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Abstract: Structures that do not have a definitive map nor a clearly known 

state of health may exist underground, beyond our reach and in unsuitable 

environments. Nuclear facilities contain underground tunnels that exhaust 

hazardous gases. Industry has miles of sewage lines beneath it that emit 

flammable and toxic gases. Regular inspection and maintenance is an 

essential part of failure prevention, however, these fatal environments 

have prohibited proper inspection of such infrastructure. Thus, the future 

of computer vision is vital to quality inspection. A strategically designed 

robot can be trained to visually inspect any structure, detect if there is a 

damage and decide if the damage is critical. Likened to any good 

inspector, the robot must be trained to investigate the nature of the 

damage and to alert the user of potential failures. This article discusses 

robotic training to detect damage in concrete structures and make 

decisions to the significance and impact of the defect.  
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Introduction 

Visual inspection is the first step in analyzing the 

condition of a structure. Trained eyes are quick to 

recognize cracks, corrosion and potential failures in a 

structure without interfering with the subject. However, 

the human eye cannot operate in hazardous environments, 

nor can it store the data for further analysis. An automated 

robot can collect visual inspection data from the surface 

of a structure and analyze it, even with exposure to 

toxins. An efficient method for conducting a visual 

inspection in harmful environments utilizes computer 

vision systems in robotics. In this article, Intel’s 

RealSense SR300 depth camera is used in tandem with 

MATLAB and RecFusion software to demonstrate 

nondestructive testing on structures. The depth camera 

measures the surface topology of concrete structures and 

the resulting data is analyzed for abnormalities in depth 

measurements. The results demonstrate the ability for a 

depth camera to detect specific damages in a structure 

and quantify them to make a decision. 

It has become common for robots to inspect 

underground infrastructures due to hazardous conditions. 

Pipe inspection companies utilize lidar technology in 

conjunction with robots to examine the degradation or 

buildup on concrete piping. Depth data can generate an 

up-to-date model of pipe, which can be compared with 

any initial or intended pipe parameters. Any significant 

difference in depth is an indication that the pipe has 

corroded or is prone to debris buildup. The applications 

for using depth cameras span from large-scale industrial 

inspection to everyday quality maintenance. In the 

following experiments, the RealSense camera generated 

3D models of concrete structures, which were compared 

with the intended parameters of the structures to detect 

damage in the form of surface cracks. 

Related Work 

The performance of Intel SR300 depth camera as a 

3D scanner was characterized by Carfagni et al. (2017). 

The device’s performance is assessed by applying the 

VDI/VDE Normative, which is the international standard 

for characterization of measuring devices. The raw data 

(unfiltered) is analyzed in order to account for the worst 

possible conditions a user might experience. The author 

concludes that the SR300 outperforms most competitor 

cameras when used as a close-range 3D scanner.  
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The SR300 is used for fast, accurate small-scale 3D 

scene capture in the works of Carey et al. (2017) by 

adding lenses and precise calibration, the device is used 

for tracking termite activity at high speeds with mm-

level accuracy. The works demonstrates high accuracy 

and high-speed capabilities of the SR300 depth camera. 

Unsupervised hot spot detection using the SR300 was 

introduced by Chen et al. (2017) touch patterns are 

acquired from contour searching in depth. The work uses 

the depth camera to capture touch and hand motion and 

detect hotspots and interactions within the user 

experience. The applications for this works can cover 

continuous data collection of external forces that come in 

contact with infrastructure.  

Augmented reality maintenance training was introduced 

using the SR300 depth camera in Abdelnaby et al. (2017) 

the works focused on interactivity between the user and 

virtual object using hand gestures to manipulate virtual 

scene objects. The purpose is aimed to stabilize gesture 

recognition and picking selection. 

Gong et al. (2017) proposed an algorithm for point 

cloud segmentation sampled by the SR300 depth camera. 

Segmentation of objects aids in bin-picking applications 

for robotics. The ability to guide a robot to an object 

within a bundle of objects has applications that span 

from small-scale bin picking to large-scale inspection.  

Materials 

The experiments were designed with structural 

inspection as a priority target. Failure can be detected in 

structures with cracks, corrosion, buildup of debris and 

discoloration. A device was needed that detected a 

defined jump in depth from one pixel to the next and had 

the ability to display an RGB video stream. 

Experiments were conducted with the Intel 

RealSense SR300 depth camera and two software 

programs, MATLAB and RecFusion. The experiments 

were split into two phases. Phase one utilizes MATLAB 

in order to scan in a translational plane and return depth 

frames of the surface. Phase two utilizes RecFusion to 

rescan the damage point in a rotational frame in order to 

generate a 3D model of the damage. 

 

 
 
Fig. 1: Intel RealSense RS300 depth camera 

The RealSense SR300 depth camera, shown in Fig. 1, 
was used to conduct the experiments presented here. The 
camera was chosen for its compact size and ability to 
implement short-range 3D imaging. The device 
synchronizes depth, color and infrared video, which 
allows texture mapping of depth to color. The infrared 
camera captures depth from 0.2 to 1.5 m and has a depth 
resolution of 640×480 Video Graphics Array (VGA). 

Phase one of each experiment utilized the Image 
Acquisition Toolbox in MATLAB for data management. 
Scans were taken in a translational motion across the 
entirety of the surface being imaged. While scanning, the 
camera was positioned one meter from the original 
surface. Two video feeds were transmitted into the 
MATLAB workspace. The user has the option of 
searching the colored (RGB) video feed for observed 
damage or searching the depth stream for critical damage 
with specific margins. 

During the second phase of each experiment, scans 

were taken in a rotational motion about the center axis of 

the damage. RecFusion software was used to generate a 

3D reconstruction of the critical damage. The image can 

then be measured to check the accuracy of phase one 

data and verify if the damage is indeed critical.  

Results 

Undamaged Concrete 

Light reflections and shadows can be misconstrued as 

damage when imaging with a depth camera. In order to 

combat the noise in the following images, a control 

concrete slab was scanned for an average surface depth, 

shown in Fig. 2. The image is a mesh plot from 

MATLAB. If it were to be rotated, a 3D model of the 

concrete surface can be seen, this will be shown later in 

the damaged concrete models. The horizontal X-axis 

shows the distance along the surface of the concrete slab, 

which is measued in pixels. The resolution of the depth 

camera allows for a 640 pixel scan in the X-direction and 

each pixel has a corresponding depth value. The vertical 

Y-axis shows the depth of the concrete slab, which is 

measured in micrometers. The yellow colored portion of 

the figure shows noise, where the blue colored portion 

shows the roughness of the surface of the concrete slab. 

The control slab was useful in analyzing the damaged 

concrete because of the ability to ignore smaller 

deviations from the average surface depth. The control 

concrete was measured in MATLAB using the Image 

Acquisition Toolbox. A depth image was captured and 

imported to the MATLAB workspace. A matrix is 

returned in the workspace with a depth value for each 

pixel displayed. A code was generated to diminish the 

light pollution by simultaneously imaging with RGB 

and depth. With the information in Fig. 2, an average 

surface depth was observed to be at 6*10
4
 when imaged 

from 18 inches distance. 
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Fig. 2: Depth of Flat concrete surface in MATLAB 

 

 
 
Fig. 3: Original Concrete Floor Image Pre-processing 
 

The following experiments use a deviation from the 

intended surface depth to detect damage. The first 

experiment examines concrete with a damage that exhibits 

cracking, where the depth is greater than the average 

surface depth. The second experiment examines concrete 

with a damage point that exhibits debris build up, where 

the depth is less than the average surface depth. 

Damaged Concrete 

Next to the control concrete subject, a damaged 

concrete subject was observed with a noticeable crack and 

shifting, shown in Fig. 3. The right side of the concrete 

was observed to be sunken into the ground, while the left 

side appeared to be at its intended position. The crack was 

easily observed from the colored image, but the shifting in 

the concrete slabs was not intuitive. The depth of shifting, 

depth of crack and the width of crack were measured with 

dial calipers and recorded in Table 1. 

Table 1: Measurements of Concrete Crack [values in inches] 

 Shift depth  Crack depth Crack width 

Point A 0.365  1.245  0.339 

Point B 0.410  0.810  0.333 

Origin 0.417  0.951  0.413 

Average 0.397  1.002  0.362 

 

Three shifting depth measurements, three crack 

depth measurements and three width measurements 

were taken of the damaged concrete subject, at points 

A, B and the origin, in order to obtain an average 

depth and width measurement of the crack. 

Measurements for the crack depth were measured 

from the top of the debris inside the crack to the left 

side of the concrete (original position). 

Phase 1: Analysis Using MATLAB  

The damaged concrete was imaged using 

MATLAB’s Image Acquisition Toolbox and was 

imported into the MATLAB workspace. The returned 

data took the form of a matrix with 640x480 dimensions 

with each pixel containing a depth value. Any depth 

value that was greater than the average surface depth 

from the control concrete was trimmed. Trimming out 

extreme depth values ensured minimal light reflection to 

interfere with the true data. The “mesh” tool in 

MATLAB plots was used to generate a wireframe that 

interconnects the depth values per pixel to portray a 3D 

model of the subject, shown in Fig. 4. The image was 

taken at an 18 inch distance from the concrete subject. In 

this mesh graph, the user can manipulate the view to 

measure depths at specific pixel locations. In this 

experiment, the average is being compared, so there is 

not a need to examine every row and column of pixels. 

However, a specific data set can be selected by locating 

the desired pixel and measuring specific dimensions. 

In MATLAB’s Image Acquisition toolbox, the depth 

value returned is in micrometers and the pixel values are 

in pixels. In order to analyze the accuracy of the depth 
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measurements, the measured values in MATLAB 

were compared with the actual values. For depth 

measurement, the MATLAB mesh plot of the depth 

values was rotated to view the spike in depth where 

the crack is located, shown in Fig. 5. The 

measurements were converted to US customary units 

for comparison, Equation 1-1. A summary of 

measurements is located in Table 2. 

4 4 4
6 10 2 10 4 10 1.57m inµ∗ − ∗ = ∗ =  (1-1) 

 
Table 2: Measurements of concrete crack in MATLAB [values 

in inches] 

 Shift Depth  Crack depth Crack Width 

Actual 0.397  1.002  0.362 

MATLAB unclear  1.57  unclear 

Percent Error n/a  56.7%  n/a

 

 
 

Fig. 4: Depth of surface crack in MATLAB 
 

 
 

Fig. 5: Rotated View of Depth of Surface Crack in MATLAB 

 

 
 

Fig. 6: (left) Concrete Floor Model in RecFusion, (right) Rotated View of Concrete Floor in RecFusion 
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Fig. 7: Rotated view of depth of surface crack in MATLAB 

 
Table 3: Measurements of Concrete Crack in RecFusion 

[values in inches] 

 Shift depth  Crack depth Crack width 

Actual 0.397  1.002  0.362 

RecFusion 0.315  0.906  0.394 

Percent Error 20.7%  9.6%  8.84% 

 

Phase 2: Analysis using RecFusion 

The damaged concrete was imaged at a one meter 

distance from the concrete subject with RecFusion. A 

center axis for the concrete floor was determined using 

the linear endpoints at points A and B in Fig. 2. The 

concrete was imaged by slow-scanning along a 90°C arc, 

while maintain a distance of one meter. Using the post 

processing techniques, a model of the concrete slab can 

be seen in Fig. 6.  

RecFusion allows the user to see more detailed 
information about the depth data. In Fig. 6, one can 
observe shifting in the concrete in addition to the crack 
depth. RecFusion socket tool was used in post 
processing to analyze scaling accuracy, shown in Fig. 7. 
Using the socket tool, it was determined that the average 
depth and width of the crack were as follows. A 
summary of the measurements taken from RecFusion are 
recorded in Table 3. 

RecFusion returned an accurate depth measurement 

of the concrete damage. Also, RecFusion allowed 

observation of shifting in concrete, whereas MATLAB 

data is hard to distinguish any shifting. 

Discussion 

It is advantageous to scan a concrete surface for 

discontinuities and assess the discontinuities for severity. 

The use of MATLAB can alert the user of an 

abnormality in depth and a rescan of the damage with 

RecFusion can account for accurate measurements of the 

damage. MATLAB can scan large data and store this 

data for further analysis. A code may also be generated 

in MATLAB to ignore the smaller jumps in depth that 

may be due to surface roughness. This can be done by 

first scanning an undamaged concrete and observing a 

typical range that the material deviates from the average 

surface depth. This way only specific damages will be 

detected and smaller cracks can be eliminated from the 

data set. However, all data will be stored in case the next 

maintenance inspection shows the smaller crack has 

grown, the user can then look back and analyze the rate 

at which the damage has progressed. 

Using the SR300 depth camera, MATLAB returns 

pixel data which is difficult to interpret measurements. 

Due to the limitations of MATLAB, the software was 

used in conjunction with RecFusion. ReFusion can scan 

small data and create a 3D model with accurate 

measurements. Combining the capabilities of both 

softwares allows the user to meet the requirements of 

finding and accurately representing damage. Knowing 

the location of a damage and an accurate representation 

of what the damage looks like, a code can be generated 

to assess if the damage is severe to the infrastructure. 

The detection of damage is dependent on the user’s 

definition of damage. In the experiment conducted 

above, MATLAB returned a frame with depth data that 

was outside of the controlled depth data from the 

undamaged surface. The frame can be assessed by 

searching the array for values that exceed the limits of 

the controlled depth data. For instance, in Fig. 2, the 

limits of the data are about 3.75∗10
4
 µm and 6∗10

4 
µm, 

When depth data is below or above these limits, it is an 

indication that there is a discontinuity in the structure. 

Once a discontinuity is returned in the MATLAB 

workspace, the area can be rescanned to generate a 3D 

model in the RecFusion workspace, then the damage can 

be assessed for severity. 

Conclusion and Future Works 

A computer vision system using the SR300 depth 

camera is capable of detecting damage in concrete. With 

a section of undamaged structure being the controlled 



Taylor M.V. Szeto and Sun Yi / American Journal of Engineering and Applied Sciences 2018, 11 (2): 973.978 

DOI: 10.3844/ajeassp.2018.973/978 

 

978 

group, depth data of damaged structures can be 

compared with the intended parameters of the design. 

This work proves that a depth camera can be used in 

conjunction with commercially available software to 

assess damages to concrete structures.  

A damage detection system should be fully capable 

of detecting cracks, debris build up, discoloration and 

any other abnormality of a structure. Future works will 

include the assessment of debris build up and any 

addition of material on a structure that could lead to 

failure. Debris buildup is an important detection in 

concrete piping, where buildup could cause stagnation of 

flow and rupture of piping infrastructure. 

Funding Information 

This works was supported by the Department of 

Energy Minority Serving Institution Partnership Program 

(MSIPP) managed by the Savannah River National 

Laboratory under SRNS contract DE-AC09-08SR22470. 

Author Contributions 

Taylor Szeto: Is the lead author of this works. She 

was responsible for researching related works, 

conducting experiments and analyzing data.  

Sun Yi: Acted as an advisor of this work. He was 

responsible for ensuring the reproducibility of the 

experiments as well as helping revise the article. 

Ethics 

This article is an original research paper. There are no 

ethical issues that may arise after the publication of this 

manuscript. 

 

 

 

 

 

 

 

 

 

References 

Carfagni, M., R. Furferi, L. Governi, M. Servi and F. 

Uccheddu et al., 2017. On the performance of the 

Intel SR300 depth camera: Metrological and critical 

characterization. IEEE Sensors J., 17: 4508-4519. 

DOI: 10.1109/JSEN.2017.2703829 

Carey, N., J. Werfel and R. Nagpal, 2017. Fast, accurate, 

small-scale 3D scene capture using a low-cost depth 

sensor. Proceedings of the IEEE Winter Conference on 

Applications of Computer Vision, Mar. 24-31, IEEE 

Xplore Press, Santa Rosa, CA, USA, pp: 1268-1276. 

DOI: 10.1109/WACV.2017.146 

Abdelnaby, M., M.A. Elazem, H.A. Aly and A. 

Kaboudan, 2017. Augmented reality maintenance 

training with intel depth camera. Proceedings of the 

International Conference on Machine Vision and 

Information Technology, Feb. 17-19, IEEE Xplore 

Press, Singapore, pp: 116-122. 

 DOI: 10.1109/CMVIT.2017.9 

Chen, L., K. Kondo, Y. Nakamura, D. Damen and W.W. 

Mayol-Cuevas, 2017. Hotspots detection for 

machine operation in egocentric vision. Proceedings 

of the 15th IAPR International Conference on 

Machine Vision Applications, May 8-12, IEEE 

Xplore Press, Nagoya, Japan, pp: 223-226. 

 DOI: 10.23919/MVA.2017.7986841 

Gong, X., M. Chen and X. Yang, 2017. Point cloud 

segmentation of 3D scattered parts sampled by 

RealSense. Proceedings of the IEEE International 

Conference on Information and Automation, Jul. 

18-20, IEEE Xplore Press, Macau, China, pp: 1-6. 

 DOI: 10.1109/ICInfA.2017.8078881 


