temperature loading 
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(b) 

 
Fig. 13: Von Misses and Temperature Stress Distribution of (a) M200 (b) M-1000 
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(e) 

 

Fig. 14: Load displacement diagram for model with CFRP sheet under (a) 200C (b) 400C (c) 600C (d) 800C (e) 1000C 
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maximum displacement is about 47 mm due to high 

temperature. In other word, in higher temperature not 

only the load capacity is reduced but also it causes 

remarkable deduction in displacement. In Fig. 13 the 

Von Misses and temperature stress distribution of M-200 

and M-1000 is shown. In Fig. 13a, the plastic hinge is 
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shows that the buckling of longitudinal bars. 

On the other hand, in Fig. 13b, the stress distribution 

of the beam’s reinforcements is over the yield and 

buckling happened. The stress and temperature 

distribution in Fig. 13b also show that the most area of 

beam and columns show as plastic characteristic due to 

high fire temperature which causes un-stability of RC 

frame. Furthermore, Table 3 shows the von misses stress 

of models under selected fire loading. Table 3 depicts the 

behavior of F-CbTotal models under fire temperature 

loading conditions. These strengthened models are strong 

enough so that the RC frame is stable even for 1000C. 

In Fig. 14, the load displacement diagrams of 

retrofitted models by CFRP sheets is shown. The 

information for the name of models is shown in the Table. 

1. In these figures, FC-C45B90 has the higher load 

capacity than others. Granted these models have been 

analyzed under different fire temperature, but according to 

the maximum load capacity, they have much more load 

capacity than models with only steel bars. More 

importantly, the load capacity of retrofitted models is 

enhanced when the temperature increases. According to 

Fig. 14d, the first slope of load displacement diagram is 

positive compared with models without retrofitting (Fig. 

12). This means that by retrofitting, the buckling of RC 

frame is solved due to enhancement of the load capacity. 

Figure 15 shows the result of model reinforced with 

CFRP bars at only the beam (F-CB-Beam) and both 

beam-columns (F-CB-Total). In Fig. 15a, using CFRP 

bars do not affect the elastic zone under 200C of fire. 

On the other hand, by contrasting the Fig. 15b-e, in 

higher temperatures using CFRP bars at the beam section 

has better performance. It has to be mentioned that, by 

comparing the load capacity results for F-CB-Beam in 

the Fig. 15b-e, one finds out that the elastic and plastic 

FC-C45B90 FC-C0B45 FC-C45B45 
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zones have much better capability of load and CFRP 

bars prevent buckling during the fire temperature 

procedures. Also, the models reinforced by CFRP bars in 

both beam and columns (F-CB-total) loaded under 

200C has higher load capacity (about 65% enhancement 

compared to model with steel bars under 200C). In the 

Fig. 15e, the load capacity of model with CFRP bars in 

the beam and columns (F-CB-total) under 1000C is 

44.3 kN so that it increased about 550 percent compared 

with model reinforced by steel bars under 1000C. In 

addition to the mentioned models, one model has been 

evaluated under the extreme fire temperature loading 

condition (1000C). In this model, the CFRP bars have 

been used only and only for the tension part of the beam 

which is called (F-CB-Beam-Bot). The result of this 

model is shown in the Fig. 16 demonstrating that using 

CFRP bars at the tensile area of the RC beam can 

significantly improve the load capacity, stiffness and 

avoid the buckling issue of the beam. 

Discussion of Parametrical Study 

In this section, different results based on parametrical 
studies have been investigated. In this study the ductility, 
stiffness, load capacity and seismic factor (R) have been 
presented. The ductility factor is computed by dividing 
the maximum displacement (∆ult) on the displacement 
corresponding to yield force (∆y). Equation 1 explains 

the ductility formulation: 
 

/ult y      (1)  

 

 
 (a) (b) 
 

 
 (c) (d) 

 

 
(e) 

 
Fig. 15: Load displacement diagram for model with CFRP bars under (a) 200°C (b) 400°C (c) 600°C (d) 800°C (e) 1000°C 
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Fig. 16: Load displacement diagram for model with CFRP bars at the tensile area of the beam under 1000 Celsius Degree 

 

 
 (a) (b) 
 

  
 (c) (d) 

 

 
(e) 

 
Fig. 17: Load capacity for all Models under (a) 200°C (b) 400°C (c) 600°C (d) 800°C (e) 1000°C 
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Also, the stiffness is calculated using load-displacement 

diagram as the division of yield load (Vy). Sayyar     

Roudsari et al. by yield displacement (∆y), Equation 2: 
 

/y yE V    (2) 

 
Eventually, the seismic factor (R) is defined by 

multiplication of strength reduction factor (Ru) by 

strength enhancement factor (Rs), Equation 3: 
 

u sR R R    (3) 

 
In the Equation (3), the strength reduction factor (Ru) 

is regarding the maximum load if the structure’s 

behavior remains in elastic zone; ((Vel) over the yield 

load Sayyar Roudsari et al.). Equation (4): 
 

  / u el yR V V   (4) 

 
and, strength enhancement factor (Rs) is computed by the 

yield load Sayyar Roudsari et al. divides by the load at 

the first plastic hinge (Vs): 
 

/ s y sR V V   (5) 

 
In the Fig. 17, the load capacity of models including 

control (FEM-NON: Without fire temperature load), steel 

bars, CFRP bars and sheets under different temperature 

loading is shown. In these figures, the maximum load 

capacity under all temperature loading conditions belongs 

to model of FC-C45B90. Also, using CFRP sheets have 

more load capability than CFRP and steel bars. Moreover, 

the effect of RC frame by steel bars and CFRP bars just at 

the tensile area of the beam are almost the same for 200 

and 400C. This issue is different for higher fire 

temperature. As a matter of fact, even using CFRP bars at 

the tensile part of concrete have good effect on the load 

capacity. The reason of better performance of models 

retrofitted by CFRP sheets is on the wake of the 

mechanical properties of CFRP wraps. Since it can protect 

the concrete surface during the fire load until rapture of 

the CFRP sheets. By increasing the lateral load and fire 

temperature, the cracks start to be propagated in the 

concrete which leads to complete failure. Generally, in 

terms of load capacity, the maximum load capacity 

reduction is for models under 1000C. 

In the Fig. 18, the stiffness of all models is shown. In 

the Fig. 18a, the stiffness of retrofitted models is almost in 

the same level (about 26.67 which are under 200C) but 

by increasing the temperature, the stiffness of retrofitted 

models has been changed. In fact, in higher fire 

temperature load, FC-C0B90 model has better 

performance among retrofitted models. On the other hand, 

the stiffness of CFRP bars for model of F-CB-Total is 

higher than F-CB-Beam in all fire temperatures. The model 

of F-CB-Total has the best performance in the maximum 

fire temperature loading conditions such as 800 and 1000C 

by having 33 and 22 GPa, respectively. In addition, the 

performance of models with steel bars under different 

loading conditions are divides into two parts. As a matter of 

fact, it does have a boundary as 600C. So that under 600C 

the stiffness is increased but after 600C degree shows a 

reduction trend. The reason of this issue goes back to the 

RC frame. In other word, RC frame tolerates both fire 

temperature and lateral loadings until 600C. After that, 

the steel bars start to be failed due to 800 and 1000C and 

this issue causes buckling of the beam. 

Figure 19 depicts the ductility of models. In these 

figures, the steel bars models have appropriate 

performance for 200, 400 and 600°C, but after that is has 

a reduction trend. Moreover, for the ductility of 

retrofitted models, FC-C0B90 has always more value 

than FC-C45B45 and FC-C45B90. The steel bars models 

have more ductility under 600°C especially for 400 and 

600°C. This phenomenon occurs on the grounds of the 

better ductility of steel bars than CFRP bars. In fact, 

CFRP bars have brittle behavior and during the fire 

temperature (from 200 to 600°C and after the boundary 

temperature 600°C), the models using steel bars start to 

be buckled. Therefore, the CFRP bars models have better 

performance in 800 and 1000°C loading conditions. 
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 (c) (d) 

 

 
(e) 

 
Fig. 18: Stiffness for all Models under 200 Celsius Degree 
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(e) 

 
Fig. 19: Ductility for all Models under (a) 200°C (b) 400°C (c) 600°C (d) 800°C (e) 1000°C 
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Fig. 20: Seismic factor (R)s for all models under (a) 200°C (b) 400°C (c) 600°C (d) 800°C (e) 1000°C 
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Figure 20 shows the seismic factor of R. The R factor 

FC-C0B90 is higher for models under 200, 400 and 

600°C and it has reduction trend for 800 and 1000°C. 

Also, using CFRP bars at the beam has the lowest value 

of R among all models, event thought models with steel 

bars have increasing trend from 200 to 1000°C. 

Conclusion 

On the basis of the presented modeling and analyzing 

and evaluated results, the followings are concluded: 
 

 The maximum load capacity for 200, 400, 600 and 

800°C is belonged to FC-C45B90 model, Fig. 17 

 The boundary of fire temperature loads is 600°C, 

meaning that under this degree, the models are 

stable and after that neither the CFRP or concrete 

or bars showing the failure 

 The stiffness of model using CFRP bars in all 

members (F-CB-Total) is more than other models 

under 1000°C. While the retrofitting method does 

not have appropriate results in improving stiffness 

behavior under 1000°C, Fig. 18 

 The model of FC-C0B90 shows more ductility than 

two other retrofitted models, especially under 800 

and 1000 Celsius degrees, Fig. 19 
 The ductility of steel bar models is increased up to 

600°C and after that it has smooth reduction. On 
the other hand, the enhancing trend of CFRP bar 
models is increasing from 200 to 1000°C. The 
important issue is that; the ductility does not affect 
by the boundary of fire temperature (600°C), Fig. 19 

 The retrofitted models have better performance of 
seismic factor of R for 200, 400 and 600°C. 
Particularly models of FC-C0B90 and FC-C45B90 
have much more R value than other models in 600°C. 
On the other hand, steel and F-CB-Total always have 
increasing trend within 200 to 1000°C, Fig. 20 

 The CFRP sheets and bars have much better 
performance than steel bars for avoiding the 
buckling and collapsing of RC frame. In effect, 
they can provide enough strength for system to 
delay the failure of RC frame 
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