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Abstract: Digital intercept receivers are currently moving towards 

classical time-frequency analysis techniques for analyzing low 

probability of intercept radar signals. Although these techniques are an 

improvement over existing Fourier-based techniques, they still suffer 

from a lack of readability, due to poor time-frequency localization and 

cross-term interference, which may lead to inaccurate detection and 

parameter extraction. In this study, the reassignment method, because 

of its ability to smooth out cross-term interference and improve time-

frequency localization, is proposed as an improved signal analysis 

technique to address these deficiencies. Simulations are presented that 

compare time-frequency representations of the classical time-

frequency techniques with those of the reassignment method. Four 

different low probability of intercept waveforms are analyzed (two 

frequency modulated continuous wave waveforms and two frequency 

shift keying waveforms). The following metrics are used for analysis 

evaluation: Percent detection, number of cross-term false positives, 

lowest signal-to-noise ratio for signal detection, processing time, 

percent error of: Carrier frequency, modulation bandwidth, modulation 

period, time-frequency localization (x and y direction) and chirp rate. 

Experimental results demonstrate that the ‘squeezing’ and ‘smoothing’ 

qualities of the reassignment method improve readability over the 

classical time-frequency analysis techniques and consequently, 

provide more accurate signal detection and parameter extraction in all 

but one of the metrics categories.
 

 

Keywords: Electronic Countermeasures, Electronic Warfare, Radar 

Applications, Radar Detection 

 

Introduction 

Today, radar systems face serious threats from anti-

radiation systems (Faulconbridge, 2002), electronic 

attack (Gau, 2002) and other areas. In order to be able to 

perform their functions properly, they must be able to 

‘see without being seen’ (Pace, 2009; Wiley, 2006). One 

class of radars, Low Probability of Intercept (LPI) radars 

address this need through very low peak power, wide 

bandwidth, high duty cycle and power management, 

making them difficult to be detected and characterized 

by intercept receivers. 

An intercept receiver that intercepts LPI radar signals 

faces threats as well. It must be able to detect and 

characterize the signals from LPI radars for the purpose 

of providing timely information about threatening 

systems. In addition, LPI radar intercept receivers 

provide information about defensive systems, which is 

necessary to maintain a credible deterrent force to 

penetrate other’s defenses. Knowledge provided by the 

intercept receiver provides insight for determining the 

details of the threat so that an effective response can be 

prepared (Wiley, 2006). 
To make matters even more challenging, most 

intercept receivers currently in use are analog, which 

were designed to intercept ‘older’ (i.e., non-LPI) radar 

signals and which perform poorly when faced with LPI 

radar signals. Digital receivers, which are emerging, are 

seen as the eventual solution to the LPI challenge of the 

intercept receiver. 
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Fourier analysis techniques using the Fast Fourier 

Transform (FFT) have been employed as the basic 

tool of the digital intercept receiver for detecting and 

extracting parameters of LPI radar signals and make 

up a majority of the digital intercept receiver 

techniques currently in the fleet (Pace, 2009). When a 

practical no stationary signal (such as an LPI radar 

signal) is processed, the Fourier transform, as 

implemented, cannot efficiently analyze and process 

the time-varying characteristics of the frequency 

spectrum of the signal (Xie et al., 2008; Stephens, 

1996). The non-stationary nature of the received radar 

signal mandates the use of some form of time-

frequency analysis for signal detection and parameter 

extraction (Milne and Pace, 2002). 

Some of the more common classical time-frequency 

analysis techniques include the Wigner-Ville 

Distribution (WVD), Choi-Williams Distribution 

(CWD), spectrogram and scalogram. The WVD exhibits 

the highest signal energy concentration (Wiley, 2006), 

but has the worse cross-term interference, which can 

severely limit the readability of a time-frequency 

representation (Gulum, 2007; Stephens, 1996; Boashash, 

2003). The CWD is a member of Cohen’s class, which 

adds a smoothing kernel to help reduce cross-term 

interference (Boashash, 2003; Upperman, 2008). The 

CWD, as with all members of Cohen’s class, is faced 

with a trade-off between cross-term reduction and time-

frequency localization. The spectrogram is the 

magnitude squared of the short-time Fourier transform 

(Hlawatsch and Boudreaux-Bartels, 1992; Mitra, 2001). 

It has poorer time-frequency localization but less cross-

term interference than either the WVD or CWD and its 

cross-terms are limited to regions where the signals 

overlap (Auger et al., 1996). The scalogram is the 

magnitude squared of the wavelet transform and can be 

used as a time-frequency distribution (Cohen, 2002; 

Galleani et al., 2006; Cirillo et al., 2008). Like the 

spectrogram, the scalogram has cross-terms that are 

limited to regions where the signals overlap (Auger et al., 

1996; Hlawatsch and Boudreaux-Bartels, 1992). 

Currently, for digital intercept receivers, these classical 

time-frequency analysis techniques, which are the 

current state-of-the-art techniques in this arena, are 

primarily at the lab phase (Pace, 2009). 

Though classical time-frequency analysis techniques, 

such as those described above, are a great improvement 

over Fourier analysis techniques, they suffer in general 

from poor time-frequency localization and cross-term 

interference, as described above. This may result in 

degraded readability of time-frequency representations, 

potentially leading to inaccurate LPI radar signal 

detection and parameter extraction metrics and as such, 

can lead to decisions based on inaccurate information. 

A promising avenue for overcoming these 

deficiencies is the utilization of the reassignment 

method. The reassignment method, which can be applied 

to most energy distributions (Hippenstiel et al., 2000), 

has, in theory, a perfectly localized distribution for 

chirps, tones and impulses (Auger et al., 1996; 

Boashash, 2003), making it a good candidate for the 

analysis of certain LPI radar signals, such as the 

triangular modulated Frequency Modulated Continuous 

Wave (FMCW) (which can be viewed as back-to-back 

chirps) and the Frequency Shift Keying (FSK) (which 

can be viewed as tones). 

In related work, (Hippenstiel et al., 2000) 

performed comparisons between the reassignment 

method and the WVD and spectrogram, but this was 

done predominantly for a single chirp signal, which 

presents no cross-term interference. It appears that 

there has been limited research done in the area of 

utilization of the reassignment method for the analysis 

of triangular modulated FMCW LPI radar signals and 

FSK LPI radar signals. 

Background 

The derivation of the reassigned spectrogram 

expression starts with the assumption that the 

spectrogram can be defined as a two-dimensional 

convolution of the WVD of the signal by the WVD of 

the analysis window, yielding Equation 1: 

 

( ) ( ) ( ), ; , ,  
x x h

S t f h W s W t s f ds dξ ξ ξ
+∞

−∞

= − −∬  (1) 

 

Where: 

t = Time 

f = Frequency 

h = Window size 

x(t) = The analyzed signal 

h(t) = The analyzing window 

Wx = The Wigner-Ville distribution of the signal 

Wh = The Wigner-Ville distribution of the window 

 

The distribution reduces the interference terms of 

the signal’s WVD, but at the expense of time and 

frequency localization. However, a closer look at (1) 

shows that Wh(t-s, f-ξ) delimits a time-frequency 

domain at the vicinity of the (t, f) point, inside which 

a weighted average of the signal’s WVD values is 

performed. The key point of the reassignment 

principle is that these values have no reason to be 

symmetrically distributed around (t, f), which is the 

geometrical center of this domain. Therefore, their 

average should not be assigned at this point, but rather 

at the center of gravity of this domain, which is much 

more representative of the local energy distribution of 
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the signal (Auger and Flandrin, 1994). Reasoning with 

a mechanical analogy, the local energy distribution 

Wh(t-s, f-ξ) Wx(s,ξ) (as a function of s and ξ) can be 

considered as a mass distribution and it is much more 

accurate to assign the total mass (i.e., the spectrogram 

value) to the center of gravity of the domain rather 

than to its geometrical center (Boashash, 2003). 

The reassignment method moves each value of the 

spectrogram computed at any point (t, f) to another point 

( )ˆˆ,t f  which is the center of gravity of the signal energy 

distribution around (t, f) (Li and Bi, 2008), giving 

Equations 2 and 3: 

 

( )
( ) ( )

( ) ( )

, ,  
ˆ ; ,

, ,  

h x

h x

sW t s f W s ds d
t x t f

W t s f W s ds d

ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

− −

=

− −

∬

∬
 (2) 

 

( )
( ) ( )

( ) ( )

, ,  
ˆ ; ,

, ,  

h x

h x

W t s f W s ds d
f x t f

W t s f W s ds d

ξ ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

− −

=

− −

∬

∬
 (3) 

 

This leads to the expression for the reassigned 

spectrogram, whose value at any point (t’, f’) is the 

sum of all the spectrogram values reassigned to this 

point Equation 4: 

 

( ) ( ) ( ) ( )( )

( )( )

ˆ', '; , ; ' ; ,

ˆ' ; ,  

r

x x
S t f h S t f h t t x t f

f f x t f dt df

δ

δ

+∞

−∞

= −

−

∬
 (4) 

 

One of the most interesting properties of this new 

distribution is that it also uses the phase information of the 

STFT and not just its squared modulus as in the 

spectrogram. It uses this information from the phase 

spectrum to sharpen the amplitude estimates in time and 

frequency. This can be seen from the following expressions 

of the reassignment operators Equation 5 and 6: 

 

( )
( )Φ , ;

ˆ ; ,
x

d t f h
t x t f

df
= −  (5) 

 

( )
( )Φ , ;ˆ ; ,

x
d t f h

f x t f f
dt

= +  (6) 

 

where, Φx(t, f; h) is the phase of the STFT of x: Φx(t, f; h) 

= arg (Fx (t, f; h)). However, these expressions ((5) and 

(6)) do not lead to an efficient implementation and have 

to be replaced by (7) (local group delay) and (8) (local 

instantaneous frequency), giving Equation 7 and 8: 

( )
*

2

( , ; )

( , ; ) ( , ; )
ˆ ; , x h x

x t f h

F t f T F t f h
t x t f t

F

 
 

= −  
  

R  (7) 

 

( )
*

2

( , ; )

( , ; ) ( , ; )ˆ ; , x h x

x t f h

F t f D F t f h
f x t f f

F

 
 

= −  
  

I  (8) 

 

where, Th(t) = t×h(t) and ( )t ( )
h

dh
D t

dt
= . This leads to an 

efficient implementation for the reassigned 

spectrogram without explicitly computing the partial 

derivatives of phase. The reassigned spectrogram may 

thus be computed by using 3 STFTs, each having a 

different window (the window function h; the same 

window with a weighted time ramp t*h; the derivative 

of the window function h with respect to time (dh/dt), 

(also known as the frequency-weighted window). 

Reassigned spectrograms are therefore very easy to 

implement and do not require a drastic increase in 

computational complexity. 

Since time-frequency reassignment is not a bilinear 

operation, it does not permit a stable reconstruction of 

the signal. In addition, once the phase information has 

been used to reassign the amplitude coefficients, it is no 

longer available for use in reconstruction. This is 

perhaps why the reassignment method has received 

limited attention from engineers and why its greatest 

potential may be where reconstruction is not necessary, 

that is, where signal analysis is an end unto itself 

(Flandrin et al., 2003). The reassignment principle for 

the spectrogram allows for a straight-forward extension 

of its use to other distributions as well (Hippenstiel et al., 

2000). If we consider the general expression of a 

distribution of the Cohen’s class as a two-dimensional 

convolution of the WVD Equation 9: 

 

( ) ( ) ( ), ;Π Π , ,  
x x

C t f t s f W s ds dξ ξ ξ
+∞

−∞

= − −∬  (9) 

 

Then replacing the particular smoothing kernel 

Wh(u,ξ) by an arbitrary kernel Π(s, ξ) simply defines the 

reassignment of any member of Cohen’s class, yielding 

Equation 10 to 12: 

 

( )
( ) ( )

( ) ( )

Π , ,  
ˆ ; ,

Π , ,  

x

x

s t s f W s ds d
t x t f

t s f W s ds d

ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

− −

=

− −

∬

∬
 (10) 

 

( )
( ) ( )

( ) ( )

Π , ,  
ˆ ; ,

Π , ,  

x

x

t s f W s ds d
f x t f

t s f W s ds d

ξ ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

− −

=

− −

∬

∬
 (11) 
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( ) ( ) ( ) ( )( )

( )( )

ˆ', ';Π , ;Π ' ; ,

ˆ' ; ,  

r

x x
C t f C t f t t x t f

f f x t f dt df

δ

δ

+∞

−∞

= −

−

∬
 (12) 

 

The resulting reassigned distributions efficiently 

combine a reduction of the interference terms provided 

by a well adapted smoothing kernel and an increased 

localization of the signal components achieved by the 

reassignment. In addition, the reassignment operators 

( )ˆ ; ,t x t f  and ( )ˆ ; ,f x t f are almost as easy to compute as 

for the spectrogram (Auger and Flandrin, 1995). 

Similarly, the reassignment method can also be 

applied to the time-scale energy distributions. Starting 

from the general expression Equation 13: 

 

( ) ( ) ( )0
Ω , ;Π Π , ,  

x x

st a f a W t s ds d
a

ξ ξ ξ
+∞

−∞

= − −∬  (13) 

 

It can be seen that the representation value at any 

point (t, a = f0/f) is the average of the weighted WVD 

values on the points (t-s, ξ) located in a domain centered 

on (t, f) and bounded by the essential support of Π. In 

order to avoid the resultant signal components 

broadening while preserving the cross-terms attenuation, 

it seems once again appropriate to assign this average to 

the center of gravity of these energy measures, whose 

coordinates are Equation 14 and 15: 

 

( )
( ) ( )

( ) ( )

0

0

Π , ,  
ˆ ; ,

Π , ,  

x

x

ss f a W t s ds d
a

t x t f t
s f a W t s ds d
a

ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

− −

= −

− −

∬

∬
 (14) 
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x

x

f
f x t f

a x t f

s f a W t s ds d
a

s f a W t s ds d
a

ξ ξ ξ ξ

ξ ξ ξ

+∞

−∞

+∞

−∞

=

− −

=

− −

∬

∬

 (15) 

 

Rather than assign the average to the point (t, a = f0/f) 

where it is computed. The value of the resulting 

modified time-scale representation on any point ' '
( , )t a  is 

then the sum of all the representation values moved to 

this point and is known as the reassigned scalogram 

Equation 16: 

 

( ) ( ) ( ) ( )( )

( )( )

' ' '2

2

ˆΩ , ;Π Ω , ;Π ' ; ,

ˆ' ; ,

r

x x
t a a t a t t x t a

da
a a x t a dt

a

δ

δ

+∞

−∞

= −

−

∬
 (16) 

A potential drawback of the reassignment method is 

that there is a chance it could generate spurious 

artifacts due to the reassignment process randomly 

clustering noise (vice signals). Because of this, its 

performance may suffer in low Signal-to-Noise Ratio 

(SNR) scenarios (Boashash, 2003). 

The reassignment method can be viewed as helping 

to build a more readable time-frequency representation. 

The first step in the process is to reduce (smooth) the 

cross-term interference. An unfortunate side-effect of this 

smoothing is that the signal components become smeared. 

The second step in the process is then to refocus (squeeze) 

the components which were smeared during the 

smoothing process (Auger et al., 1996; Boashash, 2003). 

This ‘smoothing’ and ‘squeezing’ helps to create a more 

readable time-frequency representation. 

In this study, the reassignment method is evaluated 

as a technique for improving the readability of the 

classical time-frequency analysis representations by 

improving time-frequency localization and reducing 

cross-term interference. This approach is assessed 

using 2 triangular modulated FMCW LPI radar signals 

and 2 FSK LPI radar signals (4-component and 8-

component). Metrics designed include percent error of: 

Carrier frequency, modulation bandwidth, modulation 

period, time-frequency localization and chirp rate. 

Additional metrics include: Percent detection, number 

of cross-term false positives, lowest SNR for signal 

detection and processing time. 

The rest of this paper is organized as follows: 

Description of the proposed methodology is presented 

in the next section, followed by a section on the 

experimental results comparing the reassignment 

method and classical time-frequency analysis 

techniques. The last two sections of this paper consist 

of discussion and conclusions. 

Methodology 

The methodologies detailed in this paper describe the 

processes involved in obtaining and comparing metrics 

between the classical time-frequency analysis techniques 

and the reassignment method for the detection and 

parameter extraction of LPI radar signals. 

The tools used for this testing were: Matrix 

Laboratory (MATLAB) (version 7.7), Signal Processing 

Toolbox (version 6.10), Wavelet Toolbox (version 4.3), 

Image Processing Toolbox (version 6.2), Time-

Frequency Toolbox (version 1.0) 

(http://tftb.nongnu.org/). All the testing was 

accomplished on a desktop computer (Hewlett-Packard 

(HP) Compaq, 2.5 GHz processor, Advanced Micro 

Devices (AMD) Athlon 64X2 Dual Core Processor 

4800+, 2.00 GB Random Access Memory (RAM), 32 

Bit Operating System). 
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Testing was performed for 4 different waveforms (2 

triangular modulated FMCWs and 2 FSKs-which are 

typical LPI waveforms), each waveform representing a 

different task (Task 1 through Task 4). For each 

waveform, parameters were chosen for academic 

validation of signal processing techniques. Due to 

computer processing limitations they were not meant to 

represent real-world values. The number of samples for 

each test was chosen to be either 256 or 512, which 

seemed to be the optimum size for the desktop 

computer. Testing was performed at three different 

SNR levels: 10 dB, 0 dB and low SNR (the lowest SNR 

at which the signal could be detected). The noise added 

was white Gaussian noise, which best reflected the 

thermal noise present in the Intermediate Frequency (IF) 

section of an intercept receiver (Pace, 2009). Kaiser 

windowing was used, where windowing was applicable. 

25 runs were performed for each test, for statistical 

purposes. The plots included in this study were done at a 

threshold of 5% of the maximum intensity and were 

linear scale (not dB) of analytic (complex) signals; the 

color bar represents intensity. The signal processing 

tools used for each task were: 
 

• Classical time-frequency analysis techniques: 

Spectrogram, scalogram, WVD, CWD 

• Reassignment method: Reassigned spectrogram, 

reassigned scalogram, reassigned smoothed pseudo 

Wigner Ville distribution (RSPWVD) 
 

Task 1 consisted of analyzing a triangular modulated 

FMCW signal (most prevalent LPI radar waveform 

(Liang et al., 2009)). The parameters were selected as: 

Sampling frequency = 4 KHz; carrier frequency = 1 

KHz; modulation bandwidth = 500 Hz; modulation 

period = 0.02 s. Task 2 was similar to Task 1, but with 

different parameters: Sampling frequency = 6 KHz; 

carrier frequency = 1.5 KHz; modulation bandwidth = 

2.4 KHz; modulation period = 0.15 s. The different 

parameters were chosen to see how the different 

shapes/heights of the triangles of the triangular 

modulated FMCW would affect the cross-term 

interference and the metrics. 

Task 3 consisted of analyzing an FSK (prevalent in 
the LPI arena (Anjaneyulu et al., 2009)) 4-component 
signal whose parameters were selected as: Sampling 
frequency = 5 KHz; carrier frequencies = 1, 1.75, 0.75, 
1.25 KHz; modulation bandwidth = 1 KHz; modulation 
period = 0.025 s. 

Task 4 was similar to Task 3, but for an FSK 8-

component signal whose parameters were: Sampling 

frequency = 5 KHz; carrier frequencies = 1.5, 1, 1.25, 

1.5, 1.75, 1.25, 0.75, 1 KHz; modulation bandwidth = 1 

KHz; modulation period = 0.0125 s. The different 

number of components and different parameters between 

Task 3 and Task 4 were chosen to see how the different 

number/lengths of FSK components would affect the 

cross-term interference and the metrics. 

Because of computational complexity, the WVD tests 

for 512 samples, SNR = 0 dB and 512 samples, SNR = 

low SNR were not able to be performed for any of the 4 

waveforms. It was noted that a single run was still 

processing after more than 8 h. The WVD is known to be 

very computationally complex (Milne and Pace, 2002). 

After each particular run of each test, metrics were 

extracted from the time-frequency representation. 

The metrics extracted were as follows: 

 

• Processing time: Time required for plot to be 

displayed 

• Percent detection: Percent of time signal was 

detected-signal was declared a detection if any 

portion of each of the signal components (4 chirp 

components for triangular modulated FMCW and 4 

or 8 signal components for FSK) exceeded a set 

threshold (a certain percentage of the maximum 

intensity of the time-frequency representation) 

 

Threshold percentages were determined based on 

visual detections of low SNR signals (lowest SNR at 

which the signal could be visually detected in the time-

frequency representation) (Fig. 1). 

Based on this analysis of visually detected low SNR 

plots for each signal processing tool, thresholds were 

assigned as follows: CWD (70%); spectrogram (60%); 

scalogram, reassigned spectrogram, reassigned 

scalogram, RSPWVD, WVD (4-component FSK) 

(50%); WVD (triangular modulated FMCW) (35%); 

WVD (8-component FSK) (20%). 

For percent detection determination, these 

threshold values were then included in the time-

frequency plot algorithms so that the thresholds could 

be applied automatically during the plotting process. 

From the threshold plot, the signal was declared a 

detection if any portion of each of the signal 

components was visible (Fig. 2): 

 

• Cross-Term False Positives (XFPs): The number of 

cross-terms that were wrongly declared as signal 

detections. For the time-frequency representation, 

the XFP detection criteria is the same as the time-

frequency signal detection criteria listed in the 

percent detection section above 

• Carrier frequency: The frequency corresponding to 

the maximum intensity of the time-frequency 

representation (there are multiple carrier frequencies 

for FSK waveforms) 

• Modulation bandwidth: Distance from highest 

frequency value of signal (at a threshold of 20% 

maximum intensity) to lowest frequency value of 

signal (at same threshold) in Y-direction (frequency) 
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Fig. 1. Threshold percentage determination. This plot is an amplitude Vs. time (x-z view) of CWD of FSK 4-component signal (512 

samples, SNR= -2 dB (the lowest SNR at which this signal could be visually detected)). For visually detected low SNR plots 

(like this one), the percent of maximum intensity for the peak z-value of each of the signal components was noted (here 75, 

97, 81, 77%) and the lowest of these 4 values was recorded (75%). Ten test runs were performed for each signal processing 

tool, for each of the 4 waveforms. The average of these recorded low values was determined and then assigned as the 

threshold for that particular signal processing tool. Note-the threshold for CWD was determined to be 70% 

 

 
 
Fig. 2. Percent detection. Time Vs. Frequency view with threshold value automatically set to 70% (for CWD). From this 70% threshold plot, 

the signal was declared a detection because at least a portion of each of the 4 FSK signal components was visible 

 
The threshold percentage was determined based on 

manual measurements of the modulation bandwidth of 

the signal in the time-frequency representation. This was 

accomplished for ten test runs for each signal processing 

tool, for each of the 4 waveforms. During each manual 

measurement, the maximum intensity of the two 

measuring points was recorded. The average of the 

maximum intensity values for these test runs was 20%. 

This was adopted as the automatic threshold value and is 

representative of what is obtained when performing 

manual measurements. 

For modulation bandwidth determination, the 20% 

threshold value was included in the time-frequency plot 

algorithms so that the threshold could be applied 

automatically during the plotting process. From the 

threshold plot, the modulation bandwidth was manually 

measured (Fig. 3 (for triangular modulated FMCW (solid 

arrows)) and Fig. 4 (for FSK (solid arrows)). 
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Fig. 3. Modulation bandwidth, modulation period and time-frequency localization determination (for triangular modulated FMCW 

waveform). CWD of a triangular modulated FMCW (512 samples, SNR = 10 dB) with threshold value automatically set to 

20%. From this 20% threshold plot, the modulation bandwidth was measured manually from the highest frequency value of 

the signal (top solid arrow) to the lowest frequency value of the signal (bottom solid arrow) in the y-direction (frequency). The 

modulation period was measured manually from the highest frequency value of the signal (top dotted arrow) to the lowest 

frequency value of the signal (bottom dotted arrow) in the x-direction (time). The time-frequency localization was a manual 

measurement of the ‘thickness’ of the signal component at the center of each of the 4 ‘legs’ (distance between dashed arrows) 

and then the average of the 4 values was calculated and then converted to percent of entire x-axis and percent of entire y-axis 

 

 
 
Fig. 4. Modulation bandwidth, modulation period and time-frequency localization determination (FSK waveform). CWD of a 4-

component FSK (512 samples, SNR = 10 dB) with threshold value automatically set to 20%. From this 20% threshold plot, 

the modulation bandwidth was measured manually from the highest frequency value of the signal (top solid arrow) to the 

lowest frequency value of the signal (bottom solid arrow) in the y-direction (frequency). The modulation period was 

measured manually as the width of each of the 4 FSK components in x-direction (time) (dotted arrows), then the average of 

the 4 signals was calculated.  The time-frequency localization was a manual measurement of the ‘thickness’ of the signal 

component at the center of each of the 4 signal components (dashed arrows) and then the average of the 4 values was 

calculated and then converted to percent of entire y-axis 

 

Modulation Period 

For triangular modulated FMCW-distance from 

highest frequency value of signal (at a threshold of 

20% maximum intensity, which was determined using 

the same methodology as was used for the modulation 

bandwidth) to lowest frequency value of signal (at 

same threshold) in xdirection (time)-for FSK-width of 



Daniel L. Stevens and Stephanie A. Schuckers / American Journal of Engineering and Applied Sciences 2015, 8 (1): 26.47 

DOI: 10.3844/ajeassp.2015.26.47 

 

33 

FSK component (at a threshold of 20% maximum 

intensity) in xdirection (time). From Fig. 3 (triangular 

modulated FMCW signal), the modulation period is 

measured manually from the top dotted arrow to the 

bottom dotted arrow, but this time in the x-direction 

(time). From Fig. 4 (FSK signal), the modulation 

period is the manual measurement of the width of 

each of the 4 signals in the x-direction (time) (dotted 

arrows) and then the average of the 4 signals is 

calculated. 

Time-Frequency Localization 

A measure of the ‘thickness’ of a signal 

component (from one side of the signal component to 

the other) (at a threshold of 20% maximum intensity, 

which was determined using the same methodology as 

was used for the modulation bandwidth) on each side 

of the component-converted to % of entire x-Axis and 

% of entire y-Axis. From Fig. 3 (triangular modulated 

FMCW signal), the time-frequency localization is a 

manual measurement of the ‘thickness’ of the signal 

component at the center of each of the 4 ‘legs’ 

(dashed arrows) and then the average of the 4 values 

is calculated. Average time and frequency ‘thickness’ 

values are then converted to: Percent of entire x-axis 

and percent of entire y-axis. From Fig. 4 (FSK signal), 

the time-frequency localization is a manual 

measurement of the thickness of the center of each of 

the 4 signal components (y-direction only) (dashed 

arrows) and then the average of the 4 values is 

calculated. The average frequency ‘thickness’ is then 

converted to: Percent of the entire y-axis. 

Chirp Rate 

(modulation bandwidth)/(modulation period)-for 

Task 1 and Task2 only. 

Lowest Detectable SNR 

The lowest SNR level at which at least a portion of 

each of the signal components exceeded the set threshold 

listed in the percent detection section above.  

For lowest detectable SNR determination, these 

threshold values were included in the time-frequency 

plot algorithms so that the thresholds could be applied 

automatically during the plotting process. From the 

threshold plot, the signal was declared a detection if any 

portion of each of the signal components was visible. 

The lowest SNR level for which the signal was declared 

a detection is the lowest detectable SNR (Fig. 5). 

Automatically applying a threshold value to the time-

frequency plot algorithms for the determination of 

percent detection, modulation bandwidth, modulation 

period, time-frequency localization and lowest detectable 

SNR can be seen as a first step towards the future work 

of automating the metrics extraction process. 

The data from all 25 runs for each test was used to 

produce the mean, standard deviation, variance, 

actual, error and percent error for each of the metrics 

listed above. 

 

 

 
Fig. 5. Lowest detectable SNR. CWD of 4-component FSK (512 samples, SNR = -2 dB) (same as Fig. 2.) with threshold value 

automatically set to 70%. From this threshold plot, the signal was declared a detection because at least a portion of each of the 

4 FSK signal components was visible. For this case, any lower SNR would have been a non-detect 
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The metrics from the classical time-frequency 

analysis techniques were then compared to the metrics 

from the reassignment method. By and large, the 

reassignment method outperformed the classical time-

frequency analysis techniques, as will be shown in the 

results section. 

Results 

Some of the graphical and statistical results of the 

testing are presented in this section. 

Table 1 represents the overall test metrics (signal 

processing tool viewpoint) average of all the signals for 

the 4 time-frequency analysis techniques and the 3 

reassignment methods used in this testing. 

From Table 1, the WVD has much better time-

frequency localization percent error (x: 0.63%/y: 

1.45%) than its classical time-frequency analysis 

techniques counterparts, the CWD (x: 1.88%/y: 

4.83%), the spectrogram (x: 2.88%/y: 7.32%) and the 

scalogram (x: 4.4%/y: 8.85%) and only slightly better 

time-frequency localization percent error than the 

reassigned spectrogram (x: 1.18%/y: 2.79%) and the 

reassigned scalogram (x: 1.46%/y: 1.83%). The 

RSPWVD (x: 0.66%/y: 1.18%) is nearly identical to 

the WVD in the x-direction and slightly outperforms 

the WVD in the y-direction. Figure 6 shows that the 

reassigned spectrogram gives a more concentrated 

time-frequency localization than the spectrogram and 

that the reassigned scalogram gives a more 

concentrated time-frequency localization for each 

signal component than does the scalogram. 

Table 1 also shows that the WVD has a large number 

of cross-term false positives (25). Figure 7 shows WVD 

cross-term interference, along with the ability of the 

RSPWVD to reduce these cross-terms, making for a 

more readable presentation. 

Additionally, Table 1 shows that the WVD has the 
slowest processing time (1064 s) of all the techniques 
and that the processing times of the other 3 classical 
time-frequency analysis techniques, the CWD (10.34 s), 
the spectrogram (4.25 s) and the scalogram (4.95 s) are 
all faster than each of the 3 reassignment methods; the 
reassigned spectrogram (49.1 s),the reassigned 
scalogram (13.63 s) and the RSPWVD (33.97 s). Also, 
Table 1 shows that the WVD has the worst low SNR 
value (-2 dB). In addition, the combined average for the 
reassignment method outperforms the combined average 
for the classical time-frequency analysis techniques in 
the areas of percent detection (98.9 to 93.4%) and low 
SNR (-2.81 to -2.58 dB). 

Table 2 presents the overall test metrics (SNR 

viewpoint) for the testing performed in this study and 

shows that the percent error of the modulation 

bandwidth, time-frequency localization, chirp rate, 

percent detection and processing time in general tend to 

worsen with lowering SNR values, for both the classical 

time-frequency analysis techniques and the reassignment 

method. Figure 8 gives a visual representation of the 

readability degradation that accompanies a reduction in 

SNR. The XFP numbers in Table 2 are representative of 

the fact that, due to computational complexity, there was 

no WVD testing accomplished at lower than 10 dB 

(except for the 256 sample cases). 

Table 3 presents the overall test metrics (Task 1, 2, 3 

and 4 viewpoint) for the testing performed in this paper 

and shows that the percent error of the modulation 

bandwidth, time-frequency localization (y-direction) and 

chirp rate are lower for Task 2 (triangular modulated 

FMCW, modulation bandwidth = 2.4 KHz) than for Task 

1 (triangular modulated FMCW, modulation bandwidth 

= 500 Hz) for both the classical time-frequency analysis 

techniques and the reassignment method. Figure 9 gives 

visual insight into this, as will be elaborated upon in the 

discussion section. 

 
Table 1. Signal Processing Tool viewpoint of the overall test metrics (average percent error) for the 4 classical time-frequency 

analysis techniques (WVD (wvd), CWD (cwd), spectrogram (spectro), scalogram (scalo)), along with their combined 

average (TF) and for the 3 reassignment methods (reassigned spectrogram (respect), reassigned scalogram (rescalo), RSPWVD 

(rspwvd)), along with their combined average (RM). The parameters (Params) extracted are listed in the left-hand column: 

Carrier frequency (fc), modulation bandwidth (modbw), modulation period (modper), time-frequency localization in the x-

direction (tf loc-x), time-frequency localization in the y-direction (tf loc-y), chirp rate (cr), percent detection (% det), number of 

cross-term false positives (#XFP), lowest detectable SNR (low snr), processing time (proctime) 

Params wvd cwd spectro scalo TF respect rescalo rspwvd RM 

fc 1.61% 3.38% 4.36% 5.14% 4.02% 2.31% 4.88% 3.76% 4.15% 

modbw 5.3% 12.95% 20.23% 25.6% 20.97% 6.51% 5.83% 4.91% 4.59% 

modper 7.5% 7.1% 4.95% 4.52% 6.02% 4.59% 3.11% 4.72% 4.14% 

tf loc-x 0.63% 1.88% 2.88% 4.4% 3.28% 1.18% 1.46% 0.66% 1.0% 

tf loc-y 1.45% 4.83% 7.32% 8.85% 6.42% 2.79% 1.83% 1.18% 1.94% 

cr 5.29% 11.49% 16.25% 28.5% 12.09% 3.84% 4.94% 4.54% 4.89% 

% det 94.6% 92.5% 96.4% 90.4% 93.4% 100% 98.8% 98.0% 98.9% 

# XFP 25 0 0 0 5.25 0 0 0 0 

low snr -2 db -2.4 db -3 db -2.8 db -2.58 db -2.6 db -2.8 db -3 db -2.81 db 

proctime 1064 s 10.34 s 4.25 s 4.95 s 271 s 49.1 s 13.63 s 33.97 s 32.2 s 
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Table 2. SNR viewpoint of overall test metrics (average percent error) for the classical Time-Frequency analysis techniques (TF) and 

for the Reassignment Method (RM) for SNR = 10 dB, 0 dB and lowest detectable SNR (low snr). The parameters (Params) 

extracted are listed in the left-hand column: Carrier frequency (fc), modulation bandwidth (modbw), modulation period 

(modper), time-frequency localization in the x-direction (tf loc-x), time-frequency localization in the y-direction (tf loc-y), 

chirp rate (cr), percent detection (% det), number of cross-term false positives (#XFP), processing time (proctime) 

Params TF 10dB TF 0dB TF low snr RM 10dB RM 0dB RM low snr 

fc 4.89% 2.00% 5.31% 4.12% 2.54% 2.30% 
modbw 14.78% 15.4% 18.81% 4.44% 5.25% 7.46% 
modper 5.0% 3.93% 6.52% 4.63% 4.25% 3.58% 
tf loc-x 2.34% 2.45% 2.61% 0.78% 1.01% 1.41% 
tf loc-y 4.87% 5.47% 6.64% 1.25% 2.08% 2.61% 
cr 13.73% 14.51% 17.04% 4.82% 3.35% 5.14% 
% det 100% 82.4% N/A 100% 97.9% N/A 
# XFP 21 2 2 0 0 0 
proctime 289 s 234 s 421 s 21.0 s 23.65 s 52.11 s 

 
Table 3. Task 1, 2, 3 and 4 viewpoint of overall test metrics (average percent error) for the classical Time-Frequency analysis 

techniques (TF) and for the Reassignment Method (RM). Task1 = triangular modulated FMCW signal (modulation 

bandwidth = 500 Hz), Task2 = triangular modulated FMCW signal (modulation bandwidth = 2.4 KHz), Task 3 = FSK (4-

component) signal, Task 4 = FSK (8-component) signal. The parameters (Params) extracted are listed in the left-hand 

column: Carrier frequency (fc), modulation bandwidth (modbw), modulation period (modper), time-frequency localization 

in the x-direction (tf loc-x), time-frequency localization in the y-direction (tf loc-y), chirp rate (cr), percent detection (% 

det), number of cross-term false positives (#XFP), lowest detectable SNR (low snr), processing time (proctime) 

Params TFTask1 TFTask2 TFTask3 TFTask4 RMTask1 RMTask2 RMTask3 RMTask4 

fc 4.02% 8.15% 0.65% 0.40% 4.15% 4.48% 0.45% 0.37% 
modbw 20.97% 5.90% 19.37% 20.67% 4.59% 3.36% 7.35% 8.27% 
modper 0.70% 0.41% 10.7% 17.47% 0.78% 0.56% 6.25% 12.0% 
tf loc-x 2.78% 2.55% 7.50% 8.50% 1.00% 1.28% 2.27% 2.43% 
tf loc-y 6.42% 2.45% N/A N/A 1.94% 0.92% N/A N/A 
cr 12.09% 5.77% N/A N/A 4.89% 2.86% N/A N/A 
% det 88% 93.7% 100% 100% 97.33% 100% 100% 100.0% 
# XFP 8 2 6 9 0 0 0 0 
low snr -2.8 db -3.3 db -2.67 db -1.67 db -2.67 db -3.0 db -3.33 db -2.5 db 
proctime 145 s 439 s 143 s 104 s 31.1 s 35.3 s 33.6 s 22.8 s 

 
Table 3 also shows that the percent error of the 

carrier frequency for Tasks 3 and 4 (FSK signals) is 

much lower than for Tasks 1 and 2 (triangular modulated 

FMCW signals). Also, the percent error of the 

modulation period for Tasks 1 and 2 (triangular 

modulated FMCW signals) is much lower than for Tasks 

3 and 4 (FSK signals). In addition, the lowest detectable 

SNR is lower for Task 3 (4-component FSK signals) 

than for Task 4 (8-component FSK signal). 

Discussion 

This section of the paper will elaborate on the results 

from the previous section. 

From Table 1 (signal processing tool viewpoint of 

overall test metrics), the performance of each of the 7 

signal processing analysis tools will be summarized, 

including strengths, weaknesses and generic scenarios in 

which a particular tool might be used. 

WVD 

The WVD had excellent time-frequency localization 

percent error (0.63/1.45%), but had the worst cross-term 

interference (25 XFPs), processing time (1064 s) and low 

SNR (-2 dB). Its excellent time-frequency localization can 

be attributed to the fact that the WVD exhibits the highest 

signal energy concentration in the time-frequency plane 

(Gulum, 2007; Pace, 2009) and is totally concentrated 

along the instantaneous frequency (Cirillo et al., 2006; 

Guanghua et al., 2008). The cross-term interference 

problem of the WVD, which is well-known (Gulum, 2007), 

makes it very difficult to see the actual signal (De Luigi and 

Moreau, 2002; Guanghua et al., 2008; Wong et al., 2009), 

reducing the readability of the time-frequency distribution. 

Fig. 7 clearly shows the cross-term interference problem 

with the WVD. The cross-terms produced a false positive 

(XFP) triangle in the middle of the two-triangle signal 

(Fig. 7a) and also produced 9 XFPs in the FSK 8-

component signal (Fig. 7c). Cross-terms are located half-

way between signal components (De Luigi and Moreau, 

2002; Wong et al., 2009).The long processing time is 

indicative of the fact that the WVD is known to be 

computationally intensive (Milne and Pace, 2002), due in 

part to its cross-term interference. Though the WVD is 

highly concentrated in time and frequency, it is also highly 

non-linear and non-local and is therefore very sensitive to 

noise (Auger and Flandrin, 1995; Flandrin et al., 2003), 

which accounts for its poor low SNR performance (-2 dB) 



Daniel L. Stevens and Stephanie A. Schuckers / American Journal of Engineering and Applied Sciences 2015, 8 (1): 26.47 

DOI: 10.3844/ajeassp.2015.26.47 

 

36 

(De Luigi and Moreau, 2002; Guanghua et al., 2008). The 

WVD might be a good tool to use if excellent time-

frequency localization is a requirement, but readability, 

speed and low SNR environments are not an issue, such as 

in a scenario where off-line analysis is performed, without 

any time constraints. The readability issue can be 

alleviated if a single-component signal is used, which 

would eliminate the cross-term interference, but which is 

unrealistic for most LPI radar signals. 

CWD 

The CWD did not perform the best or the worst in any 
one category. Two of its strongest areas were time-
frequency localization percent error (1.88/4.83%), where 
it performed better than the spectrogram and the 
scalogram and processing time (10.34 s) where it 
performed better than the WVD, reassigned spectrogram, 
reassigned scalogram and RSPWVD. The better than 
average performance in both time-frequency localization 
percent error and processing time can be attributed to the 
fact that the CWD is a member of the Cohen’s class of 
time-frequency distributions, which use a smoothing 
kernel to smooth out cross-term interference, but at the 
expense of time-frequency localization (Choi and 
Williams, 1989; Williams and Jeong, 1992). In this sense, 
the CWD is seen as a ‘mid-point’ between the WVD 
(good localization, poor cross-term interference) and the 
spectrogram (poor localization, good cross-term 
interference). This reduction in cross-term interference 
speeds up the processing time of the CWD. The fact that 
the CWD does not smooth out all of the cross-term 
interference allows for adequate localization. ‘Middle-of-
the-road’ would be the best way to describe the 
performance of the CWD. The CWD might be used in a 
scenario where above average localization is required (i.e., 
somewhere between the WVD and the spectrogram) and 
where a fairly short processing time is required. The goal 
of such a scenario would be to obtain above average 
signal metrics in a short amount of time. 

Spectrogram 

The spectrogram had the best processing time (4.25 s), 

best low SNR (-3 dB) (tied with RSPWVD) and the best 

percent detection (96.4%) (of the classical time-frequency 

analysis techniques), but suffered in time-frequency 

localization percent error (2.88/7.32%)-only the scalogram 

(4.4/8.85%) was worse(Auger et al., 1996; Cohen, 1995; 

Hlawatsch and Boudreaus-Bartels, 1992). Both the good 

and the poor metrics can be accounted for by the extreme 

reduction of cross-term interference that the spectrogram 

provides, accounting for the quick processing time, low 

SNR and percent detection, but at the expense of poor time-

frequency localization percent error. The spectrogram might 

be used in a scenario where short processing time is 

required, in a fairly low SNR environment and where time-

frequency localization is not an issue. Such a scenario might 

be a ‘quick and dirty’ check to see if a signal is present, 

without precise extraction of its parameters. 

Scalogram 

The scalogram had good processing time (4.95 s), 
good low SNR (-2.8 dB), but had the worst percent 
detection (90.4%) and time-frequency localization 
percent error (4.4/8.85%). The scalogram suppresses 
almost all cross-terms (Grishin and Janczak, 2007;  
Lari and Zakhor, 1992), accounting for its good 
processing time and good low SNR performance. 
Because of this cross-term reduction, it is surprising that 
the scalogram did not perform better in the area of 
percent detection. This could be due to its large time-
frequency localization percent error, or due to the fact 
that a wavelet/scalogram performs better on signals that 
change rapidly in frequency over time, vice the 
triangular modulated FMCW and FSK signals used in 
this study. Like the spectrogram, the scalogram might be 
used in a scenario where short processing time is 
required, in a fairly low SNR environment and where 
time-frequency localization is not an issue, or, as 
mentioned previously, in a scenario that detects/analyzes 
signals that change rapidly in frequency over time. 

Reassignment Method 

The three reassignment methods performed fairly 
similarly to one another, so they will be lumped together, 
with any specific differences being brought out 
separately. The reassignment methods performed very 
well in the time-frequency localization percent error 
category, coming close to the performance attained by 
the WVD (as mentioned earlier, the WVD exhibits the 
highest signal energy concentration in the time-frequency 
plane (Gulum, 2007; Pace, 2009)) and even surpassing the 
WVD in one area-time-frequency localization percent 
error in the y-direction (1.18% for the RSPWVD Vs. 
1.45% for the WVD)). Figure 6 displays this ‘squeezing’ 
quality of the reassignment method (Boashash, 2003). 
This quality is due to the fact that the reassignment 
method reassigns the signal energy value from the center 
of the analysis window, to the center of gravity of the 
analysis window, giving a much more concentrated signal 
representation (Auger and Flandrin, 1994; Li and Bi, 
2008). This supports the earlier hypothesis that, since the 
reassignment method is, in theory, a perfectly localized 
distribution for chirps, tones and impulses (Auger et al., 
1996), it will work well for the triangular modulated 
FMCW (which can be viewed as back-to-back chirps) and 
the FSK (which can be viewed as tones), which can be 
seen in Fig. 6. Another presupposition was that the 
reassignment method produces a more concentrated signal 
(Auger et al., 1996), therefore the time-frequency 
distribution becomes more readable and a more readable 
time-frequency distribution makes for more accurate 
signal detection and parameter extraction metrics. The 
metrics in Table 1 confirm this, showing that the 
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reassignment method by-and-large had more accurate 
signal detection and parameter extraction metrics than the 
classical time-frequency analysis techniques in the areas 
of percent error of the modulation bandwidth (4.59 to 
20.97%), percent error of time-frequency localization 
(both x (1.0 to 3.28%) and y (1.94 to 6.42%) direction), 
percent error of the chirp rate (4.89 to 12.09%), percent 
detection (98.9 to 93.4%), number XFPs (0 to 5.25) and 
processing time (32.2s to 271s). Figure 7 is a prime 
example of the ability of the reassignment method to 
smooth out cross-term interference (Boashash, 2003). This 
figure shows how the readability of the time-frequency 
representation can be drastically increased through the 
cross-term reduction provided by the reassignment 
method. It was proposed that this increase in readability 
due to cross-term interference smoothing would bear an 
improvement over the classical time-frequency analysis 
techniques in the detection and parameter extraction 
metrics, which, as noted, is seen to be the case in Table 1. 
The 3 reassignment methods had slightly slower 
processing times than the classical time-frequency 
analysis techniques (except the WVD). This is due to the 

reassignment process being slightly more computationally 
complex than the CWD, spectrogram and scalogram. As 
far as the differences between the 3 reassignment methods; 
the RSPWVD had the best time-frequency localization 
percent error (x = 0.66%, y = 1.18%) and best low SNR (-3 
dB); the reassigned scalogram had the fastest processing 
time (13.63 s) and the reassigned spectrogram had the best 
percent detection (100%). Since the spectrogram has the 
worst localization (and the best cross-term interference) of 
any of Cohen’s class (which would include the smoothed-
pseudo WVD (SPWVD)), then since the SPWVD yields 
better localization of signal components than the 
spectrogram, it follows that the reassigned version of the 
SPWVD, the RSPWVD, would be more localized (x = 
0.66%, y = 1.18%) than the reassigned spectrogram (x = 
1.18%, y = 2.79%) and, following the same logic, also less 
sensitive to noise (-3 dB) than the reassigned spectrogram (-
2.6 dB) (Flandrin et al., 2003). Any of the 3 reassignment 
methods might be used in a scenario where excellent time-
frequency localization and low cross-term interference is 
required, perhaps due to a crucial need for very accurate 
extraction of metrics. 

 

 
 (a) 
 

 
 (b) 
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 (c) 

 

 
 (d) 
 
Fig. 6. Time-frequency localization comparison between the classical time-frequency analysis techniques and the reassignment 

method: (a) is the spectrogram and (b) is the reassigned spectrogram for a triangular modulated FMCW signal (256 samples, 

SNR = 10 dB); (c) is the scalogram and (d) is the reassigned scalogram for a 4-component FSK signal (512 samples, SNR = 

10 dB). The reassignment method gives a much more concentrated time-frequency localization than does its classical time-

frequency analysis counterpart 
 

 
(a) 
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(b) 

 

 
 (c) 
 

 
 (d) 
 
Fig. 7. Cross-term interference of the WVD ((a) and (c)) and ability of the RSPWVD ((b) and (d)) to reduce cross-term interference. 

(a) is the WVD and (b) is the RSPWVD for a triangular modulated FMCW signal (512 samples, SNR = 10 dB) and (c) is the 

WVD and (d) is the RSPWVD for an 8-component FSK signal (512 samples, SNR = 10 dB). The WVD displays a lot of 

cross-term interference. There appears to be one additional triangle signal in the middle of the two-triangle signal in (a) and 

there appears to be 9 additional signals to go along with the 8-component signal in (c). The RSPWVD has drastically reduced 

the cross-term interference found in the WVD plots, making for more readable presentations. Notice also that the RSPWVD 
appears more concentrated than does its WVD counterpart (as per Table 1) 
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 (a) 

 

 
(b) 

 

 
 (c) 
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 (d) 

 

 
 (e) 

 

 
 (f) 

 
Fig. 8. Readability degradation due to reduction in SNR. Spectrogram, triangular modulated FMCW, modulation bandwidth = 500 

Hz, 512 samples at (a) SNR = 10 dB, (b) SNR = 0 dB, (c) SNR = -4 dB. RSPWVD, triangular modulated FMCW, modulation 

bandwidth = 500 Hz,  256 samples at (d) SNR=10dB, (e) SNR = 0 dB, (f) SNR = -3 dB. Readability degrades as SNR 

decreases, negatively affecting the accuracy of the metrics extracted, as per Table 2 
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(d) 

 

 
 (e) 
 

 
 (f) 
 
Fig. 9. Comparison between Task 1 ((a), (c) and (e)) and Task 2 ((b), (d) and (f)). (a) and (b) are both spectrogram plots of a 

triangular modulated FMCW signal (512 samples, SNR = 10 dB), (a) is Task 1 (modulation bandwidth = 500 Hz) and (b) is 

Task 2 (modulation bandwidth = 2.4 KHz). (c) and (d) are CWD plots of the same signals and (e) and (f) are RSPWVD plots 

of the same signals.   The Task 2 plots ((b), (d) and (f)) have a larger modulation bandwidth than Task 1 plots ((a), (c) and 

(e)), therefore the Task 2 signals appear taller and more upright than the Task 1 signals 
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From Table 2, it was seen that in general, the percent 

error of the modulation bandwidth, time-frequency 

localization (x and y), percent error of the chirp rate, 

percent detection and processing time all tended to 

worsen as the SNR decreased, for both the classical 

time-frequency analysis techniques and the reassignment 

method. A visual representation of the degradation of the 

readability of the time-frequency representation as the 

SNR decreases is shown in Fig. 8. This confirms an 

initial hypothesis that as the readability of the time-

frequency representation degrades, the accuracy of the 

metrics degrades as well, as validated in Table 2. It 

seems plausible that as SNR is lowered, the accuracy of 

the metrics will decrease, however, it was noted that for 

the modulation bandwidth, time-frequency localization 

(x and y) and chirp rate percent error metrics, the 

classical time-frequency analysis techniques experienced 

a greater percent degradation of metrics going from 0 dB 

to low SNR (classical TF average low SNR is -2.58 dB 

per Table 1) than from 10 to 0 dB (0 dB-low SNR/10-0 

dB)): modBW: 22.14/4.19%; tf-loc x: 6.53/4.7%; tf-loc 

y: 21.39/12.32%; cr: 17.44/5.68%). This highlights the 

classical time-frequency analysis techniques mediocre 

performance in a low SNR environment. As noted 

above, the XFP numbers in Table 2 are representative of 

the fact that, due to computational complexity, there was 

no WVD testing accomplished at lower than 10 dB 

(except for the 256 sample cases). Had the WVD testing 

been able to be accomplished at lower than 10 dB SNR 

levels for the 512 sample cases, the XFP numbers would 

have likely increased as the SNR level decreased. Table 

2 shows that, by-and-large, the metrics of the 

reassignment method were more accurate than the 

metrics of the classical time-frequency analysis 

techniques at every SNR level. 

From Table 3 it was seen that Task 2 (triangular 

modulated FMCW, modulation bandwidth = 2.4 KHz) 

had a much lower percent error for time-frequency 

localization (y-direction) than Task 1 (triangular 

modulated FMCW, modulation bandwidth = 500 Hz), 

for both the classical time-frequency analysis techniques 

(2.45 to 6.42%) and the reassignment method (0.92 to 

1.94%). As per Fig. 9, this is due to the fact that the Task 

2 signal is more upright than the Task 1 signal and 

therefore more of the ‘thickness’ of the Task 2 signal is 

in the x-direction than that of the Task 1 signal. It was 

also noted that percent error of the modulation 

bandwidth was lower for Task 2 than for Task 1, for both 

the classical time-frequency analysis techniques (5.90 to 

20.97%) and the reassignment method (3.36 to 4.59%). 

The modulation bandwidth is a measure from the highest 

frequency point of a signal to the lowest frequency point 

of a signal. Therefore, the ‘thickness’ of a signal will 

proportionately affect the modulation bandwidth 

measurement of a ‘shorter’ signal (Task 1-Fig. 9a, c and 

e) more than that of a ‘taller’ signal (Task 2-Fig. 9b, d 

and f). Because of this, the modulation bandwidth 

percent error will be lower for Task 2 (the ‘taller’ signal) 

than for Task 1 (the ‘shorter’ signal). It should be noted 

that though the definition of modulation bandwidth is the 

measure in frequency from the highest frequency value 

(at a 20% threshold of the maximum intensity for this 

testing) of a signal to the lowest frequency value (at a 

20% threshold of the maximum intensity) of a signal, an 

experienced intercept receiver signal analyst may choose 

to manually ‘override’ the 20% threshold value and 

manually measure the modulation bandwidth of a ‘thick’ 

signal at points which he believes would give a more 

accurate modulation bandwidth measurement. This 

method may work for time-frequency representations 

with good readability, but becomes more difficult to 

accomplish as the signal readability degrades due to low 

SNR and cross-term interference and the more so for a 

less experienced intercept receiver signal analyst. Table 

3 also shows that the chirp rate percent error is lower for 

Task 2 than for Task 1 for both the classical time-

frequency analysis techniques (5.77 to 12.09%) and the 

reassignment method (2.86 to 4.89%). This follows from 

the fact that the modulation bandwidth percent error is 

lower for Task 2 than Task 1 and that chirp rate, which 

equals modulation bandwidth/modulation period, is 

directly proportional to the modulation bandwidth. 

From Table 3 it is also noted that the carrier 

frequency percent error for the FSK waveforms (Task 3 

and Task 4) is lower than the carrier frequency percent 

error for the triangular modulated FMCW waveforms 

(Task 1 and Task 2) for both the classical time-frequency 

analysis techniques (Task 3 = 0.65%; Task 4 = 0.40%; 

Task 1 = 4.02%; Task 2 = 8.15%) and the reassignment 

method (Task 3 = 0.45%; Task 4 = 0.37%; Task 1 = 

4.15%; Task 2 = 4.48%). This is due to the fact that the 

FSK waveforms are basically frequency tones, with each 

frequency tone representing a different carrier frequency. 

Also noted was the fact that the modulation period 

percent error for the FSK waveforms (Task 3 and Task 

4) was greater than the modulation period percent error 

for the triangular modulated FMCW waveforms (Task 1 

and Task 2), for both the classical time-frequency 

analysis techniques (Task 3 = 10.7%; Task 4 = 17.47%; 

Task 1 = 0.70%; Task 2 = 0.41%) and the reassignment 

method (Task 3 = 6.25%; Task 4 = 12.0%; Task 1 = 

0.78%; Task 2 = 0.56%). This is due to the fact that for a 

triangular modulated FMCW signal, the modulation 

period is the measure of the point where the first and 

second chirp legs of the signal meet to the point where 

the second and third chirp legs of the signal meet 

(measured in the x-direction) and the location of these 

two points changes very little based on time-frequency 

localization (signal ‘thickness’) or the SNR level (Fig. 6a 
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and b). For the FSK waveform, the modulation period is 

a measure of the width of the entire signal component 

(measured in the x-direction) and can vary drastically 

based on time-frequency localization and SNR level 

(Fig. 6c and d). From Table 3, it was also noted that the 

modulation period percent error for the 4-component 

FSK signal (Task 3) was smaller than the modulation 

period percent error for the 8-component FSK signal 

(Task 4) (for classical TF: Task 3 = 10.7%; Task 4 = 

17.47%; for RM: Task 3 = 6.25%; Task 4 = 12.0%). This 

may be due to the fact that the size of the gap between 

signal components in the x-direction for the 4-

component signal is roughly the same as the size of the 

gap between signal components for the 8-component 

signal, leaving less signal space in the x-direction for the 

8-component signal (i.e., shorter components in the x-

direction) and therefore a larger percent error of the 

modulation bandwidth (measure of the x-direction width 

of the signal). Another observation from Table 3 was 

that the low SNR value for the 4-component FSK signal 

(Task 3) was about 1 dB lower than the 8-component 

FSK signal (Task 4) (for classical TF: Task 3 = -2.67 dB; 

Task 4 = -1.67 dB; for RM: Task 3 = -3.33 dB; Task 4 = -

2.5 dB). This may be due to the fact that the Task 3 signal 

has only 4 components, each of which is about twice as 

long as the 8-component signals of Task 4. This means 

that at low SNR levels, the Task 3 signal has a better 

chance of at least a portion of each of its 4 (longer) signal 

components exceeding the low SNR threshold than does 

the Task 4 signal with its 8 (shorter) components. 
Recapping, the metrics data backs up the following 

introductory assumptions: 
 

• The classical time-frequency analysis techniques are 

deficient in the areas of time-frequency localization 

and cross-term interference, making for poor 

readability and consequently, for less accurate 

detection and parameter metrics extraction of LPI 

radar signals 

• Since the reassignment method is, in theory, a 

perfectly localized distribution for chirps, tones and 

impulses, it should (and does) work well with LPI 

radar signals such as the triangular modulated 

FMCW and the FSK 

• The smoothing and squeezing qualities of the 

reassignment method make for better readability and 

consequently more accurate signal detection and 

parameter metrics extraction of LPI radar signals, 

making for a potentially more informed and 

effective intercept receiver environment 
 

Conclusion 

Though time-frequency analysis techniques, such as 

the WVD, CWD, spectrogram and scalogram, are 

quickly replacing Fourier-based analysis for digital 

intercept receivers, it was shown through testing plots 

and results metrics that these time-frequency analysis 

techniques suffer from a lack of readability due to 

deficiencies of poor time-frequency localization and 

cross-term interference. It was observed that this lack of 

readability led to inaccurate detection and parameter 

extraction metrics of the LPI radar signals. 

The reassignment method was introduced as being a 

potential solution to these deficiencies. Because of its 

theoretical perfectly localized distribution for chirps, 

tones and impulses, the reassignment method worked 

well for the triangular modulated FMCW and the FSK 

LPI radar waveforms used for this testing. 

Simulations were presented that compared time-

frequency representations of the classical time-frequency 

techniques with those of the reassignment method. Based 

on a number of metrics, experimental results 

demonstrated that the ‘squeezing’ and ‘smoothing’ 

qualities of the reassignment method did indeed lead to 

improved readability over the classical time-frequency 

analysis techniques and consequently, provided more 

accurate signal detection and parameter extraction 

metrics (smaller percent error from true value) than the 

classical time-frequency analysis techniques. 

In summary, this study provides evidence that the 

reassignment method has the potential to outperform the 

classical time-frequency analysis techniques, which are 

the current state-of-the-art, cutting-edge techniques for 

this arena. An improvement in performance could easily 

translate into saved equipment and lives. 

Future plans include automation of the metrics 

extraction process, analysis of additional low probability 

of intercept radar waveforms of interest and analysis of 

other real-world low probability of intercept radar 

signals utilizing more powerful computing platforms. 
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