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Abstract: A stochastic model is used to predict the growth of delamination 
in graphite/epoxy laminates subjected to variable amplitude cyclic loading. 
The advantage of this model is that both the mean and variance associated 
with the growth of delamination are predicted. Understanding and 
predicting the variability associated with the delamination growth process 
is essential to the estimation of the reliability of composite structures. The 
empirical nature of the model has been minimized through the introduction 
of fracture mechanics parameters into the stochastic model. This has been 
accomplished by assuming that the mean of the stochastic model is 
represented by a fracture mechanics power law based on strain energy 
release rate. The applicability of the model is demonstrated through an 
experimental data generated on three laminate geometries. The results of 
the experimental evaluation illustrate the ability of the model to predict 
both the mean and variance of the delamination growth process in 
composite laminates subjected to cyclic loading. 
 
Keywords: Composite Materials, Fatigue, Delamination, Experimental, 
Stochastic Model 

 
Introduction 

Laminated fiber reinforced materials are used in 
many commercial and military structures because of 
their superior specific properties and the ability to tailor 
the structural properties for a given application. 
However, the complex anisotropic and heterogeneous 
nature of these materials has hindered their optimization 
and broad acceptance. One of the most profound 
examples of this complexity is the accumulation and 
effect of the damage on the integrity of composite 
materials subjected to cyclic loading. In traditional 
homogenous materials, failure results from the 
propagation of a single crack. In composite materials 
cracks (both inter-laminar matrix cracking, intra-laminar 
matrix cracking and fiber breaks) form throughout the 
material during its life cycle and failure results from the 
accumulation of these various types of damage. This 
process is dependent on fiber architecture, materials used 
and structural geometry. A thorough understanding of 
damage accumulation is critical to structural assessment. 

The approaches that have been traditionally taken to 
address the structural assessment of composite materials 
subjected to cyclic loading are summarized and reviewed 
by (Degrieck and Van Peagegem, 2011; Garnich and 
Akula, 2009). These approaches include empirical 

theories, residual strength degradation theories, stiffness 
degradation theories and damage mechanics theories. 
Empirical, residual strength and stiffness degradation 
approaches do not account for the underlying damage 
accumulation phenomenon that are inherent to the 
degradation of composite structures subjected to cyclic 
loading. As a result, their predictions are typically only 
applicable to a specific material and laminate 
combination. The damage mechanics approach has the 
potential of predicting damage accumulation and 
residual properties from basic material properties 
without the need for specific laminate testing because the 
underlying damage phenomenon are intrinsic to the 
damage mechanics approach. Although the fundamental 
understanding needed to make this approach successful 
has yet to be fully developed. 

Cyclic loading of a composite structure will result in 
fiber, interlaminar and intralaminar damage 
accumulation. Investigators have explored the use of the 
fracture mechanic’s principal of strain energy release 
rate (Paris and Sih, 1965) in modeling interlaminar 
(O’Brien, 1982; Wang et al., 1985; O’Brien et al., 1993; 
O’Brien, 1993) and intralaminar (Wang, 1984; Suresh and 
Wang, 1993; Sriram and Armanios, 1993) cracking. 
However, few have addressed the high degree of 
variability that is associated with the damage growth 



Ronald B. Bucinell / American Journal of Engineering and Applied Sciences 2016, 9 (3): 635.646 
DOI: 10.3844/ajeassp.2016.635.646 
 

636 

processes. An understanding and accurate assessment of 
the variability is critical to reliability evaluations. 

The first attempts to address the probabilistic nature 
of the composite damage accumulation process were 
based on the Weibull (1951) extreme value type 
distribution. Harlow and Phoenix (1978a; 1978b; 1979) 
included fiber failure and Ramani and Williams (1977) 
and Talreja (1987) included fatigue life models. The 
Weibull approach is limited because the probability 
distribution has not been related to the damage process, 
it is not possible to separate and account for the major 
sources of variability in material response, the 
correlation characteristics of test data are not accounted 
for and the nature of physical process are not reflected. 
Further, there are only two limiting states of the material 
in Weibull distribution based fatigue models: 
Satisfactory (no damage) and failure. A rigorous 
stochastic approach can take into account all sources of 
variability in material response and lead to a reliable 
prediction of damage growth. Wang et al. (1984) 
presented a stochastic model for intralaminar crack 
growth and Bucinell (1998) presented a stochastic model 
for interlaminar damage growth. 

In the remainder of this paper the fracture mechanics 
based stochastic delamination growth model developed 
by Bucinell (1998) is further developed for variable 
amplitude intralaminar damage growth and compared to 
experimental data. First the experimental program 
designed to generate data for the model is presented. 
Then the stochastic model development is summarized. 
This is followed by a discussion of the application of the 
model to the growth of delamination under constant 
amplitude fatigue loading for three laminates. Following 
this, the parameters of the model are scrutinized and the 
arguments are made in favor of categorizing some of the 
parameters as material properties. 

Materials and Methods 
An experimental study was conducted to demonstrate 

the use of a fracture mechanics based model to predict 
the growth of delamination under variable amplitude 
fatigue loading. The validation of the model required 
several phases. First the basic ply material properties, the 
laminate stacking sequence and the maximum fatigue 
load amplitude on the mean growth of delamination are 
experimentally determined. The secondly the scatter in 
the growth of delamination is quantitatively 
characterized using constant amplitude loading for later 
use in the cumulative model. The results of the 
experimental investigation are used in the development 
and validate the cumulative damage model presented 
later in this study. Both static and cyclic fatigue tests 
were conducted to provide basic laminate property data 
for the model and to provide data for damage 
accumulation comparisons. 

Material Description 
The basic material system used to fabricate the 

laminates was an AS4 fiber/3501-6 resin unidirectional 
graphite/epoxy prepreg tape. Several panels were 
fabricated in the [±25/90]s laminate geometry for this 
investigation. These panels were then autoclaved cured 
to the manufacture’s specifications. After cure, fiber-
glass/epoxy end-tabs were attached to the panels using a 
cement. The panels were then cut into straight tensile 
coupons 300 mm (12 in) long by 19 mm (0.75 in) wide. 

Experimental Procedures 
To achieve the experimental objective, three sets of 

test were conducted. The first set of tests determined 
the elastic properties and the ultimate tensile strengths 
of the various laminates. The second set of tests 
established the delamination threshold, the load-
delamination growth relationship and location of the 
delamination interface under a static loading. This data 
was used to characterize static delamination growth and 
to define the load levels for the constant amplitude 
fatigue tests. The third and final set of tests established 
the load-time-delamination growth relationship and the 
location of the delamination interface under constant 
and variable amplitude fatigue loading. 

Uniaxial tensile static and fatigue tests were 
performed on a closed-loop servo-hydraulic Instron 
machine. All static tests were performed in displacement 
control and the cross-head speed was set to 0.25 mm 
(0.01 in.) per minute. For the fatigue tests, the load frame 
was placed in load control and a sinusoidal wave form at 
a frequency of 6 Hz was used. The minimum to 
maximum load amplitude ratio was set to R = 0.1. 
Matrix damage in the test coupons was monitored non-
destructively using an X-radiographic system (Hewlett 
Packard FAXTRON 800). 

In the first set of tests, bi-axial strain gage rosettes 
were mounted on each coupon for the purpose of 
characterizing the laminate properties. The longitudinal 
laminate modulus, Ex, Poisson ratio, νxv and the ultimate 
laminate strength were experimentally determined. The 
mean properties from these tests are summarized in Table 1. 

The second set of tests used incremental static 
loading to monitor the location and growth of 
delamination in the test specimens. Each coupon in this 
set of tests was loaded to predetermined load increments 
and then the load was relieved. The specimens were 
removed from the test fixtures and inspected for free 
edge delamination using X-radiography and then 
reloaded to a higher load level. The unloading and 
reloading of the specimens to higher predetermined 
levels was continued until the specimen failed. The free-
edge interface where the delamination occurred was 
determined optically using a 10× magnifying lens during 
the incremental loading. Several specimens were 
selected to be photomicrographed in order to record the 
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location of the delamination interface. The 
experimentally observed location of the delamination 
interface for this laminate is summarized in Table 2 
along with the static delamination onset stress and the 
breaking strength of the laminates. The ultimate strength 
of the laminates during the incremental static load testing 
(Table 2) compare well with the ultimate strength 
determined during the continuous static load testing 
(Table 1). This implies that the repeated loading and 
unloading of the incremental tests and the X-radiography 
enhancement solution did not affect the damage growth 
characteristics of these laminates under static loading. 

The third set of tests were conducted under constant 
and variable amplitude fatigue loading The constant 
amplitude fatigue load level testing was conducted at 
three fatigue load levels. One load level was chosen near 
the static delamination onset load, another was chosen so 
that the coupon would fail around one million cycles and 
a third was chosen between the other two. The three load 
levels are summarized in Table 3. 

During fatigue testing the cycling was halted at a 
series of predetermined cycles and the specimens were 
removed from the test fixture. Using the same x-
radiography inspection procedure followed during the 
static testing, the growth of delamination was monitored. 
The specimens were then reloaded to a higher 
predetermined cyclic increment. This procedure was 
repeated until the specimen failed. The edge of the 
specimens were also examined for the location of the 
delamination interface. A summary of the load levels at 
which the constant amplitude fatigue tests were 
conducted along with the location of the delamination 
interface are found summarized in Table 3. 
 
Table 1. Mean [±25/90]s laminate properties determined in 

the mechanical property characterization testing 
phase of study 

 Ex  Ultimate stress 
Replicates GPa (Msi) νxy MPa (ksi) 

2 64.4 (9.34) 0.290 406. (59.0) 
 
Table 2. Results of incremental static loading phase of the 

experimental program for the [±25/90]s laminate. The 
average stress for the onset of delamination, the 
ultimate stress of the laminate and the interface where 
the delamination formed are reporte 

 Ultimate stress Onset stress 
Replicates MPa (ksi) MPa (ksi) Interface 
2 338. (49.0) 400. (58.0) -25/90 
 
Table 3. Summary of the load levels at which [±25/90]s 

laminate specimens were tested during the cyclic 
loading phase of the experimental program 

 Maximum fatigue  Delamination 
Replicates load MPa (ksi) interface 
3 200. (29.0) -25/90 
3 228. (33.0) -25/90 
3 276 (40.0) -25/90 

Stochastic Delamination Growth Model 
A stochastic process is a mathematical model of any 

dynamic process whose evolution with time is governed 
by some probabilistic law. The advantage of modeling 
fatigue delamination growth as a stochastic process is 
that the inherent variability in the growth of 
delamination can be predicted. The stochastic model by 
Bucinell (1998) was developed to predict the growth of 
delamination in composite laminates. This model 
assumes that the number of cycles needed for a 
delamination to grow to a given length is best described 
by a random variable. The parameters of the probability 
distribution used to describe this random variable are 
assumed to vary with the applied fatigue load level. By 
describing these parameters in terms of the applied 
fatigue load level, the amount of testing required to 
correlate the model can be significantly reduced. 

Bucinell (1998) describes the stochastic model 
parameters in terms of the applied fatigue load level is 
based on the assumption that a deterministic fracture 
mechanics model can be equated to the mean expression 
of the stochastic model. Hence, the parameters in the 
stochastic model can be directly related to the applied 
fatigue load. This development is facilitated by 
discretizing both time and delamination size. A 
discretized time increment is referred to as a cycle. A 
cycle is defined as a repetitive period of cycling during 
which delamination can occur. In this development, each 
fatigue load reversal is considered a cycle. A discretized 
delamination size increment is referred to as a 
delamination state. 

The following restrictions are imposed on the 
definitions of a cycle and a delamination state in the 
development of this model: 
 
• The increment of delamination damage at the end of 

a cycle depends only on the delamination state 
present at the start of that cycle 

• Delamination damage can only increase during a cycle 
• No initial delamination or manufacturing flaws exist 

in the virgin laminate that are on the order of a 
delamination state. Thus, all delamination damage 
starts in the undamaged state 

• Between cycles, only the fatigue load level can 
change. The load frequency, R-ratio, environmental 
conditions, etc., are all assumed to remain constant 

 
Proceeding with these assumptions in mind, let the 

probability of the delamination advancing from the 
existing delamination state to the next during any 
cycle be assigned the value p. The probability of the 
delamination not advancing to the next delamination 
state is assigned the value q. Since it is assumed that 
the delamination can only increase by one 
delamination state during any cycle or remain in the 
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same delamination state during that cycle, the 
following equality can be written: 
 

1p q+ =  (1) 
 

The values of p and q remain constant as long as the 
fatigue load level remain constant. Changes in the 
fatigue load level will result in changes in p and q. 

Bucinell (1998) development then goes on to show 
that the constant amplitude fatigue delamination growth 
process is described by the Negative Binomial 
distribution (Hastings and Peacock, 1975). Where the 
mean (E[•]) and variance (var[•]) are given by: 
 
[ ] /nE T n p=  (2) 

 
[ ] ( ) ( )2 2 1var 1 /nT n p p n p p− −= − = −  (3) 

 
In these expressions Tn is the random variable 

defined as the number of cycles needed for a 
delamination to progress from the initial delamination 
state, (0)th, to the (n)th delamination state. 

At this point the values of parameters p and n can be 
estimated from constant amplitude fatigue delamination 
growth data using regression analysis. Since these 
parameters change with the fatigue load amplitude, they 
will have to be estimated for each load level under 
consideration unless a relationship between these 
parameters and the fatigue load level can be developed. 

Experimental evidence (Wang et al., 1985; Ye, 1989; 
Dahlen and Springer, 1994) suggests that the fracture 
mechanics power law shown in Equation 4, written in 
terms of the strain energy release rate G and the critical 
strain energy release rate Gc, describes the mean growth 
behavior of delamination: 
 

( ), /m c
da G a GdN

ρ
α σ=     (4) 

 
Wang and Crossman (1980) showed that G can be 

expressed explicitly in terms of the applied load as: 
 
( ) 2 2, ( ) / ,m e mG a C a t Eσ σ= ⋅ ⋅  (5) 

 
Where: 
σm = The applied load 
E = The elastic modulus of the laminate in the 

direction of the load 
Ce(a) = A coefficient function which depends only on 

the delamination size a and t is the thickness of 
a ply 

 
By assuming Ce is a constant (Bucinell, 1998), 

Equation 4 can be easily solved for the mean number of 
fatigue cycles required for the delamination to reach a 
given length, a: 

( ) ( ) ( )2 2/ /e m cN a C t G E
ρ

α σ
−

 = ⋅ ⋅ ⋅   (6) 

 
Equation 6 is a continuous representation of the 

mean delamination growth rate. Both Equations 2 and 
6 describe the same event. Discretizing Equation 6 
enables the parameters of the probabilistic model 
(Equation 2) to be written in terms of fracture 
mechanics parameters. 

The discretization of Equation 6 starts by letting ads 
be the size of a delamination state and n be the number 
of delamination states to a fixed crack length a = af: 
 

f dsa a n= ⋅  (7) 

 
It follows that: 

 

[ ]

( )
( )

( )
( )

2

2

2

2

n

e mds

c

e mf

c

nE T Np

C ta n
G E

C ta
G E

ρ

ρ

σ

α

σ

α

−

−

= =

 ⋅ ⋅⋅   = ⋅  ⋅    

 ⋅ ⋅ 
 = ⋅ 

⋅    

 (8)  

 
With a substitution of Equation 6 and 7 into Equation 

2, the probability of a delamination state advancing to 
the next state on a given cycle, in terms of fracture 
mechanics parameters, is given by: 
 

( ) ( ) ( )2 2/ ds e cp a C t G E
ρ

α σ = ⋅ ⋅ ⋅   (9) 

 
A similar procedure is used to write the variance in 

terms of fracture mechanics parameters. The 
development starts with the variance of the constant 
amplitude fatigue delamination growth process, 
Equation 3. This development is based on the 
assumption that the values of p are on the order of 
10−3 and smaller. With this assumption Equation 3 can 
be simplified to: 
 

[ ] 2 2var n sdT T n p= =  (10) 

 
where, Tsd represents the standard deviation of the 
random variable Tn. Substituting Equations 7 and 9 into 
Equation 10 and placing stress related terms on the left-
hand side of the equation yields: 
 

22
4 2

2
e

ds sd
ds c

C ta T
a G E

ρ
ρ ασ

⋅

− ⋅    ⋅
⋅ =    ⋅   

 (11) 
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Load level is known to have a direct effect on mean 
fatigue delamination growth behavior. It is anticipated 
that load level will also have an effect on the variability 
associated with fatigue delamination growth behavior. 
Since the delamination state size ads is influenced by this 
variability, it can be concluded that ads is a function of 
load level. This conclusion is supported by data 
presented by (Wang and Crossman, 1980). The manner 
in which ads varies with the load level is assumed to be 
of the general form: 
 

B
dsa Aσ=  (12) 

 
Substituting Equations 7 and 12 into Equation 11 

yields: 
 

22
4 2

2
B e

sd
f c

C tT
A a G E

ρ

ρ ασ
−

−
   ⋅

= ⋅ ⋅    ⋅ ⋅  
 (13) 

 
The implication of this equation is that at a fixed 

delamination size, af, there is a relationship between the 
load level and the variance in the number of cycles to 
reach that delamination size, 2

sdT . 

Taking the logarithm of both sides of Equation 13 
and performing some simplification results in the 
following expression: 
 

( ) ( )1 0log logv sd vB T Bσ = ⋅ +  (14) 

 
where: 
 

( )1
2

4VB B ρ= −  (15) 

 
and: 
 

22

0 2

1
log

4
e

v
f c

C tB
B A a G E

ρ
α

ρ

      ⋅ = ⋅       − ⋅ ⋅      
 (16) 

 
Thus the variance of Tn can be written: 

 

[ ]
0 1 1

2

2 / 2/

var

10 v v v

n sd

B B B

T T

σ− ⋅

=

= ⋅
 (17)  

 
At this point the model parameters p and n, can be 

estimated directly from fracture mechanics parameters. 
Solving Equations 2 and 9 simultaneously yields: 
 

1
var[ ]1 [ ]

n

n

Tp E T

−
  = +     

 (18) 

1
var[ ][ ] 1 [ ]

n
n

n

Tn E T E T

−
  = +     

 (19) 

 
where, the mean, E[Tn] and variance, var[Tn], are 
defined in terms of fracture mechanics parameters in 
Equations 8 and 17. 

The stochastic delamination growth model has 
been completely developed for the case of constant 
amplitude fatigue loading. Experimental data at 
several fatigue load amplitudes is required to estimate 
the parameters of the model and then the model can be 
used to estimate the mean and variance in the growth 
of delamination at several other fatigue load levels. 
The following section discusses the correlation of the 
model with actual fatigue data. 

Extending the Model to Variable Amplitude 
Loading 

For the case of variable amplitude loading, the mean 
and variance of Tn are developed using the characteristic 
function described by Bucinell (1998): 
 

1

( )
1

iun
j

iuT
jj

p eh u q e=

⋅
=

− ⋅∏  (20) 

 
The central moments of a random variable can be 

calculated from the characteristic function by: 
 

1
(0)

k
k

Tk k

dE T h
i du

  = ⋅ ⋅   (21) 

 
where, E[Tk] represents the (k)th central moment of Tn. 
The first central moment corresponds to the mean of the 
random variable. It follows from Equation 21 that the 
mean of Tn for the case of variable amplitude fatigue 
loading is: 
 

[ ]
1 2

1 2

1 1 1

[ ] [ ] [ ]

n
n

n

E T p p p
E X E X E X

= + + +

= + + +

⋯

⋯
 (22) 

 
This equation implies that even if the Xjs are not 

identically distributed, the mean of Tn is a summation of 
the means of the individual Xjs. 

The variance of Tn for the case of variable 
amplitude fatigue loading is defined in terms of 
central moments as: 
 

[ ] [ ]22var n n nT E T E T = −   (23) 

 
Both terms on the right-hand side of this equation can 

be calculated using Equation 21. It follows that the 
variance of Tn can be written: 
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[ ]

[ ] [ ]
[ ]

1 2
2 2
1 2

2

1 2

1 1var

1

var var

var

n

n

n

n

p pT p p
p

p
X X

X

− −= +

−+ +

= +

+ +

⋯

⋯

 (24) 

 
The variance of Tn is simply the summation of the 

variances of the Xjs. 
To this point, the model development has shown 

that the variable amplitude fatigue process can be 
represented by a summation of constant amplitude 
fatigue processes. Thus, the parameters of the model 
can be estimated through a series of constant amplitude 
fatigue experiments. From these experiments, the mean 
and variance of the number of fatigue cycles to a fixed 
crack length are calculated at each fatigue load level 
being considered. From this information, Equations 2 
and 3 are used to estimate the p’s and n’s that 
correspond to each of the fatigue load levels. Then 
Equations 23 and 24 can be used to predict the mean 
and variance of the prescribed variable amplitude 
fatigue load history. 

The cumulative damage description using equations 
23 and 24 imply that the change in fatigue load level 
occurs only at damage state increments. Typically, in 
cumulative damage tests, the load level is changed at a 
prescribed number of fatigue cycles. These usually do 
not coincide with the damage state increments. Thus, 
the process describing the number of damage states a 
delamination has progressed through in t duty cycles 
needs to be considered. Let the random variable Dt 
describe this process. Expressions for the distribution 
function, mean and variance of this random variable 
now need to be developed. 

Consider the event that on the (t)th duty cycle the 
delamination has progressed n or less damage states. 
In terms of the random variable Dt this event is 
written: 
 

.tD n≤  (25) 

 
Figure 1 illustrates this event. For this event to occur, 

the number of duty cycles to the (n+1)th damage state 
must occur after the (t)th duty cycle. This is written in 
terms of the random variable T as: 
 

1 .nT t+ >  (26) 

 
Thus, Equations 25 and 26 are equivalent events. In 

terms of probabilities, the equivalence of these events 
can be written: 
 

[ ] [ ]1Pr Prt nD n T t+≤ = >  (27) 

 
 
Fig. 1. Illustration of the relationship between the random 

variables in the stochastic model where the on the (t)th 
duty cycle the delamination has progressed n or less 
damage states 

 
It follows: 

 
[ ] [ ]1Pr Prt nD n T t+> = ≤  (28) 

 
The right hand side of Equation 28 is the 

cumulative distribution function of the summation of 
duty cycles spent in each of the individual damage 
states. Using the notation presented by Bucinell 
(1998), Equation 28 can be written: 
 

[ ] 1Pr ( ), , 1,2,t nD n F t t n+> = = …  (29) 

 
This equation enables the probability density function 

of Dt, ft(n), to be expressed in terms of the random 
variable Tn: 
 

[ ] [ ]
[ ]

1

Pr Pr 1

Pr

( ) ( )

( )

t t

t

n n

t

D n D n

D n
F t F t
f n

+

= = > −

− >

= −

=

 (30) 

 
Thus the cumulative distribution function of Dt, is 

defined as: 
 

[ ]
1

Pr ( ) ( )t t t
u

D n F n f u
∞

=

≤ = =∑  (31) 

 
The mean and variance of Dt are defined 

respectively as: 
 

[ ]
1

( )t t
j

E D j f u
∞

=

= ⋅∑  (32) 

 
and: 
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[ ] [ ]22

1

var ( )t t t
j

D j f j E D
∞

=

= ⋅ −∑  (33) 

 
Since the Dts are considered to be independent, it 

follows that: 
 
[ ] [ ] [ ]

[ ]
1 2t t t

tn

E D E D E D

E D

= +

+ +⋯
 (34) 

 
and: 
 

[ ] [ ] [ ]
[ ]

1 2var var var

var

t t t

tn

D D D

D

= +

+ +⋯
 (35) 

 
where, the load levels of the Dtjs are different. 

Application of Model to Experimental Data 
The stochastic model developed above can now be 

compared to experimental data. This process begins by 
using experimental data to estimate the parameters of the 
model (α, ρ, BV0 and BV1). This requires delamination 
growth versus fatigue cycle data at a minimum of three 
fatigue load levels for each of the specimen geometries 
(the load levels are summarized in Table 3). 
Additionally, the energy released as the delamination 
opens is estimated using a finite element simulation 
presented by Bucinell (1998). 

The parameters α and ρ are estimated using the 
delamination length versus number of cycles data for 
various fatigue load levels. A first order linear regression 
equation is formed by taking the logarithm of both sides of 
Equation 6 and arranging the resulting equation in the form: 
 

1 0m mY B X B= ⋅ +  (36) 
 
Where: 
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The parameters α and ρ are estimated directly from 

the regression parameters Bm1 and Bm0: 
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where, the “^” indicates an estimated parameter. The 
parameter Ce is calculated using a quasi-three-dimensional 
finite element model that employs the crack closure 

method and the moduli estimated from the previously 
discussed static experimental evaluation performed by 
Bucinell (1998). For the [±25/90]s laminate the required 
fracture mechanics parameters are summarized in Table 4. 

Figure 2 illustrates the regression used to estimate the 
parameters in Equation 37. The resulting estimates of α 
and ρ and their 95% confidence limits for the [±25/90]s 
laminate are summarized in Table 5. 

The stochastic model developed in the preceding 
section requires the estimation of the parameters BV0 and 
BV1 in Equation 14. This estimation requires that data for 
the variance in the time it takes the delamination to reach 
a width af be plotted in log Tsd versus lot σ space. 
Equation 14 suggests that a first order linear regression 
is appropriate for the estimation of BV0 and BV1; however, 
because of the limited amount of this type of data a Least 
Squares Analysis of Variance cannot be performed. 
Instead the Jackknifing technique presented by Miller 
(1974) was used. Figure 3 illustrates the Jackknifed 
estimation of BV0 and BV1for [±25/90]s laminate tested in 
this study. Table 6 summarizes the mean and variance 
for BV0 and BV1. 

Once BV0 and BV1 are estimated, the parameters A and 
B in Equation 12 can be calculated as follows: 
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A summary of the regression parameters A and B 

calculated from Equation 38 for the [±25/90]s laminate 
are found in Table 6. The calculations of A and B are 
based on the mean values of BV0 and BV1. 

Now that all of the parameters of the model have 
been estimated, the model can be used to predict the 
behavior of the growth of delamination for the load 
levels under consideration. A summary of the model 
parameters E[Tn], Tsd, p and n, using the estimated 
parameters in Table 5 and 6, for the load levels under 
consideration are found in Table 7. 

Two sets of variable amplitude fatigue tests were 
performed to evaluate the model. Periodically during the 
loading the cycling was stopped so the growth of 
damage could be measured using radiography. First, two 
[±25/90]s laminates were subjected to 276MPa (40 ksi) 
for 1000 cycles and then 345 MPa (50 ksi) for an 
additional 100 cycles. Figure 4 shows the model 
prediction and experimental data for the last phase of the 
variable amplitude load spectrum. Second, two [±25/90]s 
laminates were subjected to 345 MPa (50 ksi) for an 
additional 10 cycles and then 207 MPa (30 ksi) for an 
additional 250 000 cycles. Figure 5 shows the model 
prediction and experimental data for the last phase of the 
variable amplitude load spectrum. 
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Fig. 2. Experimental data used to perform the linear regression to estimate the parameters Bm1 and Bm0 in Equation 37 and α and ρ 
 

 
 

Fig. 3. Illustration of the Jackknifing technique used to estimation of the parameters Bv0 and Bv1 in Equation 14 
 

 
 
Fig. 4. Model prediction for a [±25/90]s laminate subjected to a first phase of a 276 MPa (40 ksi) load for 1000 cycles and then a 

second phase of 345 MPa (50 ksi) load for an additional 100 cycles, compared to experimental data for two specimens. Only 
the last phase of delamination growth is shown 
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Fig. 5. Model prediction for a [±25/90]s laminate subjected to a first phase of a 345 MPa (50 ksi) load for 10 cycles and then a 

second phase of 207 MPa (30 ksi) load for an additional 250 000 cycles, compared to experimental data for two specimens.  
Only the last phase of delamination growth is shown 

 
Table 4. The  [±25/90]s laminate specific constants used in 

the calculation of α̂  and ρ̂ for a delamination in the 
-25/90 interface 

Es [GPa]  Ce [GN/m2] Gc [J/m2] t [mm] 
([Msi]) ([Mlb/in2])  [(lb/in)] ([in]) 
64.4 20.1 227 0.13 
(9.34) (3.14) (1.30) (0.0052) 
 
Table 5. First order linear regression estimates of fracture 

mechanics parameters α and ρ from [±25/90]s 
laminate experimental data generated using Equations 
34 and 35 

 95% Conf.  Mean α 95% Conf. 
Mean ρ Range Mm (in) Range Mm (in) 
6.115 5.481-6.749 4.81 1.51-15.3 
  (0.1892) (0.0593-0.6042) 
 
Table 6. A summary of the parameters Bv0, Bv1, A and B found 

in Equations 12 and 14 for the [±25/90]s laminate 
Bv0  Bv1 
----------------------- ----------------------- 
Mean Std Dev Mean Std Dev A (×103) B 
1.820 0.047 -.0720 0.0114 1.93 -3.338 
 
Table 7. A summary of parameters Tsd, p and n for the 

[±25/90]s laminate in this study 
Load level E[Tn] Tsd 
[Mpa] ([ksi]) Cycles Cycles p n  
200 (29.0) 1.59×105 9.28×104 1.85×10−5 3 
207 (30.0 1.05×105 5. 80×104 3.12×10−5 3 
228 (33.0) 3.28×104 1.54×104 1.38×10−4 5 
276 (40.0) 3.13×103 1.07×103 2.73×10−3 9 
345 (50.0) 2.05×103 4.81×101 8.86×10−2 18 
 

Discussion 
The intent of the stochastic delamination growth 

model is to predict the growth of delamination in 

laminated composite materials subjected to variable 
amplitude fatigue loading. The model predictions include 
the mean growth of delamination and the variability about 
the mean growth of delamination. The model integrates 
fracture mechanics parameters so the model parameters 
can be estimated using constant amplitude fatigue data. 
The estimated parameters are then used to predict 
delamination growth under variable amplitude loading at 
load levels other than those used to predict the model 
parameters. The predictions of the mean and variability 
of the delamination growth shown in Figures 4 and 5 
compare well with the delamination growth data. 

The specimens examined in the experimental 
program did not contain any type of foreign substance in 
the layer interface that forced the delamination growth. 
The site of delamination onset and growth was allowed 
to occur naturally. The site of delamination in the 
[±25/90]s laminate was observed in the -25/90 interface 
for both static and fatigue loading (Table 2 and 3). At 
this interface, the finite element prediction of the energy 
release rate predicts a mixture of mode I and II fracture 
components (Bucinell, 1998). It is interesting to note that 
the total energy release in the -25/90 interface was lower 
than the midplane and the +25/-25 interface of this 
laminate. The midplane and the +25/-25 interface had 
nearly all mode I fracture components. 

A few observations can be made about the location of 
delamination onset and propagation in composite 
laminates subjected to static and fatigue loading. First, in 
order for a delamination to form at an interface the normal 
opening edge stresses have to be very high and tensile. 
The finite element analysis performed on the [±25/90]s 
laminate shows that the interface where the delamination 
did form had singular normal opening stresses at the free 
edge (Bucinell, 1998). If a high tensile state of stress 
exists at an interface and the loading is static, the growth 
of delamination will be dominated by mode I fracture. If a 
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high interlaminar tensile state of stress exists at an 
interface and the loading is cyclic, it appears that the 
interface with the maximum mode II component will 
control the growth of delamination. 

The stochastic model developed provides a 
methodology for the prediction of the mean delamination 
growth rate in laminated composites subjected to 
constant amplitude cyclic loading and an estimate of the 
variability associated with the growth of the 
delamination. The model is developed without any 
predisposition to a probability distribution. Additionally, 
fracture mechanics parameters have been introduced into 
the model in order to minimize the amount of data 
required to correlate the model and to maximize the 
predictive capability of the model. 

The stochastic model developed here implies that the 
delamination grows uniformly along the length, toward 
the center of the specimen. The crack length being 
predicted is actually the width of the delamination 
measured from the edge of the specimen. Observations of 
the delamination growth for the laminates under 
consideration in this investigation show that the 
delamination does occur along the entire length of the 
laminate, however, it is not uniform. O’Brien et al. (1993) 
also made a similar observation about the growth of edge 
delamination and went on to show that the error associated 
with assuming a uniform delamination front was 
negligible when compared to a detailed crack front model. 

The stochastic model was developed around the 
assumption that a delamination may or may not advance 
during any fatigue cycle. These two events are assigned 
the probabilities p and q. The number of cycles to a 
given delamination size is found to be Negative 
Binomially distributed. This distribution captures the 
true discrete progressive nature of delamination growth 
during cyclic loading. It is not surprising that this 
distribution is not the same as the distribution associated 
with the accumulation of damage in fibers and the 
strength of laminates. The damage associated with these 
phenomenon occur at multiple sites in the composite and 
then coalesce into a critical damage state. This type of 
process has been shown by Harlow and Phoenix (1978a; 
1978b; 1979) to follow a Weibull distribution. 

The mean and variance predictions of the stochastic 
delamination growth model are compared to 
experimental data for each of the laminates in Fig. 4 and 
5. All of the data obtained is found to lie within the 95% 
confidence limits predicted by the model. By changing 
the load parameter, σ, in Equations 8 and 17 the model 
can be used to predict the mean growth of delamination 
and the variability associated with this growth at load 
levels other than those used to correlate the model. This 
prediction is expected to be most accurate within the 
range of the load levels used to correlate the model. 
There is always a danger in extrapolating models outside 
the range of correlation. 

The forms of the equations used to estimate the mean 
and variance parameters for the delamination growth 
model from experimental data, Equations 14 and 20, are 
both linear. Thus, in designing experiments to correlate 
the model for a given laminate, data should be generated 
at three load levels. Two of the load levels should 
correspond to the upper and lower bounds of the loading 
under consideration. The third load level should 
correspond to a load level mid-way between the upper 
and lower bound. The majority of the experimental data 
should be concentrated at the upper and lower bounds. 
This strategy will provide the most accurate estimates of 
the variability about the mean prediction of the model. 
This strategy was not employed during this experimental 
program. When this study was being carried out the form 
of the estimation curves were not known; therefore data 
was arranged such that a relationship as high as a 
second-order polynomial could be evaluated. 

The scant amount of data used in the estimation of 
the parameters BV0 and BV1 can be traced to the meaning 
of the data points. Each of the data points represent the 
variance in the time it takes a delamination to grow to a 
certain length at a given load level. Thus the generation 
of a single data point in this figure requires the use of all 
the data at a given load level. The number of data 
available for the estimation of BV0 and BV1, at each load 
level, can only be increased if several batches of material 
are used. If this is done, several specimens from each 
batch of material can be tested at each load level. The 
variability of the delamination growth to a specified 
length, at a given load level, for each batch provides an 
independent data point that can be used in the estimation 
of BV0 and BV1. In doing so, a more accurate estimate of 
the mean and variance of BV0 and BV1 will be estimated. 

Equations 15 and 16 show BV0 and BV1 as functions of 
mostly fracture mechanics parameters. The non-fracture 
mechanics parameters in these equations are A and B. 
These parameters were introduced to mathematically 
model the effect of load level on the damage state size ads. 
The nature of A and B is summarized in Table 6. From 
Equation 12, the negative sense of the parameter B 
indicates that as the load level increases the size of a 
delamination state decrease. The implication of this is 
seen in Equation 12 where a decrease in delamination 
state corresponds to an increase in the probability of the 
delamination advancing during any fatigue cycle. If 
further investigation reveal the true nature of parameters A 
and B, it could be possible to reduce the amount of data 
required to correlate the model. This could possibly lead 
to the use of data obtained with one material in a known 
laminate configuration predicting the mean and variance 
of the growth of delamination of the same material in a 
different laminate configuration. Further investigation into 
the nature of these parameters is required. 
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Summary and Conclusion 

A delamination growth model for composite laminates 
subjected to variable amplitude fatigue loading has been 
developed. The parameters of the model have been defined 
in terms of fracture mechanics, material and laminate 
geometry parameters. Experimental data verified that this 
model can be used to predict the mean and variance 
associated with the growth of delamination at several load 
levels in a variable amplitude loading spectrum. 

The location of the delamination in laminates was 
found to be load type specific. Under quasi-static loading 
the delamination formed in the interface with high 
singular opening edge stresses and a large mode I energy 
release rate component. Under fatigue loading the 
delamination formed in the interface with high singular 
opening edges stresses and a large mode II energy 
release rate component. 

This stochastic model should provide more accurate 
estimates of structural reliability than wear out or 
damage tolerance models since the nature of the 
delamination growth phenomenon is inherent to the 
model. This model will allow statistically significant 
damage thresholds to be established for given variable 
amplitude service load spectrum. 
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