
 

 

© 2016 Andrea Chiozzi, Gabriele Milani, Nicola Grillanda and Antonio Tralli. This open access article is distributed under a 

Creative Commons Attribution (CC-BY) 3.0 license. 

American Journal of Engineering and Applied Sciences 

 

 

 

Original Research Paper 

An Adaptive Procedure for the Limit Analysis of FRP 

Reinforced Masonry Vaults and Applications 

 
1
Andrea Chiozzi, 

2
Gabriele Milani, 

1
Nicola Grillanda and 

1
Antonio Tralli 

 
1Department of Engineering, University of Ferrara, Via Saragat 1, 44122 - Ferrara, Italy 
2Department of Architecture, Built Environment and Construction Engineering (A.B.C.),  

Technical University of Milan, Piazza Leonardo da Vinci 32, 20133 – Milan, Italy 
 
Article history 

Received: 29-8-2016 

Revised: 4-10-2016 

Accepted: 5-10-2016 

 

Corresponding Author: 

Andrea Chiozzi 

Department of Engineering, 

University of Ferrara, Ferrara, 

Italy 

Email: andrea.chiozzi@unife.it 

Abstract: The present paper discusses an adaptive procedure for the 

kinematic limit analysis of FRP reinforced masonry vaults through 

applications. The approach relies on a new Genetic Algorithm NURBS-

based general framework, which has been recently presented by the 

authors. The basic idea consists into exploiting the NURBS structure of a 

CAD geometric 3D model of the selected reinforced masonry vault, in 

order to define an adaptive rigid body assembly on which an (upper bound) 

limit analysis can be performed. Internal dissipation is allowed exclusively 

along element interfaces. A Genetic Algorithm is used to adjust the initial 

assembly, until element edges accurately approximate the actual collapse 

mechanism. A number of structural examples are provided and discussed, 

showing that the approach can be a very useful tool for the structural design 

and assessment of FRP reinforced masonry vaults. 
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Introduction 

Masonry vaults are one of the most common 

structural types in the historical constructions of both 

ancient and modern architecture. Consequently, the 

search for new techniques for their preservation is still an 

open issue, which is growing over time along with the 

need for new efficient tools to evaluate their load-

bearing capacity. Moreover, as witnessed by the many 

recent seismic events, another critical issue is the 

insufficient performance of curved masonry structures 

under the action of earthquakes, particularly in the case 

of historical buildings and inadequate modern 

constructions. While conventional retrofitting 

techniques, like for example external reinforcement with 

steel plates or reinforced concrete overlays, have been 

proven present serious drawbacks (they are expensive, 

often impractical and add considerable mass to the 

structure), in the last decades the use of Fiber-Reinforced 

Polymer (FRP) strips for reinforcing masonry structures 

has become very well-received (Corradi et al., 2002). 

Due to their high mechanical strength, chemical stability, 

low weight and availability in plenty of different shapes, 

CFRPs can be favorably applied at the intrados or 

extrados of flat and curved masonry shells (i.e. walls, 

arches and vaults) in order to prevent collapse 

mechanisms, therefore increasing the overall safety factor. 

Existing computational methods for the structural 

analysis of masonry vaults can be categorized into two 

broad classes: the Finite Element methods developed both 

for nonlinear incremental analysis (Milani and Tralli, 2012) 

and for limit analysis (Milani et al., 2008; 2009) and the 

thrust network methods (Block et al., 2006). Practical 

application of these procedures requires skilled users and, 

for thrust network methods, the definition of an equilibrium 

surface for the vault, which is a priori unknown.  
The authors have recently proposed a new adaptive 

NURBS-based approach (Chiozzi et al., 2016a) for the limit 

analysis of masonry vaults based on an upper bound 

formulation also allowing for the presence of FRP 

reinforcements (Chiozzi et al., 2016b; 2016c) NURBS (i.e. 

Non-Rational Uniform Bi-Spline) are special 

approximating base functions widely used in the field of 3D 

modeling (Cottrell et al., 2009). A given FRP reinforced 

vault geometry can be represented by NURBS parametric 

surfaces for both masonry and reinforcement, which can be 

generated within any commercial free form modeler. A 

mesh of the given surfaces, still providing an exact 

representation of the vaulted surface and of reinforcement, 

can be obtained by making use of NURBS functions 

properties. Each element of the mesh is a NURBS surface 

itself and is assumed as a rigid body.  

An upper bound limit analysis formulation is devised 

for the obtained rigid body assembly, which accounts for 
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the main aspects of masonry material and in which 

dissipation is allowed along element edges only. 

Moreover, a Genetic Algorithm adaptive procedure is 

implemented which allows to adjust the initial NURBS 

assembly until a good estimate of the collapse load 

multiplier is obtained, i.e. when element edges 

accurately approximate the actual failure mechanism. 

The strength of the proposed method lies in the fact that 

even by using a mesh made of very few elements, it is 

possible to obtain an accurate estimate of the load 

multiplier, thus exhibiting an edge over existing methods 

for the collapse analysis of masonry vaults in terms of 

computational efficiency.  

This paper is devoted to give a more in-depth insight 

into the effectiveness of the proposed methodology as a 

design tool for the prediction of the actual failure 

mechanisms and load bearing capacity of FRP masonry 

vaulted structures of arbitrary shape. To this aim, new 

structural examples have been analyzed and discussed.  

The paper is organized as follows: in Section 2 a 

synthetic survey of the GA-NURBS approach is given. 

In Section 3, the procedure is exemplified and validated 

by considering several new structural examples. In 

Section 4, conclusions are drawn and future research 

directions are given.  

The GA-NURBS Approach: A Quick 

Overview 

The GA-NURBS limit analysis procedure can be split 

into three main steps: geometry modeling of the FRP 

reinforced vault and definition of a rigid block assembly, 

kinematic limit analysis through linear programming and 

mesh adaptation through a Genetic Algorithm. A 

summary of the procedure is hereby proposed. The reader 

is addressed to (Chiozzi et al., 2016c) for more details.  

From 3D Model to Structural Rigid Block Assembly 

FRP reinforced masonry vaults can be represented in 

any free form 3D modeler using NURBS surfaces for 

both FRP strips and the mean surface of the underlying 

vault. NURBS basis functions are built upon B-splines 

basis functions, i.e. piecewise polynomial functions Ni,p  

defined by a sequence of coordinates 1 2 1{ , ,..., }n pξ ξ ξ + +Ξ = , 

also known as the knot vector, where the so-called knots, 

[0,1]iξ ∈ , are points in a parametric domain, in which p 

and n denote the polynomial order and the total number 

of basis functions, respectively. Given a set of weights, 

iw ∈ℝ , the NURBS basis functions, Ri,p, read: 
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Geometries that can be generated with B-spline and 

NURBS are obtained as linear combinations of basis 

functions (Cottrell et al., 2009). In particular, a NURBS 

surface of degree p in the u-direction and q in the v-

direction is a parametric surface in the three-dimensional 

Euclidean space defined as: 
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where, { }ijB form a bidirectional net of control points. 

Given a NURBS surface ( , )S u v , isoparametric curves on 

the surface can be defined by fixing one parameter in the 

parameter space and letting the other vary. By fixing 

0u u=  the isoparametric curve S(u0, ν) is defined on the 

surface S, whereas by fixing ν = ν0 the isoparametric 

curve 
0( , )S u v is obtained. Many commercial free form 

surface modelers, such as Rhinoceros
® 

(McNeel, 2008), 

utilize NURBS representation and its properties to 

generate and manipulate surfaces in the three-

dimensional space. In the numerical simulations 

contained in Section 3, both vault mid-surfaces and FRP 

strips have been modeled within Rhinoceros as NURBS 

surfaces and the resulting NURBS structure have been 

imported within a MATLAB
®
 environment through the 

Initial Graphics Exchange Specification (IGES) standard 

(USPRO, 1996) following an idea proposed by some of 

the authors in (Chiozzi et al., 2015) for masonry arches. 

Once the NURBS structure created within 

Rhinoceros
®
 has been transferred to the MATLAB

®
 

environment, it is possible to manipulate it by exploiting 

NURBS properties in order to define a NURBS mesh of 

the masonry mid-surface, in which each element is a 

NURBS surface itself. Furthermore, it is possible to 

model vault thickness at each interface between elements 

by offsetting the original interface inward and outward 

through a translation in the direction normal to the 

NURBS surface. Typically, the easiest way to generate a 

NURBS mesh on a given surface is to define a 

subdivision of the two-dimensional parameters space u-

v, which follows from subdividing the knot vectors in 

both u and v directions into equal intervals. The resulting 

mesh is defined by isoparametric curves on the surface in 

the three-dimensional Euclidean space. Each element of 

the mesh is a NURBS surface and its edges are branches 

of isoparametric curves belonging to the initial surface. 

More in general, different meshes of the NURBS surface 

can be obtained for arbitrary partitions of the parameters 

space into quadrilateral or triangular domains. For each 

element of the mesh, Ei, integral quantities like area and 

position of the center of mass can be numerically 

evaluated by adopting an isoparametric approach 

coupled with a 3-point standard Gauss quadrature rule.  
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Kinematic Limit Analysis 

Starting from the geometrical properties of each 

element of the assembly, an upper bound formulation of 

limit analysis can be outlined. Since elements are 

considered rigid, internal dissipation is allowed only at 

the interfaces between adjoining elements in the 

proposed model. Be NE the number of elements 

composing the NURBS mesh, which geometrically 

represents the FRP reinforced vaulted surface. Since 

each element is considered as a rigid element, the 

kinematics of each element is determined by the six 

generalized velocity components { , , , , , }i i i i i i

x y z x y zu u u Φ Φ Φ  of 

its center of mass Gi, expressed in a global reference 

system Oxyz. On the structure, dead loads F0 and live 

loads Γ are acting. Three types of interfaces can be 

recognized: masonry-masonry, FRP-masonry and FRP-

FRP interfaces. Indicating by 
TOT M M M F F F

I I I I
N N N N− − −= + +  the total number of 

interfaces, total internal dissipation power Dint is equal to 

the sum of the power dissipated along each interface
int

iP . 

Furthermore, total internal dissipation power Dint is equal 

to the sum of the powers of live (1.Γ) and dead (F0) 

loads, indicated as pΓ and PF0respectively: 

 

int int

1

IN
i

i

D P P P
=

= = +∑ 0Γ F
 (3) 

 

Γ is a load multiplier. The linear programming 

problem related to the kinematic formulation of limit 

analysis consists in an appropriate minimization of the 

load multiplier Γ under the action of suitable constraints, 

which are quickly described in the following 

Subsections. The vector of unknowns of the linear 

programming problem, X, contains the six generalized 

velocity components for each element and a number of 

plastic multipliers defined on each interface.  

Geometric Constraints 

Vertex belonging to element free edges can be 

subjected to external kinematic constraints, by imposing an 

assigned value for translational and/or rotational velocities 

at these points. For each of such vertex Vj, kinematic 

constraints can be expressed in terms of generalized 

velocities of the center of mass of the i-th element they 

belong. In general, all linear geometric constraints can be 

re-written in the following standard form: 
 

, ,eq geom eq geomA X b=                                                             (4) 

 

where, ,eq geomA  is the matrix of geometric constraints and 

,eq geomb the corresponding vector of coefficients. 

Compatibility Constraints 

Masonry-Masonry Interfaces 

Intrados and extrados edges of each interface have 

been subdivided into an assigned number ( 1)M

sd
N +  of 

points. On each point Pi of each interface, which 

separates the two elements E’ and E”, the following 

compatibility equation must hold: 

 

f
u λ

σ
∂

∆ =
∂
ɺɶ  (5) 

 

where, [ , , ]nn ns ntσ σ σ σ=  is the stress vector acting on Pi 

in the three local reference directions,  f(σ) is a suitable 

yield function and λɺ  is an unknown plastic multiplier 

vector. In Equation u∆ ɶ  is the representation in the local 

reference system of the quantity u∆  in the global 

reference system which is defined as: 

 

Pi Pi
u u u′ ′′∆ = −  (6) 

 

where, 
Pi

u′  is the vector composed by the three 

translational velocity components of the point Pi seen as 

belonging to element E′  and 
Pi

u′′ . The yield surface f(σ) 

have been obtained by means of a homogenization 

procedure based on the so-called Method of Cells 

(MoC), in order to account for different disposition of 

brick courses. With an iterative solution it is possible to 

easily provide a linearization for the assigned yield 

surface f(σ). Let us indicate with the equation 

1i nn i ns i ntA B Cσ σ σ+ + =  the i-th plane representing f(σ). In 

such a way Equation simplifies to the equation: 
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where, iλɺ  is the i-th plane plastic multiplier and N
pl

 is 

the total number of linearization planes used. 

The previous constraint must hold for each point Pi of 

each interface.  

FRP-FRP Interfaces 

FRP elements are supposed infinitely rigid. 
Therefore, plastic dissipation is allowed only at the 
interfaces between contiguous elements due to stresses 
acting in the fibers direction. Again, FRP-FRP interface 
can be subdivided into an assigned number ( 1)F

sd
N +  of 
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points Pi. Continuity of the velocity field is imposed at 
each interface between contiguous FRP only along local 
transversal and normal directions, whereas a possible 
jump of velocities is admitted along the longitudinal 
direction. Different limit stresses are assumed in tension 
and compression, namely 

FRP
f +  (assumed equal to fddf  or 

,fdd ridf  in agreement with (CNR-DT200, 2013), see the 
following section for details) for tensile failure and 

0
FRP

f − ≈  for compression buckling respectively. To be 
kinematically admissible, velocity jump at the interfaces 
must comply to the following equality constraints which 
particularize the associated flow rule: 
 

0

0

I FRP I FRP

n i i

t

s

u

u u

u

λ λ− + − −   ∆ −
   

∆ ∆ =   
   ∆   

ɶ

ɶ ɶ

ɶ

 (8) 

 

where, I FRP

i
λ − +  and I FRP

i
λ − −  are plastic multiplier rates of 

point Pi on the FRP-FRP interface corresponding to 
FRP

f +  

and 
FRP

f −  respectively.  

FRP-Masonry Interfaces 

One of the paramount aspects in the application of 

composite materials for retrofitting structural elements is 

the adhesion between the reinforcement and the 

underlying material. As suggested in the in the Italian 

technical norm (CNR-DT200, 2013), a simplified 

approach to evaluate the delamination phenomenon, is to 

suitably limit force action on the FRP strip. In particular, 

the ffdd design tensile strength of FRP elements, which is 

used in the former Subsection, is given by the relation: 

 

1 2 FRP Fk
fdd

FRPfd M

E
f

tγ γ
⋅ ⋅ Γ

=  (9) 

 

If the so called bond length lb is greater than the 

optimal bond length le or: 

 

, 2b b
fdd rid fdd

e e

l l
f f

l l

 
= − 

 
 (10) 

 
if lb ≤  le. In equations and the following symbols 

have been used: ffdd,rid, the reduced value of the design 

bond strength; ffdd, the design bond strength; EFRP, the 

FRP Young modulus; tFRP, the FRP thickness; γfd, a 

safety factor (assumed equal to 1.20); γM, partial safety 

factor for masonry (assumed equal to 1.0); lb, the bond 

length of FRP elements; le, the optimal bond length of 

FRP corresponding to the minimal bond length able to 

bear the maximum anchorage force (fmtm is masonry 

average tensile strength). Finally, ΓFk represents the 

characteristic value of the specific fracture energy of the 

FRP reinforced masonry upon delamination.  

In order to take into account dissipation along the 

FRP-masonry interface, an assigned number M F

P
N −  of 

Gauss points have been fixed on the FRP-masonry 

interface surface. As for masonry-masonry interfaces, a 

linearization of FRP-masonry failure surface (provided 

by the Italian norm) in the form 
k si k ti k ni kA B C Dτ τ σ+ + = , 

1, , M F

PL
k N −= …  ( M F

PL
N −  is the number of planes used in the 

linearization of the failure surface) is assumed. In the 

framework of associated limit analysis, the following 

equality constraints must be imposed, which 

particularize the associate flow rule:  
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where, i = A, B or C, ,M F k

i
λ −ɺ  is the k-th plastic multiplier 

rate corresponding to the k-th plane.  

Further Necessary Conditions 

Plastic multipliers must be positive or equal to zero: 
 

0ijλ ≥ɺ  (12) 

 
Finally, normality condition must be enforced: 

 

1 1PΓ= =   (13) 

 

The Linear Programming Problem 

Remembering Equation and following the kinematic 

theorem of limit analysis, the related linear programming 

problem can be stated as follows: 
 

int

1

min
IN

i

i

P P
=

 
− 

 
∑ 0F  (14) 

 
under geometric constraints, compatibility 

constraints, Eq. 12 and Eq. 13. The unknowns of the 

linear programming problem are the 6.NE  generalized 

velocity components of the center of mass of each 

element and the total number of plastic multipliers at 

each point of each interface.  

Adapting the Rigid Body Assembly: The Genetic 

Algorithm 

It is necessary to introduce an algorithm which 

allows to adjust the assembly in order to find the 

minimum collapse multiplier among all possible 

configurations and therefore to determine the actual 
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collapse mechanism. A genetic algorithm is a method for 

solving both constrained and unconstrained optimization 

problems based on a natural selection process that 

mimics biological evolution of individuals. A NURBS 

mesh of a vaulted surface, is determined by a given 

number Npar of real parameters 1 2, ,..., Nparp p p , that 

depend on the type of collapse mechanism which must 

be detected. A given NURBS mesh is regarded as an 

individual and each individual, is written as an array 

with 1×Npar elements: 

 

1 2[ , ,..., ]Nparindividual p p p=                                           (15) 

 

Each individual has a cost, found by evaluating a cost 

function f at the parameters 1 2, ,..., Nparp p p . The cost 

function f is defined as a function which outputs the 

collapse load multiplier λc for every assigned individual 

(i.e. an assigned mesh on the surface) through the 

implementation of the limit analysis procedure described: 

 

1 2( ) ( , ,..., )c Nparf individual f p p pλ = =  (16) 

 

To begin the genetic algorithm, we define an initial 

population of Nipop individuals. A matrix represents the 

population with each row in the matrix being a 1×Npar 

array (individual) of continuous parameters values. 

Given an initial population of Nipop individuals, the full 

matrix of Nipop × Npar random values is generated by: 

 

( ) { , }ipop parIPOP hi lo random N N lo= − × +                       (17) 

 

where, { , }ipop parrandom N N  is a function that generates an 

Nipop × Npar matrix of uniform random numbers, hi and lo 

are the highest and lowest number in the parameter 

range. Individuals are not all “create equal”: each one’s 

worth is assessed by the cost function. In order to 

decide which chromosomes in the initial population of 

individuals are fit enough to survive and reproduce 

offspring in the next generation the Nipop costs and 

associated individuals are ranked from lowest cost to 

highest cost. We retain the best Npop members of the 

population for the next iteration of the algorithm and 

the rest die off. This process is called natural selection 

and from this point on, the size of the population at 

each generation is Npop. Then, an equal number of 

mothers and fathers is selected within the N\pop 

individuals, which pair in some random fashion. There 

are various reasonable ways to pair individuals. A 

weighted cost selection with assigned probabilities is 

used (Haupt and Haupt, 2004). Each pair produces two 

offspring that contain traits from each parent. Mating is 

carried out by choosing one or more points in the 

chromosome to mark as the crossover points and the 

parameters between these points are merely swapped 

between the two parents. In this paper a multi-point 

crossover operator is used and [1,2,..., 1]ik c= −  

crossover points are randomly selected on two 

individuals (parents) represented by c chromosomes. 

Moreover, if care is not taken, the genetic algorithm 

may converge too quickly into one region of the cost 

surface and this may be not good if the problem we are 

modeling has several local minima, in which the 

solution may get trapped. To avoid this problem of 

overly fast convergence, we force the routine to explore 

other areas of the cost surface by randomly introducing 

changes, or mutations, in some of the parameters. A 

classic mutation operator is applied to all Npop 

individuals at each generation. For each individual pi 

the mutation operator works stochastically on all the 

chromosomes of the individual subject to mutation (i.e. 

changing at random one of the individual chromosomes 

in the process of generating off springs). A mutation 

probability of 15% have been chosen.  

Structural Examples 

New structural examples useful to validate the 

effectiveness of the GA-NURBS approach in assessing 

FRP reinforced masonry vaults are hereby discussed.  

Skew Arch  

In the first numerical simulation, the GA-NURBS 

approach is applied to the case of a FRP reinforced skew 

circular arch, whose unreinforced version was 

experimentally tested in (Wang and Melbourne, 1996). 

The arch, named Skew 2 in (Wang and Melbourne, 

1996), has a clear square span of 3000 mm, a rise of 750 

mm and a skew of 45 degrees. The width of the barrel 

was approximately 670 mm and the average thickness 

215 mm (see Fig. 1). The arch was constructed using 

Class A engineering bricks were on two reinforced 

concrete abutments representing rigid supports. 

The geometry of the arch is reported in figure. In the 

test, a concentrated load P was applied under force 

control at the three quarter span mid-width of the arch 

barrel. An average brickwork compression strength fc 

of 2.4 MPa and a tensile strength ft of 0.2 MPa were 

measured, whereas a shear strength τ of 0.1 MPa is 

assumed. Average specific weight of brickwork is 

22kN/m
3
. To the aim of preventing the formation of 

the hinges experimentally observed in (Wang and 

Melbourne, 1996), we can imagine of strengthening 

the arch by means of two sets of FRP strips having a 

width of 100mm (as shown in Figure) at first only at 

intrados, then only at extrados and finally at both 

intrados and extrados. For masonry-FRP interface, a 

bond     strength   fb   equal  to  0.3  MPa  is  assumed. 
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 (a) (b) 

 
Fig. 1. (a) Skew arch geometry and loading condition; (b) FRP reinforcement disposition 

 

  
 (a) (b) 
 

 
 (c) (d) 
 

 
 (c) (d) 
 

Fig. 2. Skew arch failure mechanism and convergence of the GA towards the best fitness value for different FRP dispositions: (a-b) only 

extrados; (c-d) only intrados; (e-f) extrados and intrados 
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Fig. 3. Hemispherical dome geometry and FRP reinforcement disposition: (a) first load condition and (b) second load condition 

 

The NURBS mesh of the vaulted surface is generated by 

two moving interfaces in the parameters space. The 

collapse mechanism is expected to be more complex 

than in a straight arch and therefore interfaces are not 

bounded to remain orthogonal to the shape of the arch: 

this means that they can rotate and, that the position of 

each interface in the parameters space is governed by 

two parameters (a translation and a rotation). Thus, the 

problem at hand is governed by a total of four 

parameters. On each interface a number of subdivisions 

equal to 6sdN =  has been chosen. In the genetic 

algorithm an initial population of 10 individuals have 

been chosen, each individual being a four element vector. 

A collapse load multiplier λ = 29.66 has been obtained for 

the case of FRP only at extrados, whereas one gets 

24.50λ =  and 39.63λ =  respectively for the cases of FRP 

only at intrados and at both intrados and extrados. The 

genetic algorithm allows to evaluate the optimal position 

of the four interfaces, in order to minimize the collapse 

load multiplier and therefore obtain the actual collapse 

mechanism for the arch. In Fig. 2(a, c, e) the respective 

computed collapse mechanisms are depicted. The effect of 

the reinforcement, which tends to counteract the formation 

of the hinges which cause the collapse in the unreinforced 

case is particularly evident, as well as the delamination of 

the strips, which is clearly critical near the hinges. As can 

be seen in Fig. 2(b, d, f), the algorithm has a fast 

convergence towards the optimal solution and the final 

best fitness value is obtained after only few generations.  

Hemispherical Dome  

The second structural example here considered is an 
hemispherical dome with inner radius equal to 2.2m and 
thickness of 0.12m which was experimentally tested in 
(Foraboschi, 2006) for the unreinforced case with a 
concentrated load applied at the top. Bricks of 
dimensions 120×250×55 mm were used, with joints 

thickness approximately equal to 10mm. Let us now 
consider the case of a dome reinforced with one FRP 
strip placed along the parallels and two different 
configurations for live loads: a concentrated load at the top 
(which simulate the presence of a roof lantern) and a 
uniformly distributed vertical pressure (which simulate an 
accidental load on the floor above the dome). An average 
brickwork compression strength fc of 2.4 MPa, a tensile 
strength ft of 0.2 MPa and shear strength τ of 0.1 MPa are 
assumed. The optimal position of the FRP is determined 
through an additional genetic algorithm optimization loop 
acting upon the first load conditions. The so-found optimal 
position is then used for the second load condition. Figure 3 
depicts geometry and both load conditions.  

Due to the axisymmetric configuration, the NURBS 
mesh of the dome is generated by only one moving 
interface in the parameters space. This interface traces a 
parallel of the dome in the Euclidean space, whereas 
other twenty fixed interfaces in the orthogonal direction 
define the number of meridians subdividing the dome. 
Therefore, the problem at hand is governed by one 
parameter only. On each interface a number of Nsd = 6 
subdivisions has been chosen. In the genetic algorithm 
an initial population of 10 individuals has been chosen, 
each individual being a scalar. 

Let us consider the first load condition. As shown in 
Fig. 4b, after design optimization of the FRP reinforcement 
(whose optimal position is found to be 45° latitude), a 
collapse load multiplier λ = 68.87 has been obtained. Figure 
4a depicts the computed collapse mechanism. As can be 
seen, the presence of FRP reinforcement prevents the 
formation of cracks along meridians and induces a shear 
failure of the top of the dome. Let us now consider the 
second load condition, with the same FRP disposition. A 
collapse load multiplier λ = 33.80 has been obtained. Figure 
4c depicts the computed collapse mechanism. As seen in 
Fig. 4d, the algorithm has a fast convergence towards the 
optimal solution and the final best fitness value is obtained 
after only few generations. 
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 (a) (b) 

 

 
 (c) (d) 

 

Fig. 4. Hemispherical dome: (a) collapse mechanism for the first load condition; (b) determination of the optimal position for FRP 

reinforcement strip; (c) collapse mechanism for the second load condition; (d) convergence of the genetic algorithm towards 

 

Cross Vault 

As last structural example, the cross vault 

experimentally tested by (Faccio et al., 1999) is 

considered. The cross vault is formed by the intersection 

of two barrels vaults with an external radius of 2.3m and, 

during experimental tests, was loaded by a vertical 

concentrated load at the top of the extrados of one of the 

border arches. Bricks of dimensions 120 × 250 × 55 mm
3
 

were used, with joints thickness equal to 10 mm. 

Reinforcement made of FRP strips is arranged only at 

the extrados of the four external arches. Geometry is 

depicted in Fig. 5.  

Two different configurations for live loads are 

considered (see Fig. 6-7): a concentrated load at the 

cross center (which simulate the presence of a heavy 

hanged weight) and a uniformly distributed vertical 

pressure upon a gravel backfill (which simulate an 

accidental load on the floor above the dome).  

The adopted subdivision of the parametrs space is 

shown in Fig. 8: due to symmetry reasons for each patch 

two parameters determine the position of element 

interfaces. Therefore, the problem at hand is governed by 

eight parameters. On each interface a number of Nsd = 6 

subdivisions has been chosen. In the genetic algorithm 

an initial population of 10 individuals has been chosen, 

each individual being a twenty-four element vector.  

Let us consider the first load configuration (central 

concentrated force). A collapse load multiplier λ = 

37.91 has been obtained. Fig. 9a shows the computed 

collapse mechanism. As can be seen in Fig. 9b, the 

algorithm has a quite fast convergence towards the 

optimal solution. Finally, let us consider the second 

load configuration (distributed vertical pressure). A 

collapse load multiplier λ = 18.37 has been obtained. 

Fig. 9c shows the computed collapse mechanism and 

Fig. 9d, the convergence of the genetic algorithm 

towards the optimal solution.  

Conclusion 

A new GA-NURBS based approach for the kinematic 

limit analysis of FRP reinforced masonry vaulted 

structures recently proposed by the authors is discussed 

and validated through a number of structural examples. 
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Fig. 5. Cross vault geometry and FRP disposition 
 

 
 

Fig. 6. First load condition: Concentrated load 
 

 
 

Fig. 7. Second load condition: Distribuited pressure 
 

 
 
 

Fig. 8. Cross vault parameters space subdivision in order to obtain the rigid body assembly 
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 (a) (b) 

 

 
 (c) (d) 

 
Fig. 9. Cross vault failure mechanism and convergence of the GA towards the best fitness value for different load configurations: (a-

b) central concentrated force; (c-d) distributed vertical pressure 

 
The proposed approach proves to be fast and effective in 
assessing load bearing capacity of FRP reinforced 
masonry vaults of arbitrary shape while requiring the 
least effort to the final user and at the same time 
providing good computational efficiency. The approach 
allows to bridge the 3D modeling environment, which is 
very popular among professional engineers and 
architects, with a structural analysis environment for 
FRP reinforced masonry vaults based on an upper bound 
limit analysis framework and proves to be a promising 
design tool for FRP reinforced masonry structures. 
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