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Abstract: Pose tracking is a crucial issue for many applications such as 

robotic tasks and facility operations. Vision-based approaches with non-

contact properties are appropriate choices for these tasks. However, vision-

based approaches are not sufficiently robust and fast. In this work, we 

propose a vision-based pose tracking to deal with these problems. We 

estimate poses using Lie group and Lie algebra representation theory. 

Such operation is performed in a linearized space, therefore it is 

convenient for pose estimation. To provide reliable visual information for 

our pose estimation, we detect line segments. Our detection of line 

segment depends on semi-global image information. We describe all line 

segments and match those detected in consecutive frames. Our line 

segment detector and matching descriptor are good at discarding 

ambiguous line segments and finding real ones in noisy situations. The 

integration of group theory and line segment detection and matching 

plays an important role for developing a robust vision-based pose 

tracking system. Our system proves to be efficient and robust. 
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Introduction 

Vision-based pose estimation finds numerous 

applications, including robotic tasks, facility operations 

and automatic measurement. Real-time vision-based 

pose estimation is becoming practical in recent years. 

Despite of the development, real-time precise pose 

estimation is still a challenging task because the 

information in a video stream is huge. In addition, 

viewpoint variations, image noises and illumination 

changes are difficult to handle in many scenarios. We 

aim at developing a robust vision-based 6D pose 

estimation based on the projection of an object in a 

image sequence. There are two key ideas in our system 

development. The first one is pose estimation using Lie 

group and Lie algebra representation theory. The second 

one is detection and matching of line segment features. 

The integration of the two techniques is important to 

develop a robust vision-based pose tracking system.  
Given an initialization for pose tracking, the 

transformation of continuous poses can be represented 

using 3D rotation and translation. The representation in 

a homogeneous coordinate setting is a 4×4 matrix. We 

estimate the transformation to update the relative pose 

between a camera mounted on a system an object in the 

camera’s view. Given two sets of points P = {pi}, one set 

is gotten by a Euclidean transformation and another is 

detection results in an image, we can estimate the 

motion. A good representation for estimating 

transformations needs to be composed, inverted and 

differentiated. Unfortunately, direct matrix operations 

do not meet the above demand. It is especially difficult 

to differentiate a transformation matrix. To deal with 

this problem, we represent object motion using Lie 

group and Lie algebra theory. 

Group theory focuses on the algebraic structures that 

have certain properties on a set. A Lie group is a 

nonempty subset where a smooth manifold and a 

topological group are defined. Lie groups are 

differentiable manifolds (Sattinger and Weaver, 1998). 

The group operations of a Lie group are smooth. The 

inverse mapping of a Lie group is also smooth. A 

Special orthogonal Lie group SO(3) describes rotations 

in a 3D space. A Special Euclidean group SE(3) 

represents 3D rigid transformations that include linear 

transformation on homogeneous 6-vectors (Taylor and 

Kriegman, 1994). Lie algebra defined on the tangential 

space of a Lie group characterizes the local properties of 

the elements in the group. Lie algebra consists of a 

vector space over some field and a binary operation 

named as the Lie bracket operation. The Lie algebra 

so(3) of SO(3) can be described by a 3D vector that can 
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be transformed into a skew-symmetric matrices. The Lie 

algebra se(3) associated with the Lie group SE(3) is able 

to represent motions. It is also possible to describe 

coordinate frame transformations using the ad-joint 

representation of a Lie group. We can find local 

representation and operation of a Lie group to estimate 

parameters in a linearized way. 

To provide reliable information for pose estimation, 

feature correspondences between consecutive frames are 

crucial for the pose estimation results (Davison, 2003; 

Drummond and Cipolla, 2002; Kim et al., 2016). Point 

matching has been widely used for tracking and pose 

estimation because it is easy to detect and find point 

feature correspondences in consecutive frames using an 

effective feature description. However, point features 

are not always consistent due to viewpoint and 

illumination variations. Although it is possible to find 

scale, rotation, or affine invariant features (Lowe, 2004; 

Mikolajczyk et al., 2005), such features are 

computationally expensive to be detected. Therefore, 

Invariant features are not good choices for practical 

applications such as tracking and pose estimation.  

Edge features are abundant in images. The Canny 

edge detector can find edges in a heuristic way. The 

number of edges is adjusted by the thresholds. Edge 

features are searched in 1D when the direction of the 

searching can be calculated (Rosten and Drummond, 

2005). Edge features are not always reliable especially in 

image regions with low contrast. In addition, some edge 

features are formulated due to local noises. Such edges 

bring outliers to pose estimation systems. 

Lie group theory has been applied in a tracking 

system based on edge detection (Drummond and Cipolla, 

2002). The edge detection is performed in a local region. 

The detection results might have drifts caused by the 

noises in local neighborhoods. The drift of edges can 

lead to tracking errors, which should be avoided. In 

contrast, we detect line segments based on semi-global 

information. These line segments are used to find 

correspondences with the projection of the 3D model.  
This paper is organized as follows. After the 

related work in section 2, we introduces line segment 
detection, description and matching in section 3. 
Camera projection and Lie group and Lie algebra 
formulation are given in section 4. Experimental 
results on image sequences are demonstrated in 
section 5. Section 6 concludes this work.  

Related Work 

Our goal is to develop fast and robust pose tracking 

systems. Pose tracking has been handled based on 

different sensors. Ultra sound and laser sensors are 

useful in many applications (Talib et al., 2007; 

Koolwal et al., 2010). Although ultrasound sensors are 

cheap and convenient, they do not provide high 

accuracy. Laser sensors can be precise. Unfortunately, it 

is relatively difficult to measure an object at many points 

simultaneously using laser sensors. Vision-based pose 

tracking does not need expensive hardware. Moreover, 

vision-based approaches are flexible to add other 

functions such as recognition. They have better 

flexibility than other sensor-based approaches. Vision-

based pose tracking has been dealt with using 

deterministic approaches (Wunsch and Hirzinger, 1997) 

and probabilistic approaches (Isard and Blake, 1998; 

Wang and Yagi, 2008). Using either approaches, motion 

has to be linearized to solve the problem. In this work, we 

handle this by using Lie group and Lie algebra. This bears 

certain similarities to a few works such as (Taylor and 

Kriegman, 1994; Drummond and Cipolla, 2002;    

Rosten and Drummond, 2005; Flint et al., 2011). 

However, our method is different from these works in 

three important aspects: First, we consider line segments 

as reliable input for pose tracking; second, we propose a 

line segment descriptor for matching; third, we consider 

the problem as a minimization using a robust fitting 

function. Line segments have several advantages 

compared with low-level features. Our line segment 

descriptor can discard ambiguous correspondences in 

consecutive frames, which is important for the input of 

the minimization process. The robust fitting function is 

useful for getting a stable solution to the minimization 

problem. Different from pose estimation and tracking 

based on point, edge and line features, we compute 3D 

relative pose by using line segments. In our system, 

line segments detection runs in a semi-global way. 

Given a local seed pixel, we find possible a line 

segment based on gradient orientation consistency. We 

also propose a line segment feature descriptor to match 

line segments. We discard ambiguous line segments 

based on matching results. 

Line Segment Detection, Description and 

Matching 

Line feature detection can be cast as a two-step issue: 

Detecting edges and connecting edges. Line features can 

be detected by connecting edge features with similar 

gradient orientation. This approach heavily depends on 

the edge detector. Edges in weak contrast regions are 

difficult to be detected. Although using a low threshold 

in Canny edge detector can increase the detection 

probability, it is at the cost of high false-positives. In 

addition, the computational cost is high using the two 

steps including the edge detection and connection. 

Hough transform detects line features in a global way 

based on a transformation from feature space to 

parameter space. A Hough transform based method 

performs detection by splitting the input frame into a set 

of voting elements (Hough, 1962). The Hough vote for 
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each line hypothesis is simply obtained from the edges 

by observing the distribution of line parameters. Hough 

Transform has been extended for multiple object 

instances detection (Barinova et al., 2012). Hough 

transform calculates all the votes in an image. 

Unnecessary information is considered for line detection. 

Hough transform cannot provide robust performance in 

image regions with low contrast because the votes from 

such regions cannot compete with the votes from other 

regions with high contrast. 

Line segments contain more information than lines 

since they provide the ends of the lines. Line segments 

tend to be more reliable than lines in this application. 

Line segment detection can be done by proposing line 

hypotheses using corners found in an image (Rosten and 

Drummond, 2005). The features are detected using a 

corner detector. Then, many hypotheses are proposed 

based on the corners’ position. The hypotheses are tested 

and those passing the test are considered as useful lines for 

pose estimation. This approach has to test a large number 

of hypotheses because line hypotheses are quadratic with 

respect to the number of the corners detected. In addition, 

many lines passed the test are overlapped. It is also 

difficult to eliminate the ambiguous lines. 

Line Segment Detection 

Line segments can be formulated by occlusion 

boundaries of foreground object and their background 

(Burns et al., 1986). It is also possible that contrast in an 

object leads to a line segment. Line segments are sparse 

compared with the number of the pixels in an image. The 

direction of a line segment is closely related with the 

pixel gradient orientations in its neighborhood. They are 

approximately orthogonal to each other (Gioi et al., 

2010). The pixels following this rule are named as 

aligned pixels. They are important for line segment 

detection. Despite of the sparse property of line 

segments, there are a lot of line segment hypotheses 

when we consider a local region in an image. Most of the 

hypotheses will be discarded if a large support region is 

checked. A rectangular region along a line segment is 

defined as support region for the line segment support 

region. The pixels following the gradient consistency 

rule are used for line segment detection. 

We calculate the difference between two pixels: 

 

( ) ( ) ( ), 1, 1 ,I u v I u v I u v∆ = + + −  (1) 

 

where, I(u,v) is the intensity value at pixel (u,v). 

Then, the difference is used for calculating the 

gradients: 

 

( )
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Since ∆I(u,v) appears in both (2) and (3). ∆I(u,v) is 

calculated once and used twice to reduce the 

computational cost. The magnitude of gradient is: 

 

( ) ( ) ( )2 2
, , , ,

u v
m u v g u v g u v= +  (4) 

 

We calculate the derivatives respectively: 
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The gradient orientation of a pixel (u,v) can be 

calculated by: 
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Gradient orientation is compared with the direction of 

a line segment hypotheses. We do not calculate the 

difference between two orientations directly because it is 

computationally expensive. The angle difference 

calculated directly can be ambiguous because of the 

periodicity property. Instead, we keep the two values 

αu(u,v) and αv(u,v) for each pixel. 

 

 
 
Fig. 1: Distance between two angles is calculated by measuring 

the Euclidean distance between the two points projected 
on a circle by the angles 
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Orientation difference of two pixels I(u1,v1) and 

I(u2,v2) is calculated by measuring the distance between 

∆αu = αu(u1,v1)-αu(u2,v2) and ∆αv = αv(u1,v1)-αv(u2,v2). 

The calculation shown in Fig. 1 is: 

 

( ) ( )( ) ( ) ( )
2 2

1 1 2 2
, , .

u v
dist u v u vα α α α− = ∆ + ∆  (8) 

 

In the input image, the pixels on the edges have high 

gradient magnitudes than the pixels in the smooth 

regions. A few pixels with consistent gradient 

orientations are sampled as the seed set of a line 

segment. It is known that the gradient orientations of a 

line segment are consistent. We check the gradient 

orientation consistency between the selected pixel and its 

neighborhood. Once a pixel is sampled as a seed, it will 

grow from one pixel to many pixels that form a region. 

The pixels in the region have similar gradient 

orientations. The pixels in rectangle region are calculated 

to check the fitness of the region. Orientation difference 

calculated in (8) is computationally inexpensive. 

Moreover, it reflects the orientation difference in a better 

way. For example, the difference calculation between 

two angles is not straightforward when one angle’s value 

is larger than 0 and another one is less than 0. 

We sample several pixels in a region and calculate 

the orientations of these pixels. Then, we compute 

median of the orientations in the pixel set. The pixel 

that has the shortest distance to the median is 

considered as the seed for region growing. Pixels are 

checked along the direction given by the median. The 

pixels’ gradient orientations within the range of 

orientations are added into the region. The orientation 

range is set to 
8

π

corresponding to a distance threshold 

0.3902 using (8). The direction of the growing 

rectangular region Rec can be updated by accumulating 

i
th
 pixel’s gradient orientations: 
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The weighted coordinate mean of the rectangular 

region is calculated by: 
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and: 
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The direction of the rectangular region is estimated 

by calculating the eigenvector of the association matrix 

defined by: 
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where, the elements of the matrix duu, duv, dvv are 

calculated by: 
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The eigenvector associated with the smallest eigenvalue 

of the matrix can be approximately calculated using an 

iterative algorithm within a few iterations (Gastal and 

Oliveira, 2012). The computational complexity of this 

eigenvector computation method is linear to the matrix 

dimension. In contrast, the computational complexities of 

the traditional methods are quadratic to the dimensionality 

of the matrix. In our implementation, we can estimate 

eigenvectors using 1 or 2 iterations. In most cases, only 1 

iteration is sufficient for accurate estimation. Figure 2 

shows the detection results of one image. 

Line Segment Description and Matching 

We can find the line segment correspondence for a 
projection of a 3D contour model. The searching is 
performed based on the line segments nearby the contour 
projection. 
 

 
 
Fig. 2: Line segment detection results using our detector 
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However, this approach is not able to guarantee 
correct matching because multiple line segments are 
available in the neighborhood. Incorrect line segment 
can be selected for the pose estimation, which leads to 
failure of pose tracking. To deal with this problem, we 
match line segments detected in consecutive image 
frames. The line segments in the previous image frame 
are detected and described using a compact 
representation. They are matched with the line segments 
detected in the current image frame. 

A good line segment descriptor should be compact 
and efficient for the comparison. We propose a 
descriptor by comparing the intensities of pixel pairs 
sampled in the rectangular region of a line segment. The 
intensity comparison of a pair of pixels is saved as 1 
binary digit. The digit is set to 1 when the first pixels 
sampled is brighter than the second one. It is set to zero, 
vice versa. The matching is performed by calculating the 
Hamming distance between two line segment binary 
description vectors. The matching process greatly 
reduces the danger of incorrect matching. The binary 
description has been used in other matching approaches 
such as Sum of Squared Difference (SSD) are more 
expensive for line segment matching. 

In addition, matching using SSD is sensitive to the 
small differences of pixel intensity variations. The 
matching results tend to be not very robust to noises 
and viewpoint changes. We estimate the relative 
position by minimizing an error term that is define as 
the sum of the distances between the projected 
features of the 3D model and their corresponding 
image features projected by the object. 

Pose Tracking 

We calibrate a camera using the method proposed by 

Zhang (2000). The pose is initialized by using the 

effective method (DeMenthon and Davis, 1995; 

Desolneux et al., 2000). We detect line segments in an 

input image. The correspondences are found by using 

our line segment matching method in Section III-B. We 

linearize the motion using Lie algebra. The motion is 

calculated by solving a minimization problem. The 

flowchart of our system is shown in Fig. 3. 

3D to 2D Projection 

3D objects have projections in images. A camera 

model with intrinsic and extrinsic parameters describes 

the mapping from 3D to 2D. The intrinsic parameters of 

a camera is characterized in a 3×3 matrix A: 

 

0

0
,

1

u

v

f u

f v

 
 =  
  

A  (16) 

 

where, fu and fv are the scale parameters of the camera; u0 

and v0 are the coordinate deviations from the principal 

point in the image plane. The extrinsic parameters are 

described by a 3×4 matrix consisting of a rotation matrix 

R and a translation vector T: 

 

[ ].=E R T  (17) 

 

The projection from a 3D point [X Y Z]
T
 to 2D image 

point [u v]
T
 is determined by the intrinsic and extrinsic 

parameters. We use homogeneous coordinates to 

facilitate the computation: 

 

[ ] [ 1] .
T T

u v w X Y Z= AE
⌣ ⌣ ⌣

 (18) 

 

The coordinates in the image are calculated by: 

 

[ ] [ ]/ / .
T T

u v u w v w=

⌣ ⌣ ⌣ ⌣
 (19) 

 

 
 

Fig. 3: The flow chart of our vision-based pose tracking system 
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Motions in consecutive frames are updated by right 

multiplying of the projection matrix Et-1 in the last frame 

by a Euclidean transformation: 

 

1
,

t t t−

=E E M  (20) 

 

Mt is a 4×4 matrix composed of a rotation RM and a 

translation tM of the motion: 

 

M M
M ,

1

 
=  
 

R T

q
 (21) 

 

here q = [0 0 0]. 

We estimate the motion matrix based on the input of 

an input image. Then, the pose is calculated using the 

known transformation. 

Minimization for Motion Tracking 

The pose of the camera is calculated using the 

correspondences of the features. To make the estimation 

more precise, we perform M-estimation to minimize the 

fitting errors. The projection of the 3D model in an 

image p = [u v]
T
 is calculated by (18) and (19). The 

corresponding point [ ]
T

p u v=ɺ ɺ ɺ is found in the image of 

a line segment by using the line matching. The distance 

between the two points indicates the motion between 

consecutive frames: 

 

( ),q pψ −  (22) 

 

where, ψ(q-p) is a metric for measuring the distances. 

The simplest definition is measuring the Euclidean 

distance between the two points: 

 

( )
2
.q p q pψ − = − (23) 

 

The matching of a single point pair is insufficient for 

the transformation estimation. In contrary, many 

correspondences are applied in the transformation 

estimation. The transformation is calculated by solving a 

least square problem: 

 

( )
1

.

i ii
d q pψ

=

= −∑  (24) 

 

To solve this problem, the derivative of the 

transformation matrix is necessary for the minimization. 

The derivative of the matrix should be calculated in a 6D 

space because the transformation is described by 3 

rotation parameters and 3 translation parameters. 

Unfortunately, the transformation matrix is not closed 

for matrix addition. The result of two transformation 

matrix addition is not meaningful. 

Motion Estimation using Lie Algebra 

A Lie groups SO(3) represented in a R
3×4

 matrix has 

3 degrees of freedom corresponding to a rotation. A Lie 

group SE(3) described by a R
4×4 

matrix has 6 degrees of 

freedom: R∈SO(3) and R∈R
3
. The Lie algebra se(3) of 

the Lie group SE(3) consists of the infinitesimal 

generators of rotations and translations. The generators 

are the elements of the tangent space of the manifold at 

the identity element of SE(3). The Lie algebra se(3) 

corresponding to the Lie group with 6 generators: 
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The mapping R
3
→se(3) is: 

 

3
, ,alg ,

0 0
R

ϕ ω ϕ
ϕ ω

ω

×
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 (28) 

 

where, φ denotes the translation vector and ω denotes the 

rotation vector. ω
×
 is the anti-symmetric matrix transformed 

from ω. alg is the linear combination of the generators. 

Linear combination of the generators is specified by 

the coefficients: 
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The motion matrix is approximated by the generators 

linearly: 
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The partial derivatives corresponding to the motion 

parameters can be obtained by: 
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[ ] [ ]i
G 1 .

T T

u v w X Y Z′ ′ ′ = AE
⌣ ⌣ ⌣

 (31) 

 

The derivatives with respect to the image coordinates 

are calculated by: 

 

[ ] 2 2
/ / / / .
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u v u w uw w v w vw w′ ′ ′ ′ ′ ′ = − − 
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Motion Optimization 

The distances measured between the projection of the 

3D model the line segments are projected to the 6D 

subspace spanned by the transformation vectors. The 

solution to the 6D subspace transformation is obtained 

by minimizing the robust error term. 

The standard least squares algorithm considers the 

residual values as the only evidence for the 

optimization. A few large residual values with 

quadratic penalty will make the parameter estimation 

far from the real solution. Unfortunately, such large 

residual values are due to wrong positions or 

correspondences. These are usually outliers that 

cannot be fitted into the transformation model. This 

problem can be addressed by adopting a robust error 

function. Instead of using the simple quadratic penalty 

term, we consider the residuals according to their 

values. A smaller penalty will be given to the 

residuals with large values. We use Huber cost 

function. The function in (22) is given by: 

 

( )

( )

2

2

,

2 , ,

for b

b b otherwise

ψ δ δ δ

ψ δ δ

= <

= −

 (33) 

 

where, the value b gives the range of δ for the 

approximation. The function is a hybrid between the L1 

and least squares cost function. 

Experimental Results 

We implemented the proposed system and perform 
experiments. The camera is moved in different paths. 
In some of the experiments, the camera is mounted on 

a robot arm. The end effector on which a camera is 
mounted has a coordinate setting which is different 
from the camera coordinate system. The relationship 
of the two coordinate settings is calibrated by using the 
projection of calibration board in the images. A point pc 
in the end effector coordinate is transformed to a point 
pc in the camera coordinate by 4 transformation 
matrices: pc = Ec Qbc Qeb me where Ec is the camera 
projection matrix composed of internal parameter 
matrix and external parameter matrix; Qbc is the matrix 
describing the transformation from the camera 
coordinate system to the robot arm base coordinate 
system; Qeb is the matrix describing the transformation 
from the robot arm base to its end effectors. 

We use a calibration board to calibration the system. 
Several images of the calibration board are captured by 
the camera. The calibration board has same movement 
with the end effector which it is mounted on. The 
camera internal parameters are calibrated using the 
method proposed by Zhang (2000). We detect the 
points of the corners in the images. The 
correspondences between the image points and the 
points in the 3D space are utilized for calibrating the 
two transformations Tce and Teb. The transformation 
matrix can be converted into transformation vectors, 
which makes the representation compact. The 
transformation vector consists of 3 translation elements 
and 3 rotation elements. 

The two transformations (Tce and Teb) are solved 

by using the interior point algorithm. There are noises 

in the images which lead to drift of the 

transformations. We calculate the distances between 

the image points and the fitted positions. The 

correspondences with large errors are discarded. Then, 

we run the optimization algorithm again to get the 

precise transformation parameters. We obtain the 

ground truth using a laser tracker measuring several 

points on the object. The pose is calculated by fitting 

these points. The results of the experiments are 

demonstrated in Fig. 4. The tracking accuracy is given 

in Table 1. The measured accuracy includes the 

translation and rotation errors. The translation errors 

are measured in millimeter and the rotation errors are 

measured in degrees. The accuracy given in Table 1 is 

the average error in a sequence. 

 
Table 1: Results of experiments measuring accuracy of the proposed pose tracking method. (Trans in mm and Rot in degree) 

TransX  TransY TransZ  RotX RotY RotZ 

0.13 0.16 0.56 0.032 0.019 0.035 

0.23 0.18 0.47 0.033 0.021 0.029 

0.20 0.21 0.76 0.043 0.015 0.036 

0.15 0.19 0.49 0.029 0.030 0.045 

0.26 0.20 0.36 0.041 0.027 0.019 

0.21 0.28 0.58 0.043 0.015 0.036 
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 (a) (b) 

 
Fig. 4: Motion estimation results. The object in blue indicates the estimated pose and the object in red indicates the ground truth. The 

estimation error has been enlarged to make the difference can be seen 

 

Conclusion 

We presented a practical framework for 6D pose 

tracking. Our system finds applications in augmented 

reality and robotic applications. The line segment 

detector considers semi-global information for line 

segment parameter estimation. It is efficient to detect 

sufficient number of lines for matching. The detector is 

good at discarding ambiguous line segments while finds 

real ones in noisy situations. Line segments sets 

foundation for matching and pose tracking. We consider 

3D frame transformations using Lie groups and the 

corresponding Lie algebras. The motion parameter 

estimation is performed in a linear space, thanks to the 

good properties of Lie algebras. 
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