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Abstract: The numerical study of natural convection in a square porous 

cavity saturated by a Newtonian fluid is presented in this study. The 

vertical walls are subjected to temperatures varying sinusoidally in time and 

phase opposition while the upper and lower horizontal walls are thermally 

adiabatic. Darcy model is used, it is also assumed the fluid studied is 

incompressible and obeys the Boussinesq approximation. The focus is on 

the effect of the modulation frequency (10 ≤ ω ≤ 100) and the Rayleigh 

number (10 ≤ Ra ≤ 1000) on the structure of the flow and transfer thermal. 

The results show that the extremal stream functions (ψmax and ψmin), the 

average Nusselt number at the hot (Tc) and cold (Tf) walls respectively 

Nucmoy and Nufmoy are periodic and periods equal to that excitatory 

temperatures to the range of parameters considered in this study. The 

results show also that oscillatory heating causes the appearance of 

secondary flow, whose amplification depends on the frequency of 

modulation of the imposed temperature. The results are shown in terms of 

streamlines and isotherms during a flow cycle. 
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Introduction 

The natural convection in confined porous media 

saturated by fluid is fundamental in the fields of 

engineering and physics. This interest arises from the 

importance of this heat transfer mode in various 

engineering fields such as storage of the thermal energy, 

solar energy collectors, thermal design for the buildings, 

cooling of electronic components (Alves and Altemani, 

2012; Kuznetsov and Sheremet, 2008; Sheremet and 

Pop, 2014), the underground spread of pollutants 

(Bagchi and Kulacki, 2013). 

The literature on the convective flow in porous 

media is abundant. An excellent review of most of 

these studies is in the books (Nield and Bejan, 2006; 

Pop and Ingham, 2001; Vafai, 2005; Ingham and Pop, 

2005) that give a complete overview of the current 

state of research in this area. 

However most of these studies, theorical and 

experimental, on side convection, consider boundary 

conditions thermal constant (temperature or flux constant 

heat). Excellent review articles including one written by 

(Baytas and Pop, 2002) give detailed accounts results 

obtained with these boundaries conditions. However, 

these boundary conditions do not reflect what is 

encountered in many practical situations where the 

temperature gradient is a function of time. This is the 

case of electronic components that dissipate power 

intermittently during operation on/of. Mastering the 

gradient behavior heat in these real situations can be 

used to control the flow convective. For example, it may 

be used to control the quality and structure of a solid 

resulting from solidification of an alloy by influencing 

the process of transport. The effect of the modulation of 

temperature on natural convection in cavity fluid 

medium was several time studied. For example, 

(Schaladow et al., 1989) studied the case of a cavity 

subjected to a temperature which increases linearly each 

time. Both considered simulations (numerical and 

experimental) show that the flow and temperature field 

are very little affected by these boundary conditions. For 

their part, (Kazmierczak and Chinoda, 1992) have 

numerically studied the effect of temperature varying 

sinusoidally in time on fluid flow and heat transfer in a 

square cavity. These authors showed that the heat 

transfer means in time is substantially insensitive to the 

periodic change of the wall temperature. Lage and Bejan 

(1993) studied enclosures with one sidewall heated using 
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a pulsating heat flux and the other sidewall cooled at 

constant temperature. They showed that at high Rayleigh 

numbers, the buoyancy-driven flow has the tendency to 

resonate to the periodic heating that has been supplied 

from the side. Abourida et al. (1998) have examined the 

effect of the imposed sinusoidal temperatures and the 

thermophysical ones on the fluid flow and heat transfer 

within the cavity. They showed that all the obtained 

solutions concerning the fluid flow are periodic, with a 

period identical to that imposed to the variable 

temperatures. Note that many of these works consider 

cavities in which the temperature of the cold wall is 

maintained constant. However, very little work is done 

on natural convection in a cavity filled with a porous 

medium with boundary conditions thermal periodic in 

time and using the Darcy model. Some of the documents 

dealing with this problem are (Saeid, 2005). 

The main objective of the present study is to 

contribute to the enrichment of the kind of problem by 

examining the effect of the imposed sinusoidal 

temperatures parameter (frequency) and the Rayleigh 

number on the structure of the flow and transfer thermal. 

In this study, we study numerically natural 

convection unsteady in a square cavity, filled with a 

porous medium and the vertical walls are subjected to 

temperatures sinusoidally varying with time, oscillating 

around fixed average values and in phase opposition. 

The horizontal walls are thermally adiabatic and Darcy 

model was used. 

Materials and Methods 

A schematic geometry of the problem is shown in 

Fig. 1, where x’ and y’ are the cartesian coordinates and 

H’ is the size of the walls. This is a square porous cavity 

two-dimensional and the horizontal walls are assumed to 

be thermally adiabatic. All walls of the cavity are 

assumed to be impermeable. At the same, the vertical 

walls, left (hot wall Tc) and right (cold wall Tf) are 

subjected to temperatures sinusoidally varying with time 

and in phase opposition such that: 
 

 ( )' ' ' ' 'sinc RT T T a tω= + ∆ +  (1) 

 

 ( )' ' ' ' 'sinf RT T a tω φ= + +  (2) 

 
where, TR is the reference temperature (in our study 

'

R fT T= ), ' ' '

c fT T T∆ = −  is the average temperature 

difference, a’ represents the amplitude of the modulation, 

φ′ the phase angle and ω′ the modulation frequency. 

The Darcy-Boussinesq approximation is employed. 

Isotropy, homogeneity and local thermal equilibrium in 

the porous medium are assumed. Under these 

assumptions, the equations governing the problem is the 

equation continuity, the equation of motion and the 

energy equation, respectively (Nield and Bejan, 2006): 
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where, u
′
 and v

′ 
are the velocity components along x

′
 . 

and y
′
, T

′
 is the fluid temperature, t

′
 is the time, βT = -

1/ρ0(∂ρ/∂T
′
)p is the coefficient of thermal expansion. The 

quantities σ and α are defined by α = km/(ρc)F and σ = 

(ρc)m/(ρc)F where km is the thermal conductivity (solid 

phase + fluid phase). 

Equations 3-5 are subject to the following boundary 

and initial conditions: 
 

' ' ' ' ' ' ' ' '
( , ,0) ( , ,0) 0; ( , ,0) 0u x y v x y T x y= = =  (6a) 

 
' ' ' ' ' ' '(0, , ) 0; (0, , )

c
u y t T y t T= =   (6b) 

 
' ' ' ' ' ' ' ' '( , , ) 0; ( , , ) fu H y t T H y t T= =   (6c) 

 
' ' ' ' ' ' '( ,0, ) 0; ( ,0, ) / 0v x t T x t y= ∂ ∂ =   (6d) 

 
' ' ' ' ' ' ' ' '( , , ) 0; ( , , ) / 0v x H t T x H t y= ∂ ∂ =  (6e) 

 
One can introduce a stream function ψ′

 defined by u
′
 

= ∂ψ′
/∂y

′
 and v

′
 = - ∂ψ′

/∂x
′ 
so that Equation 3 is satisfied. 

Then the governing Equations 3-5 can be rewritten with 
the following dimensionless variables: 
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τ′, represents the dimensional period and is connected 

to the modulation frequency dimensional by the 
following equation ω′

 = 2π/τ′. 
Substituting Equation 7 in Equations 3-5 we obtain 

the following dimensionless governing equations: 
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Fig. 1. Schematic diagram of the physical model and coordinate system 

 
Table 1. Comparison of the average Nusselt number of the hot wall 

 Nucmoy 

 ----------------------------------------- 

Authors Ra = 10 Ra = 100 Ra = 1000 

Walter and Homsy (1978) - 3.097 12.96 

Bejan (1979) - 4.2 15.8 

Beckermann et al. (1986) - 3.113 - 

Moya and Ramos (1987) 1.065 2.801 - 

Manole and Lage (1992) - 3.118 13.637 

Baytas and Pop (2002) 1.079 3.16 14.06 

Present results 1.078 3.12 15.6 

 

Associated with initial and boundary conditions: 
 

( , ,0) 0; ( , ,0) 0x y T x yψ = =   (10a) 

 

(0, , ) 0; (0, , ) cy t T y t Tψ = =   (10b) 

 

(1, , ) 0; (1, , ) fy t T y t Tψ = =   (10c) 

 

( ,0, ) 0; ( ,0, ) / 0x t T x t yψ = ∂ ∂ =   (10d) 

 

( ,1, ) 0; ( ,1, ) / 0x t T x t yψ = ∂ ∂ =   (10e) 

 

Here Tc = 1+asin(ωt); Tf = asin(ωt+φ) and Ra = 

kρ0gβT∆T
′
H
′
/µα represents the Rayleigh number. The 

physical quantities of interest are the average Nusselt 

numbers at the vertical walls. The numbers of local 

Nusselt are defined as: 

0 1

;
x x

T T
Nuc Nuf

x x= =

∂ ∂   = − = −   ∂ ∂   
 (11) 

 
At each time t the average Nusselt numbers at the 

vertical walls (hot and cold) are defined by, respectively: 
 

1

0
0x

T
Nucmoy dy

x =

∂ = −  ∂ ∫  (12a) 

 
1

0
1x

T
Nufmoy dy

x =

∂ = −  ∂ ∫  (12b) 

 
The equations of motion (8) and energy (9) 

associated with the boundary conditions (10a-10e) are 

discretized by a finite difference scheme, centred and 

accurate to the second order. The energy equation is then 

solved by the implicit method of Alternating Directions 

(ADI). The linear discretized equations were solved by 

Thomas algorithm. For equation of motion, the obtained 

linear discretized equation was solved by the successive 

over-relaxation method. Uniform grids have been 

selected in both the x and y direction. 

We have developed a numerical code with Fortran 

95. The calculation stops when between two time steps, 

the following conditions are satisfied simultaneously by 

the stream function and the temperature: 
 

1
8max 10

n n

n

ψ ψ
ψ

+
− −

≤  
 

 (13a) 



Giovani E.B. Malomar et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 591.598 

DOI: 10.3844/ajeassp.2016.591.598 

 

594 

1
8max 10

n n

n

T T

T
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 (13b) 

 

Preliminary tests on the influence of the mesh have 

allowed us to retain a uniform mesh size of 120*120. 

The time step used is 10
−4

. The present numerical code 

have been validated against the works of (Walker and 

Homsy, 1978; Bejan, 1979; Beckerman et al., 1986; Moya 

and Ramos, 1987; Manole and Lage, 1992; Baytas and Pop, 

2002) for the steady state natural convection in a square 

porous cavity with isothermal vertical and adiabatic 

walls. Table 1 shows the values of the average Nusselt 

number computed for various Rayleigh numbers in the 

range 10-1000 in comparison with other authors. 

Note that all numerical simulations are initialized by 

considering a conductive state and constant heating 

conditions. When steady regime is established, we 

introduce the excitatory temperatures and expecte the 

establishment of a periodic regime. 

Results and Discussion 

In this section, we present the effect of the modulation 
frequency on temporal evolution of the extremal stream 
functions (ψmax, ψmin) and of the average Nusselt numbers 
(Nucmoy, Nufmoy). The results are presented in terms of 
flow structure (stream lines) and heat transfer (isotherms). 

Results Relating to Constant Heating 

Before discussing the results for the oscillatory 

regime, we produced streamlines and isotherms in steady 

state (a = 0) for different values of the Rayleigh number Ra 

= (10-100-1000). Note that in the case of constant heating 

(a = 0), the flow in the cavity remains monocell, consisting 

of a positive cell rotating in clockwise and having a 

symmetry  relative  to  the  center  of  the cavity (Fig. 2).  

 

 
 

Fig. 2. Streamlines (left) and isotherms (right) for Ra = 10; Ra = 100; Ra = 1000: Steady state solution 
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Fig. 3. Effect of ω for a = 0.8 and Ra = 1000 on (from top to bottom): (a) Tc(t) and Tf(t), (b) ψmax(t), (c) ψmin(t), (d) Nufmoy(t) and 

(e) Nucmoy(t) 
 
However, its intensity remains low to moderate values of 

Ra (Ra = 10 and Ra = 100) and becomes significant with 

the increase in Ra (Ra = 1000). For Ra = 1000, structure 

isotherms is almost stratified in the central region of 

cavity and strong thermal gradients are noted in the areas 

surrounding the active walls. 

Results Relating to Variable Heating 

Influence of the Modulation Frequency 

To highlight the effect of ω frequency modulation, 

we present the temporal evolution of the functions ψmax, 

ψmin, Nucmoy and Nufmoy for heating oscillatory under 

the following conditions a = 0.8; Ra = 10
3
 and 10 ≤ ω ≤ 

30. Figures 3a-3e show respectively the evolution 

temporal functions, Tc and Tf, ψmax, ψmin, Nucmoy and 

Nufmoy in the case where the temperatures excitatory 

evolve in phase opposition. The curves of Fig. 3b-3e 

show that all the solutions obtained are periodic, periods 

equal to those the imposed excitatory temperatures. In 

range 10 ≤ ω ≤ 30, the amplitudes of the functions 

presented remain very close except for ψmax(t) where there 

is a notable decrease in the amplitude when ω go 20 to 30. 

For this heating mode is also observed better competition 

between positive and negative cells, resulting in a 

cancellation of ψmin during part of the cycle. During this 

time interval, the flow is monocellular, characterized by a 

presence of a positive cell turning clockwise and of which 

intensity decreases when ψmin tends to 0. 

Figures 3d-3e show that during part of the cycle, the 
average Nusselt numbers Nucmoy and Nufmoy take 
negative values. These negative values found, are 
justified by the fact that for amplitudes (a > 0.5) the cold 
wall acquires temperatures higher than the wall supposed 
to be hot. This then results in a transfer of heat from the 
cold wall inwardly of the cavity as soon as this wall 
becomes hotter than the surrounding fluid. Thereafter the 
fluid surrounding the hot wall becomes hotter than this 
wall it results a heat transfer from the fluid outwardly the 
cavity via the wall hot. 
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Fig. 4. (a)-(l): Streamlines (left) and isotherms (right) over half cycle for Ra = 1000, a = 0.8 and ω = 10 
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However, we note that the most important effects of 

frequency modulation ω are rated for high values of this 

parameter (ω ≥ 100). But for convenience we chose to 

study the functions for 10 ≤ ω ≤ 30 because even for this 

range frequency, important differences qualitative and 

quantitative are observed. 

Streamlines and Isotherms 

To understand details of flow and heat transfer 

caused by applying the boundary conditions oscillatory 

thermal, we have produced the stream lines and 

isotherms during a cycle for Ra = 10
3
, a = 0.8 and ω = 

10. Figures 4a-4l present stream lines (left) and 

isotherms (right) at times corresponding to the letters a, 

b, c, d, …l, (Fig. 3). Note that these moments are defined 

in the order alphabet and some of the points (f, g, h, j) 

are not on the Fig. 3. They have been omitted for clarity. 

We note that at the moment (a), the flow regime is 

monocell, constituted by positive cell called main cell, 

rotating in clockwise direction and occupying the entire 

cavity. We observe also at time (a) the structure of 

isotherms shows stratification of the temperature around 

the center of the cavity and of strong gradients thermal 

around the active walls (Fig. 4a). Evolving in the cycle 

there is a weakening of the main cell (Fig. 4b). This 

weakening of the main cell is further complicated by the 

occurrence of two negative recirculation cells, one at the 

upper left corner and the other at the lower right corner 

(Fig. 4c). The appearance of these two negative cells 

cause spacing of the isotherms in the vicinity of active 

walls whence a heat transfer reduction. At time (d), in 

addition of two initial negative cells that are amplified, 

appears two other negative cells at the two remaining 

corners of the cavity, resulting in a significant weakening 

of the main cell whence heat transfer reduction 

illustrated by the isotherms structure (Fig. 4d). 

Thereafter, we note that the negative cells on the same 

side (left and right) merge and lead to the total destruction 

of the main cell positive (Fig. 4e and 4f) in favour a main 

negative cell rotating in counter-clockwise, which 

gradually establishes (Fig. 4g, 4h and 4i) and ends up 

occupying the entire cavity (Fig. 4j and 4k). Between 

times e, f, g, h and i the isotherms structure attests that 

heat transfer are virtually reduced to zero, unlike the 

moments j and k where the distribution of isotherms 

characterizing the monocell flow mode appears again. 

In the second part of the cycle, the positive cells will 

play a role similar to the one played by the negative cell 

during the first part of the cycle. However the first two 

positive recirculation cells appear in the corner of level 

upper right and lower left, then appear the two other cells 

positive recirculation at the two remaining corners. These 

positive cells will unite in pairs to the detriment of the 

main negative cell, that ends up by disappears to leave any 

room for the new dominant positive cell. 

Conclusion 

The numerical study of unsteady natural convection in a 

porous cavity square whose side walls are subjected to 

temperatures sinusoidal and in opposite phase was 

investigated. The mathematical model used is that of Darcy 

in the Boussinesq approximation. The algorithm was 

validated by direct comparison with previously published 

work and the results were considered in good agreement. 

Stream lines and isotherms were produced for Ra = 10
3
, a = 

0.8 and ω = 10 in the case of variable heating and Ra = (10-

10
2
-10

3
) for the case of constant heating. Based on the 

results found in this study, we conclude that: 
 
• Oscillatory heating causes the appearance of 

secondary flow, whose amplification depends on the 
frequency of modulation of the imposed temperature 

• The imposed oscillatory heating improves thermal 
transfer compared to the constant heating and 
constitutes the best way to remove the heat to the 
outside environment 

• When both temperatures evolve in opposite phase, 
important differences are noted in terms of flow 
structure and of transfers heat unlike the case of 
constant heating; depending on the purpose, these 
differences can be exploited by the modeler 

 
This configuration is a model for cooling components 

generating heat in electronic plates. 
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Nomenclature 

a Dimensionless amplitude 

g Gravity intensity, m.s
−2

 

k Permeability of the porous medium, m
2
 

t Dimensionless time 

T Dimensionless temperature 

(x, y) Dimensionless coordinates 

Ra Rayleigh number for porous medium 

∆T’ Average temperature difference, K 

Nucmoy Average Nusselt number at the hot wall 

Nufmoy Average Nusselt number at the cold wall 

Greek Symbols 

α Effective thermal diffusivity, m
2
.s
−1

 

βT Coefficient of thermal expansion, K
−1

 

µ Dynamic viscosity, kg.m
−1

.s
−1

 

Φ Dimensionless phase angle 

σ Ratio of heat capacity of porous medium to that of 

fluid 

ω Dimensionless frequency 

τ Dimensionless period 

ψ Dimensionless stream function 

ρo Reference density of fluid, kg.m
−3

 

Superscript 

(‘) Dimensional variables 

(-) Average values 

Subscript 

c Hot 

f Cold 

F Fluid 

min Minimum value 

max Maximum value 


