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Abstract: Fixed axis mechanical transmissions today have the largest 

spread on the entire planet, being practically used in almost all areas. 

From the gearboxes of the vehicles to the stationary reducers, used in the 

electrical, electronic and electro technical equipment, in the heavy 

industry but also in the light industry, in energy and in transport, 

practically the transmissions with fixed axes meet today everywhere, 

being part of our daily life. For this reason, we want to present the 

kinematic and dynamic analysis at a classic, manual, three-axis gearbox, with 

six speeds, without a direct socket. With the help of the presented method, 

one can analyze the dynamics of such a gearbox in order to design it 

optimally, so as to achieve the highest yields in operation, especially in the 

most used speeds, so that the transmission losses are limited to up.  
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Introduction 

The beginning of the use of bar and gear mechanisms 
must be sought in ancient Egypt at least a thousand years 
before Christ. Here, for the first time, the "spiked" wheel 
transmissions were used for irrigation of crops as well as 
the snail gears for cotton processing (Fig. 1). 

Such gears have been built and used since ancient times, 
initially for lifting heavy ship anchors as well as for pre-
tensioning catapults used on battlefields. They were then 
introduced to machines with wind and water (as reducers or 
multipliers to pumps, windmills, or water). 

230 years BC, in the city of Alexandria in Egypt, the 

multi-lever wheel and rack gear were used. 
The transmission of the gear by means of gears with 

gears has seen substantial progress since 1364 AD when 
the Italian craftsman Giovani da Dondi made an 
astronomical clock, whose composition included interior 
gears and elliptical gears. 

The first gear adjustable gears were used in 1769 by 
Cugnot to equip the first vehicle powered by a steam 
engine (Fig. 2). 

The first engineer (scientist), who actually designs 
such transmissions, is considered to be the Italian master 
Leonardo da Vinci (15th century) (Fig. 3). 

The Benz engine (Fig. 4) had gears with gears but 

also with chain gears (patented after 1882). On the Fig. 

5, you can see the sketch of the first gearbox with gears 

(gears) and chain gears made in 1870 by the British 

Starley and Hillman. 

After 1912, in Cleveland (USA), specialized 

manufacturing of wheels, gears and gears (cylindrical, 

screw, conical, with straight, inclined or curved teeth) 

begins to be produced. Gearboxes with fixed axles have 

the widest spread on all types of vehicles (Fig. 6). 

Gearboxes are independent gearboxes with 

permanent gear, mounted on shafts and enclosed in a 

watertight housing. They serve: 

 

 Speed reduction 

 Increase of the transmitted moment 

 Modification of the direction of rotation or the plane 

of movement 

 Sum the power flow from several motors to a 

work machine 

 Distributes the power flow from one motor to 

several work machines. 

 

In the case of speed reducers, the gear wheels are 

fixedly fixed to the shafts, permanently engage and 

realize a totally fixed transmission ratio, defined as the 

ratio between the speed at the input and the speed at the 

output of the gearbox, as opposed to the gearboxes at 

which some wheels are movable. On shafts (balancing 

wheels), intermittently gears and performs a total gear 

ratio. They are also different from the gear speed 

variants (used less frequently), where the total 

transmission ratio can be continuously varied. 
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Fig. 1: Ancient Egypt at least a thousand years before Christ. Here, for the first time, the "spiked" wheel transmissions were used for 

irrigation of crops 
 

 
 

Fig. 2: The first adjustable gearboxes were used in 1769 by Cugnot to equip the first vehicle powered by a steam engine 
 

 
 

Fig. 3: Car of the Italian craftsman Leonardo da Vinci (15th century) 
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Fig. 4: The Benz engine had gears with gears 
 

 
 

Fig. 5: Sketch of a first patent for cogwheels and cogwheels made in 1870 by the British Starley and Hillman 
 

 
 

Fig. 6: Gearboxes with fixed axles have the widest spread on all types of vehicles 
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Gear speed reducers are used in all areas of 

machine construction (Brewer, 1991). 

There is a great variety of speed reducers. They are 

classified according to the following criteria: 
 
1. After the transmission report 

a. Reducers with a speed reduction step 

b. Gearboxes with two or more speed reducers 

2. According to the relative position of the input shaft 

(motor) and the output shaft 

a. Coaxial reducers (with return), in which the 

input shaft is coaxial with the output one 

b. Parallel reducers, in which the input and output 

shafts are parallel 

3. According to the position of the shafts 

a. Reducers with horizontal axes 

b. Reducers with vertical axes 

c. Reducers with inclined axes 

4. By gear type 

a. Cylindrical reducers 

b. Tapered reducers 

c. Hypoid reducers 

d. Gear reducers 

e. Combined reducers (cylinder-conical, cylinder-

snails, etc.,) 

f. Planetary reducers 

5. By type of axes 

a. Fixed axis reducers 

b. Reducers with movable axles 
 

If the gear unit together with the motor constitutes a 
single aggregate (the motor is driven directly to the input 
shaft by a flange) then the unit is called a Gearmotor. 

In many constructive solutions, gear reducers with 
gear wheels are used in kinematic schemes along with 
other types of transmissions: By belts, chains, friction, 
screw-nut, speed variator, gearboxes, etc. 

The advantages of using reducers in the kinematic 

diagrams of machines and mechanisms are: 
 

 Constant transmission report 

 Ensures a wide range of powers 

 Relatively small gauge 

 High efficiency (with the exception of gear 

reducers) 

 Simple and cheap maintenance 
 

Disadvantages include: 
 

 High-cost price 

 The need for precision machining and assembly 

 Their operation is accompanied by noise and vibration 

The main parameters of a gearbox are: 

 

 Nominal power 

 The transmission report mad 

 Input shaft speed 

 Distance between axes (standardized) 

 

Due to the multiple uses in the machine-building 

industry and various devices, the gear speed parameters 

are standardized. 

The choice of gearbox type in a kinematic scheme is 

made according to: 

 

 The required transmission report 

 The nominal power required 

 Average load required 

 The average working speed required 

 Available size 

 The relative position of the axes of the motor and of 

the working organ (machine) 

 The overall efficiency of the kinematic scheme 

 

Depending on these requirements, the following 

types of gear units can be used: Cylindrical, conical, 

conical-cylindrical, screw, cylinder-screw, planetary. 

Gearboxes with cylindrical gears. These are the most 

used types of gear reducers because: 

 

 They are produced in a wide range of powers: From 

very small installed powers (of the order of the 

Watts) to 900000 W (900 kW) 

 Total transmission ratios, iT max = 200 (iT max = 

6.3, for one-stage reducers; iT = 60, for 2-speed 

reducers, iT = 200, for 3-speed reducers) 

 High peripheral speeds, Vmax = 200 m/s 

 The possibility of typing and standardized or 

standardized execution 

 

They are constructed in versions with 1, 2 and 3 

reduction stages, with straight or inclined teeth. The 

notations in the figure are: 
 

 Entry into the gearbox, with the letter I 

 Exit from the gearbox, with the letter E 

 The Fig. 1 to 6, represent the wheels that make up 

the gears of the reduction gears 
 

From the point of view of the inclination of the gear, 

when choosing the type of gearbox with cylindrical gears, 

the following recommendations are taken into account: 
 

 Gearboxes with straight cylindrical gears, for 

small and medium installed powers, small and 

medium peripheral speeds and to the ball wheels 

from the gearboxes 
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 Gear units with inclined cylindrical gear wheels, for 

small and medium installed powers, high peripheral 

speeds, silent gears 

 Gearboxes with cylindrical V-toothed gears, for high 

installed powers and low peripheral speeds (Fig. 7) 

The classic gearboxes, manual, the most widespread 

and most used, are mainly of three types: With two axes 

(Fig. 8), with three axes with welding the input and 

output shafts in the direct socket (Fig. 9), with three 

axles without welding shafts (Fig. 10). 

 

 
 

Fig. 7: Kinematic diagrams for cylindrical gearboxes 
 

 
 

Fig. 8: The classic gearboxes, manual, with two axes 
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Fig. 9: The classic gearboxes, manual, with three axes with welding the input and output shafts in the direct socket 
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Fig. 10: Classic, manual, three-axis gearboxes without welding the input and output shafts directly 
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The great advantage of such a system is that the input 

and output gears are practically welded, i.e., the input 

shaft is attached to the output shaft in the main direct 

socket, the transmission ratio becomes 1 and the power 

lost in this step is very low. Intensely used on the long 

road being zero, so 100% practical efficiency. 

Other gears are not very convenient, however, with 

lower efficiency and when walking in the city, where 

the lower gears are used, the gearbox in Fig. 9 with 

welding shafts, it is no longer advantageous 

(Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; Aversa et al., 2017a; 2017b; 2017c; 2017d; 

2017e; 2016a; 2016b; 2016c; 2016d; Cao et al., 2013;     

Dong et al., 2013; Franklin, 1930; He et al., 2013; 

Lee, 2013; Lin et al., 2013; Liu et al., 2013; Padula 

and Perdereau, 2013; Perumaal and Jawahar, 2013; 

Petrescu, 2011; 2012; 2019; Petrescu and Petrescu, 1995a; 

1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 

2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e; 2011a-

c; 2012a; 2012b; 2013a-e; 2014a-h; 2016a; 2016b; 

2016c; Petrescu et al., 2007; 2009; 2016; 2017a; 

2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 

2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 

2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 

2017w; 2017x; 2018a; 2018b; 2018c; 2018d; 2018e; 

2018f; 2018g; Petrescu and Petrescu, 2019a-c;   

Petrescu and Calautit, 2016a-b; Svensson et al., 2004). 

Materials and Methods 

A more convenient solution is the one presented in 

Fig. 10, with three axes without welding shafts, a 

solution that will be carried out in this work both the 

kinematic analysis of the gearbox and the dynamic 

analysis (determination of yields) for the main city steps. 

One has 15 gear wheels from 1 to 15, whose tooth 

numbers are given in Table 1.  

The input shaft 1 is a sprocket with gear 1 which is 

therefore fixed to the shaft and rotates permanently 

with it, the intermediate or auxiliary shaft 2 has on it 7 

gear wheels, 3, 5, 7, 9, 11, 13, which are fixed on the 

shaft and rotate permanently with the shaft 2 helpers 

permanently transmitting the movement and to the 

wheels on the output shaft 3 which rotate all the time 

and have permanent power but transmit it to the 

output shaft only when they are coupled and the 

output shaft 3 has freely mounted on it all its gear 

wheels 4, 6, 8, 10, 12, 15, which will be coupled with 

the output shaft only one at a time depending on the 

trap chosen by means of synchronous wheels. There 

are also ballast mechanisms that prevent the coupling 

of two steps simultaneously. 

Table 1: Tooth numbers 

Z1 Z2 Z3 Z4 Z5 

40 48 16 50 18 

Z6 Z7 Z8 Z9 Z10 

20 20 16 24 16 

Z11 Z12 Z13 Z14 Z15 

36 18 20 16 50 

 

Dynamic analysis of the classic gearbox mechanism, 

manually, with three axes without solidification steps. 

The gearbox efficiency analyzed in the three 

frequently used steps, 3, 4 and 5, is further determined. 

The calculation relationships used in succession are 

the two below, (I) and (II), only for external gears: 
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Results and Discussion 

For the reverse gear, there is an additional gear wheel 

14 which reverses the direction of rotation of the output 

shaft but only in the reverse gear 6. 

Kinematic analysis of the classic gearbox mechanism, 

manually, with three axes without solidification steps. 

The transmission reports made by this classic 

(manual) gearbox are determined (Table 2): 

 

1) 0 is determined for gear 1.2 directly with 

relations I and II: 
 

0 

0,853922 
 

2) 78 is determined for gear 7.8 with relations I and II, 

where 1 is replaced by 7 and 2 is replaced by 8. The 

yield in step 3 is then obtained through the product 

between the yield 0 and that of gear 7.8; 3 = 0  78: 
 

78 

0,833237 

3 

0,711519 
 

3) 9,10 is determined for the gear 9.10 with relations I 

and II, where 1 is replaced by 9 and 2 is replaced by 

10. The yield in step 4 is then obtained by the 

product between the yield 0 and that of the gear 

9.10; 4 = 0  9,10: 
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9,10 

0,842036 

4 

0,719033 

 

4) 11,12 is determined for the gear 11.12 with relations 

I and II, where 1 is replaced by 11 and 2 is replaced 

by 12. The yield in step 5 is then obtained by the 

product between the yield 0 and that of the gear 

11.12; 5 = 0  11,12: 

 

11,12 

0,856361 

5 

0,731265 

 

The angles 0,  are constant for all the gears of this 

gearbox as follows: 0 = 18.6, = 16. 

The efficiency results in the main gears, which are 

used more often by the driver of the vehicle, are 

generally high and could be optimized so that they are 

even higher with the optimum design of the gearbox, 

with gears having a larger number of teeth and possibly 

with decreasing the pressure angle normal on the 

division circle to an optimum value. 

Next, another optimized constructive variant will be 

presented (Table 3 and 4). 

 

1) 0 is determined for gear 1.2 directly with relations I 

and II: 

 

0 

0,82513 

 

2) 78 is determined for gear 7.8 with relations I and 

II, where 1 is replaced by 7 and 2 is replaced by 

8. The yield in step 3 is then obtained through the 

product between the yield 0 and that of gear 7.8;  

3 = 0  78: 

 

78 

0,80379 

3 

0,66323 

 

3) 9,10 is determined for the gear 9.10 with relations I 

and II, where 1 is replaced by 9 and 2 is replaced by 

10. The yield in step 4 is then obtained by the 

product between the yield 0 and that of the gear 

9.10; 4 = 0  9,10: 

 

9,10 

0,81154 

4 

0,66962 

 

4) 11,12 is determined for the gear 11.12 with 

relations I and II, where 1 is replaced by 11 and 2 

is replaced by 12. The yield in step 5 is then 

obtained by the product between the yield 0 and 

that of the gear 11.12; 5 = 0  11,12: 

11,12 

0,82433 

5 

0,68018 

 

The angles 0,  are constant for all the gears of this 

gearbox, as follows: 0 = 19.9,  = 29: 

As can be seen from the new values, the 

transmission ratios in the five forward gears of the 

gearbox are much optimized, even if their output yield 

is slightly lower. This efficiency can be increased 

significantly, especially for the most used steps by 

drivers, 3, 4, 5, through a new constructive scheme in 

which the number of teeth of the wheels will be much 

higher and eventually the pressure angle of the wheels 

will be reduced (alpha 0). 

 

Table 2: The transmission reports made by this classic 

(manual) gearbox 

i0 = i12 i34 i56 i78 i9,10 

= -z2/z1 = -z4/z3 = -z6/z5 = -z8/z7 = -z10/z9 

-1,2 -3,125 -1,11111 -0,8 -0,66667 

i11,12 i13,14 i14,15 i1 i2 

= -z12/z11 = -z14/z13 = -z15/z14 = i0 i34 = i0 i56 

-0,5 -0,8 -3,125 3,75 1,333333 

i3 i4 i5 i6 = iMR 

= i0 i78 = i0 i9,10 = i0 i11,12 = i0 i13,14 i14,15 

0,96 0,8 0,6 -3 

 
Table 3:  Another optimized constructive variant 

Z1 Z2 Z3 Z4 Z5 

40 48 16 50 18 

Z6 Z7 Z8 Z9 Z10 

30 20 24 24 24 

Z11 Z12 Z13 Z14 Z15 

36 27 20 16 50 

 
Table 4: Another optimized constructive variant 

i0 = i12 i34 i56 i78 i9,10 

= -z2/z1 = -z4/z3 = -z6/z5 = -z8/z7 = -z10/z9 

-1,2 -3,125 -1,667 -1,2 -1 

i11,12 i13,14 i14,15 i1 i2 

= -z12/z11 = -z14/z13 = -z15/z14 = i0 i34 = i0 i56 

-0,75 -0,8 -3,125 3,75 2 

i3 i4 i5 i6 = iMR 

= i0 i78 = i0 i9,10 = i0 i11,12 = i0 i13,14 i14,15 

1,44 1,2 0,9 -3 
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To be able to observe if the decrease of the efficiency 

of the gears is due to the optimum arrangement of the 

gears or the fact that the value of the angle of pressure 

alpha0 has changed by increasing, then the recalculation 

of the new stages optimized with the same values for the 

angles of pressure and inclination of the gear will 

proceed as in the case used initially and it will be 

observed that the gears' returns go back to the initial 

values, so their decrease was mainly due not to the fact 

that the tooth numbers of the wheels were optimized in 

order to obtain optimum transmission ratios but due to 

the fact that the value of the pressure angle had been 

raised to close to the known standard value of 20 [deg]: 

 

1) 0 is determined for gear 1.2 directly with 

relations I and I: 

 

0 

0,85392 

 

2) 78 is determined for gear 7.8 with relations I and II, 

where 1 is replaced by 7 and 2 is replaced by 8. The 

yield in step 3 is then obtained through the product 

between the yield 0 and that of gear 7.8; 3 = 0  78: 

 

78 

0,82739 

3 

0,70653 

 

3) 9,10 is determined for the gear 9.10 with relations I 

and II, where 1 is replaced by 9 and 2 is replaced by 

10. The yield in step 4 is then obtained by the 

product between the yield 0 and that of the gear 

9.10; 4 = 0  9,10: 

 

9,10 

0,83729 

4 

0,71498 

 

4) 11,12 is determined for the gear 11.12 with relations 

I and II, where 1 is replaced by 11 and 2 is replaced 

by 12. The yield in step 5 is then obtained by the 

product between the yield 0 and that of the gear 

11.12; 5 = 0  11,12: 

 

11,12 

0,85344 

5 

0,72877 

 

The angles 0,  are constant for all the gears of this 

gearbox as follows: 0 = 18.6,  = 16. 

We will continue to repeat the final experiment, with 

optimized transmission ratios, but using a much lower 

pressure angle, in an attempt to achieve higher 

efficiencies at the main gear gears: 

 

1) 0 is determined for gear 1.2 directly with 

relations I and II: 

 

0 

0,93314 

 

2) 78 is determined for gear 7.8 with relations I and II, 

where 1 is replaced by 7 and 2 is replaced by 8. The 

yield in step 3 is then obtained through the product 

between the yield 0 and that of gear 7.8; 3 = 0  78: 

 

78 

0,89096 

3 

0,83139 

 

3) 9,10 is determined for the gear 9.10 with relations I 

and II, where 1 is replaced by 9 and 2 is replaced by 

10. The yield in step 4 is then obtained by the 

product between the yield 0 and that of the gear 

9.10; 4 = 0  9,10: 

 

9,10 

0,90950 

4 

0,84869 
 

4) 11,12 is determined for the gear 11.12 with relations 

I and II, where 1 is replaced by 11 and 2 is replaced 

by 12. The yield in step 5 is then obtained by the 

product between the yield 0 and that of the gear 

11.12; 5 = 0  11,12: 
 

11,12 

0,93716 

5 

0,87450 
 

The angles0,  are constant for all the gears of this 

gearbox as follows: 0 = 4,  = 40. 

It is observed the increase of the efficiency in all the 

gears due to the decrease of the angle of pressure to gears 

to the value 4 [deg], in the conditions in which the numbers 

of optimized teeth were used to have some ratios of optimal 

transmission and power in all the gears speeds. 

In fact, this is the main innovation brought about by 

the paper and by the original relations of calculation of 

the yield (I and II) used in the paper. 

From a technological point of view, it is not too easy to 

lower the alpha angle of pressure to such a low value, 4 



Relly Victoria Virgil Petrescu and Florian Ion Tiberiu Petrescu / American Journal of Engineering and Applied Sciences 2020, 13 (2): 269.282 

DOI: 10.3844/ajeassp.2020.269.282 

 

278 

[deg]. Initially following the new theory proposed by the 

authors of this paper, since 2002, in France, the gear 

pressure angle has been reduced by only 4 [deg] from 20 

[deg] to 16 [deg], but in the United States a little later, in 

laboratories of aerospace including NASA managed to 

reach values of 10-12 [deg], but did not go below 10 

[deg], in the years 2010-2014. The authors of the paper 

verified various possible scenarios with the INVENTOR 

software, in 2014 (Petrescu and Petrescu, 2014a) and all 

the values obtained with the help of the new calculation 

relationships, I and II, were fully verified with those 

obtained with the help of the Inventor 2014 software, from 

alpha0 = 10 [deg] the alpha0 = 30 [deg]. Undervalue 10 

[deg] the software said that it has no experimental data 

and cannot calculate the values proposed by the authors, 

on that date 2014. Even so with only alpha0 = 10 [deg] the 

values of the gears can be greatly optimized if the number 

is increased the teeth of the wheels used in gears, with the 

possible increase of the gauge, but with the great 

advantage of obtaining very high efficiency in the 

mechanical transmissions with fixed gears used. 

Conclusion 

Fixed axis mechanical transmissions today have the 

largest spread on the entire planet, being practically used 

in almost all areas. From the gearboxes of the vehicles to 

the stationary reducers, used in the electrical, electronic 

and electrotechnical equipment, in the heavy industry but 

also in the light industry, in energy and in transport, 

practically the transmissions with fixed axes meet today 

everywhere, being part of our daily life. For this reason, 

we want to present the kinematic and dynamic analysis 

at a classic, manual, three-axis gearbox, with six speeds, 

without a direct socket. With the help of the presented 

method, one can analyze the dynamics of such a gearbox 

in order to design it optimally, so as to achieve the 

highest yields in operation, especially in the most used 

speeds, so that the transmission losses are limited to up. 

The classic gearboxes, manual, the most widespread 

and most used, are mainly of three types: With two axes 

(Fig. 8), with three axes with welding the input and 

output shafts in the direct socket (Fig. 9), with three 

axles without welding shafts (Fig. 10). 

The paper examines how the geometrical-kinematic 
and dynamic analysis based on its yield and is 
performed based on a classic, manual, three-axis 
gearbox, without a direct socket, a model that is 
widely used in the automotive industry worldwide, 
from the beginnings of the car and until today, even if 
in the meantime there have been automatic gearboxes, 
or other with two gearboxes classics, to which a 
double-clutch has been added. 

The efficiency results in the main gears, which are 

used more often by the driver of the vehicle, are 

generally high and could be optimized so that they are 

even higher with the optimum design of the gearbox, 

with gears having a larger number of teeth and possibly 

with decreasing the pressure angle normal on the 

division circle to an optimum value. 
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