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Abstract: Geometrically nonlinear FE-analysis of active piezoelectric thin-

walled shell structures, based on a Co-Rotational (CR) formulation and the 

Cell-Smoothed Discrete-Shear-Gap 3-node shell element (CS-DSG3) is 

presented in this study. The electric potential across the thickness of 

piezolayers is approximated by a linear function. The basic assumption of 

the applied Co-Rotational (CR) FEM formulation is that translations and 

rotations are finite, whereas the strains are small. Large rotation theory is 

used to update the rotational degrees of freedom. The proposed formulation 

is tested by means of the originally developed program. A set of 

piezoelectric coupled static linear and nonlinear cases are studied and the 

obtained results are compared with those available in the literature. A very 

good agreement of the results is noted, whereby the numerical effort could 

be reduced and numerical stability improved compared to other 

geometrically nonlinear FEM formulations. 
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Introduction 

In engineering practice smart structures are utilized to 
achieve better operational safety, noise reduction, 
improved comfort, etc. A number of materials 
demonstrate sufficiently strong piezoelectric effect, 
which couples the mechanical to electric field and vice 
versa, so that they can be employed as multi-functional 
materials for active elements (actuators/sensors) of 
smart structures. Particularly piezoelectric ceramics 
offer the advantages of producing relatively high 
actuation forces and high efficiency of energy 
conversion combined with low power consumption. 
These advantages led to the wide application of 
piezoelectric ceramics including various types of 
actuators and sensors for smart structures. 

Design of smart structures demands accurate and 

reliable tools for their modeling and simulation. The 

Finite Element Method (FEM) has established itself as 

the method of choice for these problems. Over the past 

60 years, the FEM has experienced its evolution 

whereby its application in the field of structural 

analysis has been the major driving component of the 

development. Within the framework of the FEM, 

various shell elements represent the principle workhorse 

in modeling thin-walled structures. The main 

requirements for shell elements are high efficiency, 

reliability and applicability over a wide range of 

thickness and curvature. Additionally, thin-walled 

structures are characterized by high susceptibility to 

geometrically nonlinear behavior, caused by large 

transverse deflections and therewith local rotations so 

that the developed FEM formulations are also supposed 

to cover this aspect. 

Many studies related to piezoelectric structures are 

based on the linear theories of elasticity and 

piezoelectricity. Since the pioneer work of Allik and 

Hughes (1970), various types of finite elements have 

been developed for modeling piezoelectric smart 

structures. The survey from Benjeddou (2000) gives a 

thorough overview of the development in the field 

during the ’90 s and the development proceeded at the 

same rapid pace in the decades to follow. Just a few of 

the developments are to be mentioned here in order to 

illustrate the interest of the researchers in this field. 

Piefort (2001) has used the layerwise facet element 

available in the commercial FE package SAMCEF and 

extended it by including an arbitrary number of 

piezolayers. The element applies the Mindlin-Reissner 

kinematics and accounts for the full piezoelectric 

coupling. Gabbert et al. (2002) have extended a Semi-

Loof shell element, based on the Kirchhoff kinematics, 

so that it can be used for modeling piezoelectric 

composite laminates. Kogl and Bucalem (2003) have 

proposed a bilinear shell with each node assigned an 

electrical degrees of freedom. The method of Mixed 

Interpolation of Tensorial Components (MITC) is used 



Gil Rama et al. / American Journal of Engineering and Applied Sciences 2016, 9 (4): 902.912 

DOI: 10.3844/ajeassp.2016.902.912 

 

903 

to alleviate the locking effects with this element. 

Mesecke-Rischmann (2004) has proposed a shallow 

shell element with the electric potential over the 

thickness of piezoelectric layers considered to be a 

quadratic function. Marinkovic et al. (2006) have 

proposed a full biquadratic degenerated shell element for 

piezoelectric active laminates. This element has been 

exhaustively used to investigate various aspects of thin-

walled smart structures, such as: Adequate approach to 

describe of the electric field in the piezolayers 

(Marinkovic et al., 2007), geometrically nonlinear 

effects (Marinkovic et al., 2008), how mesh distortion 

affects the results with the piezoelectric coupling 

involved (Marinkovic and Marinkovic, 2012), etc. The 

element has also been implemented in the commercially 

available FEM program ABAQUS (Nestorovic et al., 

2014) for the convenience of interested users. 

Furthermore, a number of researchers (e.g., Rabinovitch, 

2005; Kulkarni and Bajoria, 2007) have put focus in 

their work to geometrically nonlinear effects in 

mechanical behavior of laminated thin-walled structures 

with piezolayers. 

In this study, the CS-DSG3 Co-Rotational (CR) shell 

element developed by Rama et al. (2016) is extended to 

geometrically nonlinear analysis of composite shells 

integrated with piezoelectric layers. The essence of the 

applied CR-approach is described by Marinkovic et al. 

(2012). It offers high numerical efficiency and stability, 

which is even more pronounced when used in 

combination with modern hardware solutions for 

computations (Nutti and Marinkovic, 2014). 

Governing Equations for Piezoelectric 

Composite Plates 

Strain Field 

The position vector X of each point in the shell 

domain is given by the sum of the position vector of 

mid-surface 
0

oldX  and the transverse direction vector 

normal to the mid-surface 
old

h
X  (Kim and Kim, 2002): 

 
old old

0 h
X = X + ξ X  (1) 

 

where, the natural coordinate ξ∈[-1,1] indicates the 

position in the thickness direction. The displacement 

field U is obtained by the difference of deformed (new) 

0,

old

hX  and un-deformed (old) 0,

old

hX  configuration (Fig. 1). 

The magnitude of the normal direction vector Xh is t/2, 

with the shell thickness t: 

 

0 0
( ) + ( )new old new old

h h
U = X - X ξ X - X  (2) 

 

The vector U is given by the two parts U0 and ξUh: 

 
 
Fig. 1. Shell kinematics 
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 (3) 

 

where, u0,, v0, w0 are the mid-surface displacements, rx, 

ry are the rotations of the shell mid-surface and ξ the 

transverse direction vector which is normal to the mid-

surface. The linear strain field consisting of membrane 

strains εm, flexural strains ξ κb and shear strains γ can be 

expressed in the following form: 

 

0, ,

0, ,

0, 0, , ,

x x y x

y m b y x y

xy y x y y x x

u r

= ε = ε + ξ κ = v r

u v r r

ε
ε ξ
γ

     
     

+ −     
     + −     

 (4) 

 

0,

0,

y yyz

x xxz

w r
= γ =

w r

γ
γ

+  
   −   

 (5) 

 

For the laminated composite shell, the constitutive 

equation for each layer (k) is obtained starting from the 

Hooke’s law and implementing the plane stress 

assumption. It reads:  
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ε
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 (6) 

 

where, the material constants are: 
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and where G12, G23, G13 are the shear moduli in the xe-ye, 

ye-ze, xe-ze planes (local reference coordinates), E1, E2 are 

the Young’s moduli in the xe- and ye-direction 

respectively and ν12, ν21 are the Poisson’s ratios. 

Laminates are commonly made of several 

orthotropic layers with different fiber orientation with 

respect to the reference element system (xe, ye, ze). 

The material matrix Q′ of the k
th

 layer given with 

respect to the reference frame is simply the result of 

in-plane rotation: 

 

11 12 16

21 22 26

16 26 66

44 45

54 55 ( )( ) ( )

' ' ' 0 0

' ' ' 0 0

' ' ' 0 0

' '0 0 0

' '0 0 0

ε
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Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

σ ε
σ ε
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    =
    
    
        

 
= = 

 

 (8) 

 

Piezoelectric Equations 

Laminates are commonly made of several orthotropic 

layers. However, this work considers laminates that 

involve piezoelectric layers as well. The linear 

piezoelectric constitutive equations can be expressed in 

the following form: 

 

σ ε *c e

D Ee g

T −   
=     

    
 (9) 

 

where, σ and ε* are the stress and strain vectors, 

respectively, D and E are the dielectric displacement and 

electric field vectors, respectively and c, e, g are the 

elasticity matrix, the piezoelectric coupling coefficients 

matrix and the dielectric constants matrix, respectively. 

Mostly, the piezoelectric constant matrix e is not given 

explicitly, but is expressed with piezoelectric strain 

constant matrix d as follows: 
 

'

ipe d Q=  (10) 

 
where, d reads: 
 

31 32

0 0 0

0 0 0

0

d

d d

 
 =  
  

 (11) 

 

Electric Field 

A constant electric field across the thickness of the 

piezolayers is assumed, thus implying a linear 

distribution of the electric potential. The relation 

between the two is described in the following manner: 

φ kE = -B φ  (12) 

 

where, Bφ is the electric field-electric potential matrix and 

φk is the vector of electric potential differences between 

the top and bottom surfaces of the k-th piezolayer. 

Strain Energy 

The strain energy of an element, Ue, can be 

expressed as: 

 

1

2

1

2

1

2

T T T

e

V Vp

T T T T T

e e e e

V Vp

T T

e uu,e e e u e e

U ε* c ε* dV ε* e E dV

u B c B dV u u B e B dV

u K u u K

ϕ

ϕ

ϕ

ϕ

= −

= −

= −

∫ ∫

∫ ∫  (13) 

 

where, B is the mechanical strain-displacement matrix 

and ue and φe are the nodal displacement vector and the 

potential per piezoelectric layer for an element, 

respectively, while V and Vp are the volume of the 

element and the volume of the piezoelectric layer in the 

element, respectively. Kuu,e is the mechanical stiffness 

matrix and Kuφ,e is the piezoelectric coupling stiffness 

matrix of an element. 

Electric Energy 

Based on the constitutive relations, strain-

displacement and electric field-electric potential 

relations, the element electric energy per element We can 

be expressed as: 
 

T

Vp Vp

T

e u,e ,e e

1
E eε * E g E

2

1
K u K

2

T

e

T

e e

W dV dV

ϕ ϕϕϕ ϕ ϕ

= +

= −

∫ ∫
 (14) 

 

Work done by the External Forces and Electric 

Charge 

The virtual work done by external forces Fext,e and 

applied electric charge Qφ,e is given by: 

 

,

T T

ext e exte e eW u F Qϕϕ= +   (15) 

 

The finite element equations for a static case 

involving a piezoelectric continuum are obtained using 

the variational approach. For the sake of brevity, only the 

resulting form is given here (Marinkovic et al., 2006): 
 

uu,e e uφ,e e ext,eK u + K φ = F  (16) 

 

φu,e e φφ,e e ,eK u + K φ = Qϕ  (17) 
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CS-DSG3 Element 

In the CS-DSG3 formulation, the element domain is 

divided into three DSG3 (Nguyen-Thoi et al., 2013) 

sub-triangle elements by connecting the triangle central 

point with the element nodes. The DSG formulation is 

applied in each of the sub-triangles. Afterwards, in 

order to smooth the strains in the sub-triangles, strain 

smoothing technique on the whole triangular element is 

applied. As a result, the CS-DSG3 overcomes the 

drawback of the DSG3 element that the results are 

dependent on the node numbering. A detailed 

description of the CS-DSG3 element formulation is 

given in (Rama et al., 2016). The CS-DSG3 element 

stiffness matrix is given as: 
 

e,CS DSG3

T (k) T (k)
n

m* m m* m* b*T

e T (k) T (k) T (k)
k 1 b* m* b* b b* s* s s*

K

B D B B B B
A T T

B B B B D B B D B

−

=

 +
 =
 + + + 

∑
 (18) 

 

where, T is the transformation matrix of coordinates 

from the global coordinate system (x, y, z) to the local 

element coordinate system (xe, ye, ze) and Bm*, Bb*, Bs* are 

the membrane, bending and shear strain displacement 

matrices. The material matrices for the k
th

 layer are 

obtained by integration of the elasticity matrix c in the 

thickness direction: 
 

/ 2

( )

/ 2

' '
k

mij

k

h

k

ij k ij

h

D Q dz h Q
−

= =∫  (19) 
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k
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k

h

k

ij

h
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−
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( )
/ 2

( )

/2

' ' ,   4,  5;  5 / 6
sij

t

k

ij k ij

t

D k Q dz k h Q i j k
−

= = = =∫  (22) 

 

The piezoelectric coupling is achieved between the 

in-plain strain field and electric field. As a result, the 

piezoelectric coupling and dielectric stiffness matrices 

Kuφ, Kφφ are obtained: 

 

[ ]T T

e,u m* b* φ

V

K = B B e B dVϕ ∫  (23) 

 
T

e,φφ φ φ

V

K = B g B dV∫  (24) 

 

where, a typical term of Bφ for the k
th

 layer is (-1/hk) 

Co-Rotational FEM Formulation 

In the CR FEM formulation, a local reference frame 

is attached to the material and follows the rigid-body 

motion of the material. In that manner it is possible to 

separate the rigid-body motion from the deformable 

motion. Provided the strains are small despite relative 

large displacements, the approach allows the use of 

engineering stress and strain measures. At the same time, 

the geometrical and materials nonlinearities are 

separated, thus facilitating later extension of the 

formulation into the realm of materially nonlinear 

behavior. The resolution of accounting for the rigid-body 

motion may differ. This is typically done by proving a 

local reference frame at each element integration point, 

but the present formulation the approach is simplified by 

providing a single local frame for each finite element. Its 

motion represents an average element rigid-body 

rotation. In this manner, the elastic behavior of each 

element remains linear with respect to the local element 

frame attached to the element and following its rigid-

body motion. Given the rotational matrix, Re, which 

describes the rigid-body rotation of an element, the 

element stiffness matrix is updated as follows: 

 
R T

e e e e
K = R K R  (25) 

 

Hence, the deformation of an element with respect to the 

local, co-rotational frame is described by a linear model. 

The rotational matrix, current and initial configuration, xe 

and x0e, are used to determine the rotation-free 

displacements with respect to the initial configuration as: 

 
0 T

e e 0e
u = R x - x  (26) 

 

Finally, the internal forces with respect to the initial 

configuration are computed using the linear stiffness 

matrix and rotation-free displacements and are 

furthermore rotated to obtain the internal forces with 

respect to the current configuration: 

 
0

e e e
F = R K u  (27) 

 

Update of the rotational degrees of freedom is more 

demanding compared to translations. The shell normals at 

each node are updated by means of incremental rotations 

computed in each time-step. The incremental rotational 

matrix of a shell normal is determined as follows 

(Argyris, 1982): 
 

( )
( )

2

2
21

2 2

sin γ /sinγ
Q = I + S + S

γ γ /

 
  
 

 (28) 

 

Where: 
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2 2 2

, , ,g x g y g zr r rγ = + +  (29) 

 

and: 

 

,

,

, ,

0

0

0

g z y

z g x

g y g x

r r

S r r

r r

 −
 

= − 
 − 

 (30) 

 

with rg,x, rg,y and rg,z denoting the 3 incremental global 

nodal rotations. The shell node normal is updated using 

the rotational matrix Q. Also, the initial normal at the node 

is rotated through the element rigid-body rotation. The so-

obtained direction is compared to the actual shell normal 

to get the deformational nodal rotations, free of rigid-

body rotation. This enables the computation of internal 

nodal moments, which are needed to proceed with the 

geometrically nonlinear computation. 

Once the global tangential stiffness matrix and the 

vector of internal forces are updated, geometrically 

nonlinear FEM computation may proceed. Thin-walled 

structures are known for their susceptibility to large 

rotations, whereby the strains remain small. This is why 

they represent a suitable candidate for application of the 

proposed formulation. The formulation has been 

implemented with the CS-DSG3 shell element. 

Numerical Examples 

Several examples have been studied to assess the 

performance of the CS-DSG3 in linear and co-rotational 

nonlinear static piezoelectric coupled analysis. 

Static Linear Cases 

With the given predefined electric voltage, φe, the 

element loads induced through the inverse piezoelectric 

effect (actuation) are computed in the following manner: 

 

e,φ e,uφ eF = -K φ  (31) 

 

Afterwards the element loads are assembled to the 

global force vector. 

Piezoelectric Bimorph Beam 

The piezoelectric bimorph pointer consists of two 

uniaxial piezoelectric layers with opposite polarization. 

Such a structure can be used as a bending actuator or 

sensor. The geometry of the bimorph beam is presented in 

Fig. 2. The length L of the beam is 0.1 m, the total height 

H is 0.1 mm and the width W is 5 mm. The beam layers 

are made of uniaxial PVDF with opposite polarities. 

Table 3 presents the material properties of PVDF. The 

bimorph beam acts as an actuator, with a voltage of 1V 

applied over its thickness. 

The obtained results are given in Table 1 and also 

depicted in Fig. 3. Using Bernoulli-Euler beam theory 

and the constitutive equations of linear piezoelectricity, 

the analytical solution for the deflection w along the 

length is obtained: 

 

231

2

3
( )

2

e
w x x

h

ϕ
= −  (32) 

 

The expression yields the absolute tip deflection 

|w(xend)| of 3.45E-7m. The result by the presented shell 

element coincides with the analytical solution. 

Simple Supported Piezoelectric Composite Plate 

(sym) 

A simply supported square laminated piezoelectric 

plate (dimensions a×a = 0.2×0.2 m), subjected to a 

uniform load qD = 100N/m
2
, is considered. The plate has 

symmetrically bonded piezoelectric ceramics on the 

outer surfaces and four composite layers in addition to 

two piezolayers. The stacking sequence of the composite 

plate is [p/–45°/45°]sym (Fig. 4). The layers denoted by p 

are the piezoelectric layers and the subscript ‘sym’ 

indicates a symmetric sequence of layers. The total 

thickness of the plate is 1.2 mm. Each composite 

(passive) layer has the same thickness of 0.25 mm and is 

made of T300/976 graphite/epoxy. The piezoelectric 

layers have a thickness of 0.1 mm and are made of 

PZTG1195N (material properties in Table 3). Figure 5 

displays the central line deflection of the considered 

structure subjected to the combined excitation involving 

the uniform load and different input voltages of 0, 5 and 

10 V. The obtained results agree well with those 

obtained by (Phung-Van et al., 2015) and (Liu et al., 

2004) (Table 1). 

Clamped Piezoelectric Composite Plate (Asymmetric) 

A uniform load qD = 100N/m
2 

acts upon a 

cantilevered square laminate piezoelectric plate (a×a = 

0.2×0.2 m). The plate has symmetrically bonded 

piezoelectric ceramics on the outer surfaces and 

additional four composite layers. The stacking sequence 

of the composite plate is in this case [p/–45°/45°]as (Fig. 

6). The subscript ‘as’ stands here for an antisymmetric 

laminate. The total thickness of the plate is 1.2 mm. The 

passive layers have the same thickness of 0.25 mm and 

are made of T300/976 graphite/epoxy. The 

piezoelectric composite layers have a thickness of 0.1 

mm and are made of PZTG1195N. Figure 7 depicts the 

central line deflection of the plate additionally 

subjected to the input voltages of 0, 30 and 50 V. The 

tip point deflection is presented in Table 1. The 

obtained results are in good agreement with those 

obtained by (Lam et al., 1997; Liu et al., 2004) (Table 1). 
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Fig. 2. Geometry of the piezoelectric bimorph beam 

 

 
 

Fig. 3. Centerline deflection of bimorph beam subjected to input voltage of 1V 

 

 
 

Fig. 4. Sequence of layers of the simply supported piezoelectric composite plate 
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Fig. 5. Centerline deflection of simply supported laminated plate subjected to a uniform load and different input voltages 
 

 
 

Fig. 6. Antisymmetric sequence of layers of the clamped piezoelectric composite plate 
 

 
 

Fig. 7. Centerline deflection of clamped plate subjected to a uniform load and different input voltages 
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Table 1. Static linear case-results and reference solutions 

Bimorph Beam Present Analytical 

Tip node deflection w [m] 3.45E-7 3.45 E-7 

Simple supported composite plate Present Phung-Van et al. (2015) Liu et al. (2004) 

Central node deflection w [m] 

  0 V -0.639E-04 -0.633E-4 -0.604E-4 

  5 V -0.284E-04 -0.280E-4 -0.272E-4 

10 V -0.714E-05 -0.721E-5 -0.757E-5 

Clamped composite plate Present Lam et al. (1997) Liu et al. (2004) 

Central node deflection w [m] 

  0 V -0.263E-04 -0.278E-4 -0.271E-4 

30 V -0.109E-04 -0.110E-4 -0.105E-4 

50 V -0.690E-06 -0.510E-6 -0.440E-6 

 
Table 2. Static nonlinear cases-Results and reference solutions 

Simple supported (2 sides) composite plate Present (Marinkovic et al., 2008) 

Central node deflection w [m] 300 V 3.705E-04 3.700E-04 

Clamped composite plate Present (Marinkovic et al., 2008) 

Tip node deflection w [m] 

300 V 0.271E-2 0.270E-2 

Tip node deflection v [m] 

300 V 0.621E-5 0.650E-5 

Tip node deflection u [m] 

300 V 0.121E-3 0.120E-5 

 
Table 3. Material properties of piezoelectric and composite materials 

Properties PVDF PTZ-G1195 T300/976 

Young’s moduli [GPa] 

Exx 2.0 63.0 150.0 

Eyy =Ezz 2.0 63.0 9.0 

Poisson’s ratio [-] 

υxy = υxz =υyz 0.29 0.3 0.3 

Shear moduli [GPa] 

Gxy = Gxz 1.0 24.2 7.1 

Gyz 1.0 24.2 2.5 

Piezoelectric coefficients 

d31= d32 [m/V] 0.046 2.54E-10 

Electric permittivities 

p11 = p22= p33 [F/m] 0.1062E-9 15.3E-9 

Piezoelectric constants 

e31 = e32 [C/m²] 0.046 22.86 

 

Nonlinear Static Cases 

The piezoelectrically induced loads Fφ are of the 
follower type (configuration dependent). This requires 
caution in the choice of the increment size in the 
analysis. In each load step the piezoelectrically induced 
element loads are calculated, with the given electric 
voltage φ, as following: 
 

e, e e,u eF R K ϕ ϕ= −  (33) 

 
Afterwards the element loads are assembled to the 

global force vector. 

Simple Supported (at two Edges) Piezoelectric 
Composite Plate 

Laminated piezoelectric square plate is simply 

supported along two opposite edges parallel to the x-

axis. The edge length is a = 0.4 m. It is subjected to an 

input voltage of 300 V. The structure is made of three 

layers, the outer two are made of PZT-G1195N and have 

a thickness of 0.2 mm while the mid-layer is made of 

T300/976 graphite-epoxy and has a thickness of 0.15 

mm and fiber orientation of 90°, with the x-axis taken 

as the reference direction. The load-displacement (|w|) 

curve for the representative point B (plate center point; 

Fig. 8) is presented in Fig. 9. The linear analysis yields 

the absolute value of the representative point B vertical 

displacement equals to 6.994E-04 m while the non-

linear prediction gives the result of 3.705E-04 m. 

Marinkovic et al. (2008) this case is solved using the 

updated Lagrangian formulation. Compared to these 

result (Table 2), the difference is less than 0.1% in both 

linear and nonlinear static analyses. 
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Fig. 8. Sequence of layers of square piezoelectric composite plate and representative point B 

 

 
 

Fig 9. Linear and nonlinear answer of center node deflection simply supported structure subjected a by an input voltage of 300V 

 

 
 

Fig. 10. Laminate configuration of square piezoelectric composite plate (clamped)-and position of representative point A 

 

Clamped Piezoelectric Composite Plate 

A cantilevered laminate piezoelectric plate of 
dimensions a×a = 0.4×0.4 m subjected to an input 
voltage of 300 V is considered. The plate is made of 
the same laminate as in the previously studied case. 
The load-displacement (|w|) curve for the 

representative point A (Fig. 10) is presented in Fig. 
11. The linear results for the representative point A 
vertical displacement yields 2.82 mm while the non-
linear prediction is 2.71 mm. Compared to the results 
presented by (Marinković et al., 2008) the difference 
is less than 0.4% in the nonlinear and less than 0.8% 
in the linear case. 
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Fig. 11. Linear and nonlinear deflection of point B for the clamped structure subjected to input voltage of 300V 

 
Figure 8 depicts the geometrically nonlinear results 

for the history of motion of the point A in the x- and 
y-direction. 

Conclusion 

Design of smart structures requires efficient and 

reliable tools in order to analyze their behavior and 

assess various control algorithms. This paper offers such 

a modeling tool by extending an already available 

triangular shell type finite element. The extension allows 

modeling of piezoelectric laminated structures involving 

fiber-reinforced composite layers. Regarding 

piezolayers, the element covers patches polarized in the 

thickness direction and the assumption of constant 

difference of electric potentials between the upper and 

lower surface of a piezoelectric patch is used. It was 

demonstrated that the element provides highly accurate 

results for both linear and geometrically nonlinear 

results. Geometric nonlinearities are treated by means of 

CR-formulation, which is characterized by high 

efficiency and numerical stability. 

The focus of this paper was put on static cases while 

further work will cover dynamic analysis as dynamics is 

where the advantages of smart structures particularly 

come to the fore. Further development should also cover 

piezolayers with the in-plane polarization. This would 

allow modeling of composite materials that involve 

piezoelectric fibers. 
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