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Abstract: With the growth of cloud computing, resiliency of cloud is critical 

for enterprises’ business. However, the continuous-changing of cloud makes 

evaluation of cloud resiliency more difficult. In this study, we design a 

methodology for automatic and continuous evaluation of cloud resiliency 

and implement it in a tool called CRGauge. The Continuous Evaluation 

Model methodology leverages fault injection techniques to inject faults and 

an open-source library to set up synthetic workloads for the test campaign. 

Our experiment results on OpenStack cloud platform show that resiliency of 

OpenStack is needed to be improved especially in heavy workloads. 

 

Keywords: Cloud Resiliency, OpenStack, Continuous Evaluation, Fault 
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Introduction 

Cloud environments play a critical role in delivering 
IT services to end users because cloud offers high 
resource utilization, fast convenient resource 
provisioning and deprovisioning, continuous 
management, maintenance and upgrade of machines 
transparent to end users and low overhead of the 
management. Resiliency of cloud environments is 
essential for the high availability of IT services and is 
a major concern of enterprises. For example, 
Instagram and Vine suffer from about 1 h downtime 
on Amazon’s EC2 cloud last year (Whittaker, 2013) 
and a great number of outages on Amazon EC2 are 
reported in (Von Eicken, 2011). According to a survey 
in (NNT, 2009), 73% of CIOs and CFOs wouldn't put 
their financial and accounting applications in the 
cloud and 57% wouldn’t place any business critical 
applications in the cloud. 

Resiliency measurement is prerequisite for 
understanding and enhancement of cloud system 
resiliency. Traditionally fault injection is applied to 
measure system resiliency. It usually takes several weeks 
to set up fault injection experiments for a system. 
Moreover, a resiliency expert is required for the fault 
injection setup. As cloud systems undergo continuous 
changes and new code/new features are rapidly applied 
to cloud systems, this manual setup of fault injection is 
not fit for the dynamic nature of cloud systems. 

This paper proposes a methodology that automatically 

measures cloud system resiliency to enable continuous 

evaluation of cloud resiliency. To our best knowledge, 

there is no prior work in the literature that tries to address 

the continuous evaluation of resiliency of constant-

changing cloud systems. DS-Bench is a relevant testing 

environment for cloud resiliency. However, it hasn’t 

capability of continuous evaluation for cloud system 

(Banzai et al., 2010; Fujita et al., 2012). Besides manual 

setup of fault injection campaigns, prior arts mainly focus 

on benchmarking and measurement of system 

performance and dependability, e.g., SPEC (SPEC), 

TPCB (TPCB), DS-Bench and CloudBench (Silva et al., 

2013). These benchmarks or measures lack the ability of 

facing changes according to the benchmark metrics 

defined in (Vieira et al., 2012). 
Our methodology, Continuous Evaluation Model for 

Cloud Resiliency (CEM), devises basic modules which 
are required for continuous measurement of Cloud 
system resiliency. Figure 1 shows the architecture of the 
CEM methodology. 

The deployment module, fault injection module and 

resiliency computation module are essential parts for 

continuous evaluation of cloud resiliency. The deployment 

module leverages capabilities of the target cloud system to 

set up workloads, deploy the fault injection engine for 

certain types and scenarios of faults/failures, prepare the 

resiliency-computation models and do other configurations. 
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Fig. 1. Overview of the CEM Methodology 

 

The fault injection module conducts fault injection 

experiments for all the scenarios specified by the 

deployment module. The outputs and results of the 

fault injection module are fed into the resiliency 

computation module, which consists of a number of 

models, to compute the cloud system resiliency for 

different scenarios. Then the computed resiliency data 

are presented to the users of the cloud and workload. 

This whole cycle of deployment, fault injection and 

resiliency computation phases repeats again and again 

for the continuous evaluation of cloud system 

resiliency. The control module supervises the three 

modules during the repeated cycles. 

We implemented the CEM methodology in a tool 

called CRGauge. This tool is cloud-system independent 

and can be applied to different cloud systems when 

cloud-specific adaptors are available. Moreover, 

CRGauge treats the target cloud system as a black box, 

i.e., it does not interact with operational details and is 

evaluated only by cloud operations’ outputs. For 

assessment of our CEM methodology and CRGauge 

tool, we then applied the CRGauge to the OpenStack 

(OpenStack) cloud platform and performed 

continuous evaluation of the OpenStack resiliency. 

OpenStack is a popular open-source cloud management 

system. OpenStack evolves very fast and a large 

number of experienced developers contribute to the 

OpenStack codebase and features. So it is critical to be 

able to evaluate the resiliency of OpenStack system in 

an automated and continuous fashion. 

In summary, this paper has the following 

contributions: 

 

• Proposal of the CEM methodology for addressing 

the problem of automated continuous evaluation of 

Cloud system resiliency. This problem is very 

important to Cloud systems which, unlike traditional 

computing systems, undergo rapid and continuous 

changes all the time 

• Design and development of the CRGauge tool that is 

a practical implementation of the CEM 

methodology. The CRGauge tool is designed to be 

independent of cloud systems and treats target cloud 

systems as black box 

• Demonstration of the effectiveness and 

practicability of the CRGauge tool in evaluating the 

OpenStack cloud system’s resiliency. The 

experiement results show that resiliency of 

OpenStack cloud system becomes worse when 

facing heavy workloads 

 

Rest of the paper is organized as follows. Section 

II presents an overview of the CEM methodology. The 

CRGauge tool implements the methodology. 

Discussions of individual components in CRGauge are 

given in SECTION III. Demonstration of the 

methodology and the tool on evaluation of OpenStack 

is presented in section IV. Finally, section V 

concludes the paper. Due to the page limitation, 

related work is discussed throughout the paper rather 

than in a separate section. 

Continuous Evaluation of Cloud Resiliency 

Continuous evaluation of resiliency is critical for 

cloud platforms and cloud services, because cloud 

platform is a dynamical environment with constant 

changes and new features or fixes are rapidly applied to 

the cloud environment. 

Figure 1 illustrates the basic components of the 

Continuous Evaluation Model for Cloud Resiliency 

(CEM). 
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Deployment Module 

Evaluation of cloud resiliency is performed by 

injecting different types of errors in various scenarios. 

In order to enable the evaluation in a continuous 

fashion, it is essential to automatically deploy the test 

environment, which includes the target cloud systems 

or services, workloads and setup of fault injection 

experiments. If the target cloud systems, services or 

workloads are under design, development or test 

phase, the deployment can be performed on them 

directly. If they are in the production phase, the 

production systems, services, or workloads must be 

cloned into a test environment by leveraging cloud 

capabilities, before the fault injection software and 

resiliency test campaigns are set up in the test 

environment. Thanks to the virtualization capability 

and automated management widely supported by a 

cloud platform, the cloning is not a big challenge. 

The deployment module is designed to drive the 

deployment automation. The module reads the 

deployment specification and invokes tools like 

Puppet (Puppet), Chef (Chef) or developed scripts to 

conduct the deployment. APIs of the target cloud 

platform are invoked for certain cloud operations 

during the deployment, e.g., cloning of VMs. We use 

an Apache project called Libcloud (Libcloud) as an 

adaptor between the deployment module and the 

cloud-specific APIs so that the deployment module is 

portable across different cloud platforms (OpenStack, 

CloudStack (CloudStack), etc.). 

Besides deployment of the test system, the 

deployment module also sets up test workloads 

according to the deployment specification. The test 

workload can be the real workload fed to the test system 

(the workload is fed to the production system at the 

same time) or synthetic workload generated by certain 

tools, e.g. CloudBench (Silva et al., 2013), CloudStone 

(Sobel et al., 2008). Whether to use the real workload or 

synthetic workload, together with the characteristics of 

the synthetic workload if it is used, is recorded in the 

deployment specification. 

Setup of the fault injection is another task of the 

deployment module and is also documented in the 

deployment specification. This involves installation of 

the fault injection software into the test system, 

configuration of the fault injection software for injecting 

different types of faults at different locations and 

occasions and setup of the fault injection life cycle (e.g., 

creation of the VM images for the prior-fault injection 

states so that fault injection experiments are applied to 

the same initial state). 

Fault Injection Module 

Fault injection experiments are launched after the 

test environment and the fault injection softwares are 

deployed. As there are a number of fault injection 

tools in the literature and industry, we can use an 

existing fault injection tool. 

Resiliency Computation Module 

After fault injection, the resiliency computation 
module collects fault injection results and other relevant 
data and computes the resiliency of cloud systems and 
individual cloud services based on the collected data. 
Basically speaking, resiliency is measured by availability 
which is computed as: 
 

 
MeanTimeToFailure

Availability
MeanTimeToFailure MeanTimeToRecovery

=

+

 

 
So resiliency computation takes into account not only 

the failure behavior obtained from fault injection, but 
also recovery behavior for different types of failures. So 
resiliency computation requires specified resiliency 
models. An example resiliency model, for a VM, a 
Cloud component, or a Cloud service, is given in Fig. 2 
and is represented as a state transition diagram. 

 

 
 

Fig. 2. An example resiliency model  
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In this example model, a failure occurrence can be 

detected either automatically or manually. When a 

failure is detected by the monitoring capability of the 

cloud platform, this automatic failure detection has low 

latency. When a failure is not detected by any 

monitoring capability and is finally detected by a user, 

e.g., from customers’ complaints or reports, this 

manual detection has much longer latency. In different 

scenarios, the detection latency is different. For 

instance, administration team who are 24 h available 

can get notification of the failure from the user much 

sooner than that who only works 8 h a day. Usually an 

automatic recovery follows the automatic failure 

detection, as shown in Fig. 2. When the automatic 

recovery fails or the failure is detected manually, 

manual recovery will take over the recovery. The 

resiliency of the system is computed as the probability 

of the system being in the Normal State. 

The parameters of the resiliency models for 

different failures should be available for the resiliency 

computation. Certain parameters, e.g., detection 

latency of automatic detection mechanisms and time 

spent in automatic recovery, can be measured by tools 

such as our implementation of the CEM methodology 

described below. Other parameters, e.g., probability of 

automatic recovery failures, average latency of 

manual detection and average manual recovery time, 

may be obtained from statistic data or user knowledge 

and expertise. 

Control Module 

For continuous evaluation of cloud resiliency, the 

whole evaluation cycle of “deployment-fault 

injection-resiliency computation” must be driven 

continuously and automatically. Control Module 

decides when to inject faults and when to stop tests 

and collect data according to the configuration set by 

the Deployment Module. The Control Module would 

clean up the cloud environment after a test cycle. The 

Control Module schedules the whole evaluation, 

including schedule of next evaluation and relaunching 

of the next evaluation process. 

CRGauge: Cloud Resiliency Gauge 

Based on the methodology for continuous 

evaluation of cloud resiliency above, we designed and 

developed a tool called CRGauge. Figure 3 illustrates 

the architecture of the CRGauge tool. CRGauge is a 

software package implemented in Python which is 

customizable, extendable and portable. The CRGauge 

tool is typically deployed in a machine outside of the 

target system. 

Deployment Module 

The deployment module consists of three 

components: Loader, Deployer and Generator, as 

shown in Fig. 3. 

Loader reads in the specification file of the resiliency 

test campaign. The specification file is in XML format 

and contains fault type, injection target, injection time, 

workloads (request types, distribution parameters, arrival 

rate for each type of requests, etc.), timeout setting and 

other relevant information. Environment settings, which 

indicates cloud type, access to the target system and total 

time of the resiliency test campaign, are also included in 

the specification. The Loader parses the XML file and 

sends the parsed data to the Deployer. 

A resiliency test campaign is defined as an XML file. 

Figure 4 illustrates an XML file that specifies an 

example of resiliency evaluation. This campaign is 

called “nova-apitest”, where Controller1 Node will be 

injected with several nova-api crash faults. Nova-api is 

executed as one of processes in the component Nova, so 

we kill the process to simulate faults. The faults are 

planned to be generated five times per test, timeline of 

which is Poisson distributed. In the evaluation, we built 

up a cloud system by reusing three nodes production 

system and cloning a Compute2 Node in the production 

phase as a fresh compute node. After log in the target 

system, an evaluation is conducted by CRGauge. The 

evaluation contains 5 test cycles, each cycle lasting 360 

seconds. Some workloads would be generated in the 

tests, including booting instances and terminating 

instances. Instances are booted at a randomly generated 

timeline which satisfies a uniform distribution to mimic 

a real world workload. 

The Deployer component provisions the test system 

if the target system is in the test phase, conducts the 

required configurations and installs the fault injection 

tools in the test system. The configuration and 

installation operations require access into the test system. 

Authentication information such as the user and 

password is used by the Deployer to log in the VMs and 

execute commands during the operations. When a 

production system is cloned into the test system, silo 

VLANs are created for the test system so that the host 

names and IP addresses of the VMs can be preserved in 

the test system. This feature is needed for successful 

execution of certain software and workloads of the 

production system on the test system. 

Certain parameters for the resiliency test campaign, 

including duration and frequency, are defined in the 

XML. Duration denotes the maximum time of a single 

test campaign so that if there is system hang or 

application hang incurred by the fault injection, the 

experiment is forced to end and next experiment starts. 

Frequency denotes how many experiments to be 

conducted in a resiliency test campaign. 
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Deployer first confirms the information transferred 

from Loader and defines the cloud name (e.g., 

OpenStack, CloudStack or other clouds) in the <cloud> 

section, so as to switch to the certain cloud API in 

Libcloud. In the second step, if the target system is a 

production one, Deployer could just log in the system by 

authentication information according to the <host> 

section. Otherwise, Deployer would clone VMs from 

other systems or deploy a new system by automation 

software or build-from-spec. The cloned VMs would be 

set as an attribute (cloned = “True”) in the <host> 

section. Their former names are listed in the subsection 

<formername>. The automation software would be 

executed following the commands documented in 

<automation> section. Each software may have their 

own commands and the configuration file should be 

created before evaluation. For example, Cookbooks must 

be configured in Chef for deploying a cloud system. 

After deployment, the timer is started and notify 

Controller to begin evaluation. 

 

 
 

Fig. 3. CRGauge architecture 

 

 
 

Fig. 4. Example XML file of a scenario 
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Generator creates a workload with requests during 

the resiliency test campaign. This component either 

feeds real requests to the test cloud environment if the 

records of real requests are available, or generates a 

synthetic suite of requests for the test campaign. 

These requests invoke the APIs of the test cloud 

environment for initiating different cloud operations. 

There are three different user categories: Basic users, 

advanced users and administrators. Basic users 

typically provision virtual machines and deploy their 

applications on the VMs; advanced users have more 

control on their VMs like establishing several isolated 

and private networks; administrators are responsible 

for management of VMs, e.g., resize and live 

migration. Example requests issued by different user 

categories are listed in Table 1. 

The generated synthetic suite of requests is a 

combination of different categories of requests to mimic 

the real workload. The Generator allows users of the 

CRGauge tool to define probability distributions for 

different cloud operations, which enables flexible 

customization of the workloads. 

Fault Injection Module 

Fault injector tools inject various types of faults into 

the target system. The specification of the faults to be 

injected is exemplified by the <injector> section in Fig. 

4. Attributes of fault injection include: name, the type of 

fault; host_name, the identity of the machine to be fault-

injected; distribution or timeline, specification of fault 

injection occasion or trigger; and other attributes specific 

to individual fault types (e.g., process, target process of 

the fault injection and etc.). 

Distribution and timeline are two ways of specifying 

the time fault injection triggered in the evaluation. 

Distribution specifies a certain distribution (Poisson 

Distribution, Uniform Distribution, etc.) and the time 

series of the fault injection occasions will be randomly 

generated by the Controller according to the distribution 

type and the parameter settings associated with the 

distribution. Timeline directly specifies the time series of 

the fault injection occasions. 

In the example given in Fig. 4, a “service_crash” 

type of fault is specified to be injected into the process 

nova-api running at the machine Controller1 during a 

test campaign. The fault injection module maintains a 

number of injectors for various types of faults. These 

injectors understand how to interpret the specified 

attributes for the corresponding fault types and how to 

perform the injection accordingly. The target of fault 

injection can be a VM, an application in the VM, 

hardware underlying VMs and cloud stack software. 

In this example, the fault injector will crash the Nova-

api process, a component of the OpenStack cloud 

software, at probabilistic occasions with the specified 

Poisson distribution. 

Particularly, as CRGauge deals with cloud resiliency, 

the focused types of faults in the fault injection module 

are those related to cloud stack software. Table 2 lists a 

couple of typical failure classes of cloud management 

software. Brief descriptions of the failure classes are 

given below. 

Network Disconnection is one common type of 

hardware failure that causes unavailability of cloud 

management capabilities. For example, in OpenStack all 

of VM's network traffic goes through a network node 

and VM's network is managed by a controller node. A 

failure of the network node or the controller node brings 

network disconnection and simulates network 

disconnection. 

Server Crash shuts down a running VM and tests the 

dependency between the VM and the cloud system. 

Cloud Management Component Failure is a failure 

of cloud management components. These components 

are responsible for provisioning and managing virtual 

machines. 

 
Table 1. Request description 

User category Typical operations 

Basic user Launch and manage instances 

 Attach IP 

 Attach volume 

Advanced user Upload and manage images 

 Configure access and security for instances 

 Create and manage networks 

 Create and manage volumes 

Administrator Manage projects and users 

 Create and manage roles 

 Manage instances 

 Manage volumes and volume types 

 Create and manage images 

 Manage flavors 

 Check cloud quota and usage 

 Create and manage aggregates 
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Table 2. Failure description 

Failure class Failure Target 

Network Disconnection management network 

 Storage network 

 Virtual network 

Server Failure server crash 

Cloud Management service crash 

Component Failure 

Fabric Component Failure communication failure (e.g., Message Queue) 

 database failure 

High Availability Service HAProxy crash 

Failure Pacemaker crash 

 Coresync crash 

 

Fabric Component Failure is a failure of a cloud 

system’s communication, database and relevant 

middleware. Most cloud management system is 

loosely coupled and leverages third-party software 

tools that provide certain capabilities. For instance, an 

OpenStack deployment may have different 

implementations of AMQP and uses RabbitMQ, Qpid, 

or ZeroMQ as the message broker for the AMQP 

implementations. The objective of the CRGauge is to 

study the resiliency of the cloud operations against 

failures of these cloud fabric components. 

High Availability Service Failure is a failure of the 

cloud system's high-availability capabilities or 

components. Many cloud systems are equipped with 

high-availability capabilities or components for 

improving resiliency of the delivered cloud services. 

For example, Keepalived (Keepalived) or Pacemaker 

(Pacemaker) is popularly utilized in OpenStack 

deployments for fault tolerance and high availability. 

HAProxy (HAProxy) prevents both stateless services 

and stateful services of OpenStack, including database 

and AMQP services, from single point of failure. Faults 

are injected into these services to assess the impact of 

introducing them into the target cloud system. 

The CRGauge tool is designed and implemented to 

support extendibility. When a new type of fault is to 

be supported by CRGauge, what needs to be done is 

just write one Python script within the CRGauge 

framework. The Python script will interpret the 

parameter settings relevant to the fault type and 

conduct the corresponding fault injection. 

Resiliency Computation Module 

Collector measures several metrics of cloud 

systems and detects failures in the test. It detects 

cloud failures through cloud software heartbeats and 

request based heartbeats. Components of cloud 

software always have a built-in heartbeat mechanism 

to check the aliveness of its service. For instance, 

OpenStack will check itself whether nova services and 

neutron agents are alive or not. Collector collects the 

heartbeat status from cloud software and determines 

cloud service aliveness. Another way to detect cloud 

failures is based on request heartbeat provided by 

Generator. As mentioned above, we set a timeout for 

each request in Generator. For requests generated in the 

test, Collector will check the correctness of the response 

and the response time. If the result is not correct or the 

processing of the request does not complete within 

timeout, the service is considered as unavailable. 

Besides measuring failure behavior, Collector also 

performs the measurements of the recovery behavior in 

the target Cloud. Multiple types of recovery are 

conducted in the test and the corresponding recovery 

time values are recorded by the Collector. 

Components in Resiliency Computation Module 

calculate the resiliency, or availability, based on a 

specific resiliency model. Collector transfers the 

measurement data to Analyzer, where user-specified 

resiliency models are used to compute the availability 

values for individual Cloud operations and/or the entire 

Cloud system. Certain parameters of the resiliency 

models are given in addition to the state transition 

diagrams of the target Cloud components’ resiliency (as 

exemplified in Fig. 2), including probability distributions 

of different types of failures and recovery time values for 

certain types of failures that are difficult to measure 

programmatically (e.g., when an error is only detected by 

relevant stuff, three-shift daily work schedule and one-

shift-only work schedule result in different recovery time). 
With the combination of the measurement data and 

user-provided resiliency models and parameters, Analyzer 

calculates the resiliency of cloud resiliency (individual 

Cloud operations and/or the entire Cloud system). 

Controller Module 

Controller is designed to plan and control all 

workflows in the CRGauge. After a cycle of evaluation, 

Cleaner cleans up cloud and rolls back to original 

environment and Controller starts the next round of test. 

CRGauge is designed to test cloud resiliency 

automatically, so it is necessary to clean up the test 

legacy and reset the target system to the original 

environment after a test. To eliminate the vestige from 
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Generator and Fault Injector, Cleaner leverages the 

cloud APIs and restores to the prior-experiment state. 

Cleaner will also reboot cloud services and operating 

system to eliminate the effect of Fault Injector. Snapshot 

would be leveraged by Cleaner if the target cloud system 

is composed by virtual machines. 

Experimental Study and Analysis 

Experimental Setup 

We evaluate cloud resiliency on RHEL 6.5 operating 

systems. In the test, VMs are all provisioned from an 

Ubuntu Server 12.04 image. We deploy an OpenStack 

cloud (Havana Release) with High Availability 

configurations according to “OpenStack High 

Availability Guide”. The target cloud is consisted of part 

of OpenStack components, including Keystone (Identity 

service), Nova (Compute), Glance (Image service) and 

Neutron (Networking services). These components are 

deployed into two controller nodes, both of which can be 

backup for the other and one compute node. The 

compute node provides virtualization capability by KVM 

hypervisor. In controller nodes, we deploy HAProxy and 

Pacemaker services as well, in order to protect following 

OpenStack and fabric processes: Keystone, Nova-api, 

Nova-scheduler, Novaconductor, Glance-api, Glance-

registry, Neutron-server, Neutron-dhcp, Neutron-

metadata and Qpid. Stateless services are active-active, 

load-balanced by HAProxy and HAProxy itself is active-

passive, load-balanced by VIP. Pacemaker monitors 

OpenStack stateful services and brings the backup of 

these services online as necessary (Haas, 2014). 

 

 
 

Fig. 5. Experimental results with light workload 

 

 
 

Fig. 6. Experimental results with heavy workload 
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Table 3. Experiment configuration for light and heavy workloads  

 Duration Injected Boot Create Create List Shutdown Soft reboot Terminate 

Scenario (seconds) fault instance flavor keypair instance instance instance instance 

Light 1200 1 6 5 5 5 1 1 1 

Heavy 1200 10 25 10 10 20 1 1 1 

Timeout   600 30 25 30 120 200 200 

 

We define two typical scenarios to imitate light and 

heavy workloads. Total test duration is 1200 seconds. 

For light workload, cloud requests contains boot 6 VMs, 

terminate 1 VM, shutdown 1 VM, soft reboot 1 VM, 

create 5 keypairs, create 5 flavors and list cloud 

resources 5 times. For heavy workloads, cloud requests 

are similar to the light ones except the number of 

injections and requests. We inject following faults in the 

target cloud: Keystone crash, qpid failure, nova-api 

crash, nova-scheduler crash, glanceapi crash, glance-

registry crash and neutron server crash. Table 3 

illustrates the detailed information for these two 

scenarios. The third row shows the timeout setting for 

corresponding requests, by which we can determine 

whether a request performs well. 

Result and Analysis 

We tested resiliency on the target cloud system. The 

downtimes during the tests under light and heavy 

workloads are listed in Fig. 5 and 6. 

In the light workload tests, most of requests pass 

the test in the case of fault injection. “Boot Instance” 

and “Terminate Instance” are two requests, where 

injections cause downtime in the cloud system 

according to the result. On one hand, almost all of the 

injections lead to incapability of provisioning VMs 

except nova-scheduler and neutronserver crashes. The 

target cloud suffers most badly when keystone and 

nova-api crashes, because they cause the longest 

downtime. On the other hand, only keystone and nova-

api crashes result in downtime for terminating instance. 

These evidences may suggest keystone and novaapi are 

two vulnerable services in the target cloud. 

In the tests with heavy workload, only “Create 

Flavor”, “Create Keypair” and “Terminate Instance” 

are not affected by fault injection. There exists more 

or less downtime when generating other requests. 

“Boot Instance” suffers worst among requests. We 

notice even baseline can cause a downtime during 

provisioning VMs, which means the target system 

sometime can't afford the heavy workload even 

without fault injection. Keystone crash can result in 

longest downtime, which means keystone crash has 

the greatest impact on cloud resiliency. Comparing 

two workloads, we can discover that the target cloud 

system performs less resiliently in heavy workloads 

than that does in light workloads. The target cloud 

system also can't withstand too many faults 

occurrence. We can conclude that “Boot Instance” is 

the most request that can't pass the test and keystone 

is the most vulnerable service in the target cloud. 

Conclusion 

In this study, we design the CEM methodology to 

continuously evaluate cloud resiliency. CRGauge tool is 

implemented based on the CEM methodology. In our 

experiments, we detect the resiliency problems in 

OpenStack cloud system, especially in the heavy workload. 

Because CRGauge is inherently capable of extend to more 

complex and practical scenarios, we will evaluate cloud 

resiliency with these scenarios in the future. 
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