American Journal of Engineering and Applied Sciences 7 (2): 194-240, 2014

ISSN: 1941-7020

© 2014 P. Poncet al., This open access article is distributed undéreative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/ajeassp.2014.194.240 Published Onlif® 2014 (http://www.thescipub.com/ajeas.toc)

A REVIEW OF INTELLIGENT CONTROL SYSTEMS
APPLIED TO THE INVERTED-PENDULUM PROBLEM

Pedro Ponce, Arturo Molina and Eugenio Alvarez
Department of Engineering, Tecnologico de Monterkdgxico City, Mexico

Received 2014-03-08; Revised 2014-03-14; Accepted-pa107
ABSTRACT

This study shows the latest advances in the apijaitaf intelligent control to the inverted-penduoiu
problem. A complete review regarding intelligenttrol design is presented in this study in ordeshow
the most important artificial intelligence methodsed for controlling an Inverted-Pendulum. Alsosthi
study proposed the use of a neural-fuzzy-with-gersgorithms controller for the inverted pendulum
problem which gives good results. Conventional wilers are presented in order to observe
implementation problems. The study goes deephhéndetails that have to take into account in otder
understand design problems and limitations.

Keywords: Inverted Pendulum, Intelligent Control, Fuzzy Lqogieural Networks, Genetic Algorithms,
ANFIS, Unstable Nonlinear Systems

1. INTRODUCTION Ngrgaard, 2000a; 2000b; Omatual., 1995; Storn and
Price, 1997; Mirza and Hussain, 2000; Messner and
The inverted pendulum is a classical example of anTilbury, 1999; Bishop and Dorf, 1999; Takagi and
instable, nonlinear system that has been solvedhany Sugeno, 1985; Olguin, 2003; Yasagal., 2000; Jung and
ways but remain a prototypical case study for optition Yim, 2000). This dynamical system can be charadri
and the testing of new control techniques. Thertede by four state variables, namely Equation 1:
pendulum system is made of a rigid rod and a carioh
the rod is joined by a bolt providing it with ratatal xS:(e 9 x X)T (1)
freedom. The bar involves a frictionless union withe
degree of freedom. The car can move rightwards Ohwhere:
leftwards over trgckg ac<_:ord|ng to the force exergon it. 6 = The angle that the bar makes with the vertioal (
The control objective is to keep the bar on balance . :
e L " ; horizontal) axis

beginning from nonzero initial conditions, in suahway -
that the bar remains oriented upwards despite tpessi 6 = The angular speed of the bar
1992; Lundeberg, 1994; Williams and Matsuoka, 1991; X = The linear speed of the car
Jacobs and Jordan, 1993; Kitamulra and Saitoh, ;1990 ) o
Koudaet al., 2002: Sazonoet al., 2003: Mohanlal and As mentioned before, the control objective is tb se
Kaimal, 2002; Inouet al., 2002; Harrison, 2003; Chen and the car in its central position (x = 0) in such ayvthat
Chen, 2003: Pal and Pal 2003: Lahal., 2003; Cho and the pendulum remains in its vertical position, with
Jung, 2003; Gao and Er, 2003; Olguin, 2000; Jigg;  Pob pointing upwards. - o
Jietal, 1997; DECE, 2003; Omatu and Ide, 1994; FOF our purposes, this means Equation 2:
Ravn and Poulsen, 2001; Jang-Sun-Mizutani, 1997, )
Riedmiller, 1993; Omatuet al., 2000; Jang, 1993; 6=6=x=x=0 (2)
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control design of these systems. These techniques
include state feedback, adaptive-control strategies
neural-network modeling to simulate possible
combinations of input/output control, adaptive or
intelligent neural-network controllers and, moreeamtly,

the integrated application of neural networks amzy-
logic. This is so because fuzzy control requireggpert
control law for the inverted pendulum formulated in
terms of if-then rules. A recently designed coréml
described in an IEEE publication, uses genetic
algorithms, neural networks and fuzzy logic to tume
PID controller. Many neural-network architectures/é
proposed to control an inverted pendulum (Williaamsl
Matsuoka, 1991). For example, Jacobs and Jord&38)19
considered a forward-modelling control where the
system learns about a model relating the curreé sif
the plant and the current controlling signal by a

Fig. 1. Schematics of the inverted pendulum system

Table 1. Parameters for the simulated inverted pendulum prediction of a future failure. The control leargiaf an

M  Mass of the car 0.455 kg inverted pendulum by means of a neuro-controlles wa
m  Mass of the pendulum 0.21 kg proposed by Kitamulra and Saitoh (1990), who
| Distance from the 0.305 m provided their system with a desired-output gemerat

pendulum’s center of mass

| Moment of inertia of the pendulum 0.006 kg*m2 and an evaluator in addition to the neural congrolin

the desired-output generator, the angle and angular
Fig. 1 shows the system that is assumed for thissloeed of the car are generated from two equatiuts t

project. The parameters used in the simulation arePOVide previous knowledge about the pendulum’s
used inTable 1. behavior, given the position and speed of the Tae

The inverted pendulum has a great importance $or it evaluator is used to decide if the controller'spuutis
application in practical systems. In the militangraa, it~ right or wrong and, depending on the current situmat
provides a framework for understanding the remotegenerate a master signal to train the neuro-cdatrol
control of rockets, as they undergo sizable pestiobs This signal is based on the difference between the
at launching due to fuel explosion that make itessary ~ desired value and the control's output. As remarked
to guarantee the desired orientation. There has beeabove, there is an increasing number of control
considerable work in other aero-spatial applica&ia@s  methods, most of which are tested with the inverted
well. The inverted pendulum is also a relevant nhéale pendulum problem, which has become more complex
understanding the way in which structures with feet as free flexible bars over multiple axes are
(such as human being and some robots) may wallewhil incorporated. Intelligent control has been giveneav
keeping balance (Lundeberg, 1994). Several solstion  twist by applying fuzzy-logic, neural-network and
the inverted-pendulum problem are known, so thatoptimization-algorithm techniques. New methods aris
research has increasingly emphasized the more ea@mpl from improving the individual techniques and from
cases of pendulum with two, three or more barsy@b  thejr integration into schemes that make the best
as deformable pendulum (non-rigid bars) and possible use of their advantages and capabilitiethe

multidimensional pendulum. These systems have morg,q; fao\y years, the state of the art has been etéfhy
inputs and outputs in need of control, which matkesn some of the foilowing research areas:

rather more unstable and nonlinear.
The control law based on a conventional PID control*  Control for swing-up of an inverted pendulum using

is quite complex for one-input, two-output (SIMO) artificial neural network (Koudet al., 2002)
systems, such as the inverted pendulum case. Bechus * Hybrid LQG-neural controller for inverted
that, modern control theories are generally usethén pendulum system (Sazoneval., 2003)
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e Exact fuzzy modeling and optimal control of the
inverted pendulum on cart (Mohanlal and Kaimal,
2002)

« A fuzzy classifier system using hyper-cone
membership functions and its application to
inverted pendulum control (Inowet al., 2002)

 Asymptotically optimal stabilizing quadratic
control of an inverted pendulum (Harrison, 2003)

e Output regulation of nonlinear uncertain system
with non-minimum phase via enhanced RBFN
controller (Chen and Chen, 2003)

» SOGARG: A self-organized genetic algorithm-

based rule generation scheme for fuzzy controllers

(Pal and Pal, 2003)

» Design and stability analysis of fuzzy model-based

nonlinear controller for nonlinear systems using
genetic algorithm (Lanst al., 2003)

» Balancing and position tracking control of an
inverted pendulum on an x-y plane using

Where:

H(a)=H(a)")0
It is getting Equation 5:

H(q){ (5)

I+m,*> -m,lsin@
-m,Isin@  m+m,

Thus, the Euler-Lagrange equation may be written as
(Olguin, 2000) Equation 6:

ok
oq
The general procedure is presented. Assuming that

there is no friction and considering only the pdadu
model without the engine control implications

aq

ou
+—=1

H(q)'q+( H(a)o- (6)

decentralized neural networks (Cho and Jung, 2003) concerning the balancing forces, it can be defities

e Online adaptive fuzzy neural identification and
control of a class of MIMO nonlinear systems
(Gao and Er, 2003)

» techniques such as fuzzy logic, genetic algorithms,

neural networks and ANFIS controllers
e To apply a state-of-the-art ANFIS-genetic control t
the inverted pendulum problem

2. SYSTEM MODEL

The description will begin by modelling the system

with the free-body diagrams shownkhig. 2.
From the Euler-Lagrange method Equation 3:

dfaL
dtl a9

where, the Lagrangian:

oL
-—=1

=" ®

L=k U

TOTAL ~— Y TOTAL

It is the difference between the kinetic and paéént
energies Equation 4:

U, =m,gl

1 1 .
:Emlvlz =Em1X2
=m,g(l+IsinB)

1 1
k2 = E mzvzz +E I(A.)Z

K,
u, (@)

Tot —

1
Kro == T H(Q)C
SaTH@)a
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system with the following second-order differential
equations Equation 7 and 8:

— — .2 H
gsin + cose(u MmJIrSmsmG]
6= 7
(4 _mcose %
3 M+m
u+ mI(G2 sine-#6 cosB)
X = (8

M+m

This system has been validated in several papers
(Jang, 1992; Xt al., 1997). From the above equations, a
Simulink/Matlab model was constructed as shown in
Fig. 5. It was found that the system has a unit-step
response as shown kig. 3.

In the following sections, several control stragegi
for the nonlinear model are presented. After desgn
the inverted-pendulum simulator, its graphical stags
implemented Fig. 4). Using the model proposed by
(Olguin, 2003), the graphical part was specifically
adapted to this model.

2.1. PID Controller

Although it is very difficult to control this systg a
good idea is to use a simple control (PID) as isigrt
point for the development and validation of more
complex controllers. With this intention, the gaofsthe
PID controller were found by trial and error in erdo
control both the angle and position.

AJEAS
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Fig. 2. Free-body diagrams of the inverted-pendulum system
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Fig. 3. Step response of the inverted pendulum
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Fig. 4. MATLAB graphic simulator of the inverted pendulum
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Fig. 5. Simulink/Matlab model of the inverted pendulum

The simplest form to achieve this objective is &eu
two PID controllers, one for angle and the other fo
position and to add the corresponding control digha
The gain in the error signal was used to prioritize
control signals.

Figure 6 and 7 show a pretty good response to
impulse-type perturbations (the disturbance

,///4 Science Publications
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limited). It must be noticed that it is rathe
difficult to tune this type of controllers if the
designer does not want to linearize the systeth an
the controllers work outside of the operatiornnpo
On the other hand if the pendulum is under a
strong disturbance, the PID controllers could not

is control the system.
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3. ROBUST CONTROLLER (LQR)

For simplicity, it will be considered here the
stabilization of the pendulum, regardless of the

Another way to use a non-intelligent controller, as position of the car. There were defined the follogyi
suggested by an application in Matlab’s “Robust membership functions:

Control Toolbox”, involves in using a PID for pasitb

It were also determined seven rules as follows

control and an Linear Quadratic Regression (LQR)(Omatu and Ide, 1994):

discrete state estimator to stabilize the pendulam,
shown inFig. 8.

Once again, it is very hard to tune the PID and LQR:

gains. For this system, it was necessary to lineattie
model to find the gains.

To calculate the values of K, it was assumed allest
feedback (four states) (DECE, 2003) and look far kh

vector determining the control law u = Kx. This has °

been done by means of the Igr function, which metur
the optimal controller and allows us thoose two
parameters, R and Q, which prioritize inputs ané th
state-cost function to optimize.

In this case, the choice was made of using R rdl a
Q in the form:

50000 0 O
o 0o o0 o0
Q= o 0 100 0
0 0 0 O

A vector of the form K = [0-18-166.5-15.2]T was
obtained. It was simulated with the previously-shdsock
diagram using 0.1 rad and 0.1 m as initial conaiitiorhe
response thus obtained is showkiig. 9.

Later on it will be used this method in neural-nesthv
training.

4. FUZZY LOGIC CONTROLLER

* Rule 1: Ifo6 = PM andA6 = ZO, then u = PM
Rule 2: If0 = PS and\0 = PS, thenu = PS
Rule 3: If6 = PS and\6 = NS, thenu =Z0O
Rule 4: 1f6 = NM andA6 = ZO, then u = NM
Rule 5: If6 = NS andA6 = NS, then u = NS
Rule 6: If6 = NS andA® = PS, thenu =270
Rule 7: 1If6 = ZO andA6 = ZO, then u = ZO

These rules can be summarized in the following
table, called the fuzzy association matrix or
knowledge matrix. The mambership functions are
shown inFig. 10.

The Fuzzy Inference System (FIS) was created as
shown inFig. 11.

The fuzzy control surface, presentedFiy. 12, was
determined as follows:

To make use of the fuzzy controller, the block chag
in Fig. 13 was constructed with initial contions of 0.1 rad
and 0.1 rad/s. The response is showRign 14.

It was obtained a good response as the pendulum is
well-stabilized, slowly but without overshoot. Thitgs
proved that the fuzzy controller has a correct bigha

5. NEURAL NETWORK ASSYSTEM
IDENTIFIER

To show one of the applications of Neural Networks
(NN) in the inverted pendulum problem. Now it was

The Mamdani inference system was used as itsapplied to the system under consideration. In fitate,

graphical user-friendliness makes it easier to tstdad
the controller’'s logic. The previous knowledge tlisit
required to control the system is formed by théofeing

rules (Williams and Matsuoka, 1991):

e When the pendulum is falling away from the vertical

one must make some experiments and acquire
representative points from the system. To obtaita da
from the stabilization area (vertical position)e ttobust
open-loop controller described in the previous isect
The system was excited in the desired region using

and the angular speed is changing in the directionperturbations to extend the data range, as shovthein

opposite to the fall, the pendulum will be forced

to move in the same direction suggested by the

angular speed

e When the car is moving at a certain distance from

block diagram irFig. 15.

The training data consist of the state variablaestaa
control signal, as shown Fig. 16.

The next step involves choosing the best neural

the center of the tracks and the pendulum isnetwork architecture. This architecture dependsniyai

vertically oriented, the pendulum will tend to fall
towards the center of the tracks

////4 Science Publications

200

on the system complexity, including the number of
inputs and outputs.
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Membership function plots Plot points: IT
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Fig. 10. Membership functions of the fuzzy controller
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Fig. 11. Fuzzy inference system
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Fig. 12. Surface generated by the fuzzy controller
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Fig. 13. Block diagram of the fuzzy controller
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Fig. 16. Training data
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Fig. 17. Neural network architecture
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MNontraimed data

2.5
—— Theta
1 X
Control sigmal

1.5 .

| -
0.5

() = - i b e )
=

-1
-1.3

_'I
35 L L L

L 2 4 6 B 10 12 14 16 18 20

Fig. 20. Untrained data

Thus it was chosen to use a Multilayer PerceptkdloR)
with 20 hidden nodes with hyperbolic tangent fumes
and two linear nodes as outpkid. 17).

Our MLP will estimate the following angle and pasit
from the previous state and the control signal mig to
the function (Ravn and Poulsen, 2001) Equation 9:

y(t+1)=gly(t),y(t-1),
y(t=2),u(t),...,u(t= 1)]

ol

Levenberg-Marquardt training quickly (Hagan and
Menhaj, 1994) reaches the error goal of 10-8, asvsh
in Fig. 18. Training data are well estimategid. 19).

(9)

Where:

20 and the NN estimation achieved an error of leas th
10-4, as shown iRig. 21.

This is an excellent estimation, showing that nkeura
networks are very good plant identifierBigure 22
showsa schematics of the Neural Network controller.

6. ANFISCONTROLLER

It was attempted to train an ANFIS controller (Jang
1993) to correctly stabilize the system in the tleas
possible time and in the simplest possible way for
nonzero initial conditions (both positive and négg, in
such a way that genetic algorithms (Hassanzatieh,
2008) could later be used to optimized it. Sevéypks
of controllers were tested following the inverse
controller concept (that learns from the model
(Ngrgaard, 2000a; 2000b), in which training is
performed with the process’ output data but executi
is performed with the previous output used as aurre

Neural networks are good learners of the traininginput and the resulting output used for processgrebn

data, sometimes even too good as they only learseth
data. To be certain that the NN really understdoal t
system and not just the training data, additionatiad
(called validation data) were generated as showFign

,////4 Science Publications
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It was tested this way because the training featoife
the network may be different. Several ANFIS
(Saifizul et al., 2006) controllers were created, trained
with different data sets and tested with the sirnarla
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Fig. 21. Response to untrained data and its error

uft) (1)
Process AL 1'~

L

Fig. 22. Schematics of the controller with neural net-work

The organization used is described as follows: 6.1. Random Training

» Control with angle and position training in a time Training data were created by exciting the inverted

sequence with 8 inputs pendulum system with random values, with no turahg

. PID controllers, with the only purpose of findinget

The controller learns and operates in responsbelo t gy giem response for different input types. A Sl
previous system outputs and the previous signai ity erted-pendulum model with graphical interface
controller itself. In this case, it will have sevérputs presented by (Olguin, 2003) and representddgn23.
encompassing angles, positions and earlier control  The Editor for the anfis system is presenteBig
signals. The signal r(t+1) will consist exclusivetf 24 which shows the training process when a cluster
zeros, as the system’s reference signal. partition is used.

Three different cases were considered: Random The code needed to generate time-sequenced data
training, sub-clustering and grid partition. Eadhtteem (current state, previous state and reference 9igsal

will now be described: given as follows:
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e entrenalU

entrenaCTRL(2:(C-1),1:2),

C = length(entrenaCTRL)

[entrenaCTRL(3:C,1:2),

2),1:3), entrenaCTRL(2:(C-1),3)]

+ anfisedit
» plot(entrenal)

TrainU = [entrenalU(2:(C-2)/2,:)]
TestU = [entrenaU((C-2)/2:3*(C-2)/4,)]
CheckU = [entrenaU(3*(C-2)/4:(C-2),:)]

A grid-partition ANFIS controller was trained with
2 Gaussian-type membership functions per inputh wit

entrenaCTRL(1:(C- 4 total of 7 inputs, a constant output and 50 trajn

operations.

The error obtained, 0.56205, is acceptable because
the control signal reaches +200, an error of aBaRB%.
Such error is compared with the reference value as
shown inFig. 25.

Ecuacen dn,
e

Pendu v

areca

ertee

Fig. 23. Simulator of the inverted pendulum to obtain randiata
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~ . " digk " Load from workzp, Errar Talerance: * Training data
Testing 0
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© Demo " Sub. clustering 50 " Checking data
Load D ata... | Clear Data | Generate FIS ... | Train Now | Test Mow |
Epoch B0:emor= 0.56205 Help | Clase |
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Training data: o FIS output - * — ANFIS Info.  —
0
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Fig. 25. ANFIS editor showing trained data
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Fig. 26. Block diagram of the ANFIS-controlled simu-lator

There are gaps in the training data, so it does not.2. Sub-Clustering

cover all possible values. Nevertheless, the nédtwor
learns reasonably well from the system. To simutlage
ANFIS controller, a block diagram was designedeedf
the time-sequenced sign&lisy. 26.

Results were rather unsatisfactoRygure 27 shows
that the system keeps within the desired zonedioths
of second, but remains unstable.

The topology of the ANFIS system is presented in,
Fig. 28-33 shows the control signal. One can infer that

the ANFIS controller is capable of controlling the
system, but more training in the stabilization zase
required. As the random signals do not cover sipadif
well this area, a controller that keeps them indbsired
zone is required.
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This approach to creating a fuzzy network consiéts
dividing training data among different zones anelates
membership rules between them. With the standard
parameters:

e Influence range: 0.5

e Compression factor: 1.5
Acceptance rate: 0.5
 Rejectionrate: 1.5

A network as shown in the following figure was teeh

Evidently, it is much simpler than the one in the
previous case. The results were calculated withrdhast
control system and initial conditions of 0.5 radl @3 m

AJEAS
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for angle and position, respectively. In additionpulse
perturbations were introduced that provide the ghaof
reference for the car’s position. The control sigmas
saturated at +20 and the following result was oleigi

The signal was prepared using the EntrenalU program,

using the following expresion Equation 11:
y(t+1),y(®),...y
m

(t-n+1),u(t- 1),...u(t (11)

am=g{

And the following code:

» entrenaCTRL = Ucontrollim

e C =length(entrenaCTRL)

e entrenal [entrenaCTRL(3:C,1:2),
entrenaCTRL(2:(C-1),1:2), entrenaCTRL(1:(C-
2),1:3), entrenaCTRL(2:(C-1),3)]

e TrainU = [entrenalU(2:(C-2)/2,:)]

e TestU = [entrenaU((C-2)/2:3*(C-2)/4,)]

»  CheckU = [entrenaU(3*(C-2)/4:(C-2),:)]

Training was made with half of the available data,
with testing and cheking made with the remaining. ha
Sub-clustering training was made with the ANFISEDIT
routine using the following parameters:

* Influence range: 0.5

e Compression factor: 1.5
* Acceptance rate: 0.5

* Rejection rate: 1.2

A 7-input network was generated with two
membership functions per input and a linear outgfut
the form:

Training was performed in 50 iterations with a hgbr
optimization approach.

Once the ANFIS was trained, it was simulated with
the following block diagram:

The system was capable of controlling initial
conditions of 0.1 rad and 0.1 m, even for initiahditions
of 0.3 rad and 0.1 m. However, it never reacheal tot
stabilization as it oscillates, although it manatgekeep
the pendulum in the desired, vertical region. Isvadso
tested changing the output condition to constaut, tat
means only two rules and becomes nonfunctional.

6.3. Grid Partition

determine a larger response range. Then a systém wi
two Gaussian-type membership functions was crefated
the 7 inputs and a constant output. The networktese
many rules by itself, as shownkig. 34.

It was trained with an error of 0.7335, as shown in
Fig. 35. Nevertheless, the simulation response is
unstable, as shown Fig. 36. The output is made of 128
parameters (128 constant-type rules).

Trying to improve this type of controllers, a nesst
was performed for a more complex system. The same
parameters of the previous case were used withearli
output. The resulting training had an error of @55,
but the result is still unsatisfactory, as showrrig. 37
andthe control topology is presentedrig. 38.

6.4. Control with 8-Input Time-Sequence State
Training

This control is trained with the desired signal dinel
previous system output; the desired signal whemguie
controller is the zero matrix. Learning is simgdi but
there are fewer conditions showing the state ofylstem.

The training data were obtained with the same robus
controller. These data were reordered in such athaty
the current (theta, dtheta, x, dx) and future stavere

considered in the training of the controller. The
following code was used:
* %8 ENTRADAS, ESTADO +1 (THETA,

DTHETA, X, DX) Y ESTADO ACTUAL

« entrenaXref = UcontrollimX

e D = length(entrenaXref)

e entrenaUXref
[entrenaX(3:D,1),entrenaX(3:D,2),entrenaX(3:D,3),
entrenaX(3:D,4),entrenaX(2:(D-
1),1),entrenaX(2:(D-1),2),entrenaX(2:(D-
1),3),entrenaX(1:(D-2),4),entrenaX(2:(D-1),5)]

e TrainUXref = [entrenaUXref(2:(D-2)/2,:)]

e TestUXref = [entrenaUXref((D-2)/2:3*(D-2)/4,)]

e CheckUXref = [entrenaUXref(3*(D-2)/4:(D-2),:)]

Training data are shown iRig. 39. A grid-partition
ANFIS was also built of the form shown kig. 40.

It was sought to simplify the grid-partitioned netk
by reducing each input's membership functions ichsa
way that it only had a single membership functionthe

Training data were determined by the robust future state (which would later be changed by zeros

controller previously obtained. Care was takenrtsuee
that the control would not only find the stabilipet data,
but also that it would become momentarily unstable
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when used as controller) and 3 functions for th2tégr
dtheta and x and 1 for dx. The corresponding tngini
with only 3 iterations, is shown ifig. 41 and some

AJEAS
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other example&ig 42-44. As expected, it did not work NM), positive values are in the lower zone of thblé

(but it was worthwhile to try it!). (PS and PM) and Zero in the diagonal line (ZO). S€ho
. . consequences are the representative values fampgbes
6.4. Control with 4-Input State Training signals @ andA®).

This control is the simplest of its type. It isitred

and executed with only the state of the systeroait be Table 2. Fuzzy association matrix of the fuzzy controller

used because the reference does not change inltiise. 0\A0 NS 20 PS

the simplest method, so its implementation may frelp NM NM

the next stage using genetic algorithms. NS NS Z0
Table 2. Represents th&uzzy association matrix in Z0 Z0

which the negative values of the consequences ar€S Z0 PS

concentrated in the upper zone of the table (NS an PM

Pendulo

e

2
T

Control
400 ! T T T ; !

0.2 03 0.4
Time (sec)

Fig. 27. Grid-partition ANFIS simulation results

,///4 Science Publications 212 AJEAS



Pedro Poncet al. / American Journal of Engineering and Appliede®cies 7 (2): 194-240, 2014
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Fig. 28. ANFIS architecture

]

.15W J
20 -
]

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 29. ANFIS control signal
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Fig. 30. ANFIS network architecture
Training Error — ANFIS Info. —
137
A AR AL L R LR LR RSN ELELEEEELRLEEREEEREEENEENELENEEN, an InputS ?
1.2+ # of outputs: 1
# of input mis:
. 2222222
2 11¢
(I
1tk
B R s
0.9 1 | 1 1 |
0 10 20 30 40 s | TR
Epochs
[ Loaddata — | [ Geneate FIS — | TranFIS 1 TestFIS ]
Type: Eran: Optim, Method:
» Ti= " Load from disk hwbrid - Plot against:
. o disk " Load fram worksp. Error Talerance: " Training data
" Testing i
" Grid partiti I Testing dat
* Checking ™ warksp. fie part |or? Epachs: = |ng.j =4
~ Demo * Sub. clustering 50 i+ Checking data
LoadData.. | Clear Data | Generate FI5 ... | Train Mow | Test How |
Epoch S0:error= 0.9331 Help | Cloze |

Fig. 31. ANFIS editor training sub-clustering system
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Fig. 32. Block diagram of the system with ANFIS controleith time-dependent state
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Fig. 33. Simulation results with sub-clustering
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Fig. 34. ANFIS architecture with grid partition
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Fig. 36. Grid-partition ANFIS editor
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Fig. 38. Schematics of the controller
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Fig. 29. Training data for the controller

Input  Inputmf Rule  Outputmf Output

.UI

— Tt

Fig. 40. ANFIS architecture
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Fig. 41. Grid-partition ANFIS editor
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Fig. 42. Unsatisfactory response of the ANFIS con-troller
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Fig. 43. Schematics of the ANFIS controller
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Fig. 45. Block diagram of the ANSIS controller
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Fig. 48. Training data

Three different forms were implemented: Differehtia derivative must be equal to the change between the
control as a function of k, continuous control wigh  previous and current states and the current valuad
small number of training data and continuous cdntro desired (zero) value. Thus, the derivative is syntple
with a larger number of training data. Only the tbes negative value of the previous output.
example of each form will be analyzed here. Now it will be analyzed several tests from the

Differential control as a function of k Given thtais configuration and training of the ANFIS.
control works with the state data in time K, the )
discretization of the training data was considéresuch ~ 6.5. Sub-Clustering
a way that the derivative would be the diferencsvben

4 | ! The following parameters were used:
k and k+1. This was done with the following code:

) * Influence range: 0.3
* entrenaX = Ucontrollim «  Compression factor: 1.5
* D =length(entrenaX) «  Acceptance rate: 0.5
* entrenaUX = [entrenaX(2:(D-1).1),-entrenaX(2:(D- .  Rejection rate: 1.5
1),1)+entrenaX(1:(D-2),1),entrenaX(2:(D-1),2),-

entrenaX(2:(D-1),2)+entrenaX(L:(D- Training error has the value 2.0805. The result
2),2),entrenaX(2:(D-1),3)] becomes unstable after a few seconds.

» TrainUX = [entrenaUX(2:(D-2)/2,:)] The training of the ANFIS was done by sub-clusgrithe

e TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,’)] editor is presented iffig. 46 and the results of the ANFIS

* CheckUX = [entrenaUX(3*(D-2)/4:(D-2),:)] controller's simulation are shown Fig. 47.

The training data were generated. Training was6.6. Continuous With Few Training Data
performed in several forms and was simulated with t

The fact that the system model provides knowledge
block diagram shown iRig. 45, with is simplified as the y provi .

of the derivatives was used to directly obtain ¢herent
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state. Once again, the robust controller data were With sub-clustering, 30 iterations and the followin
obtained and are shown fing. 48. parameters:

The training data were generated according to: . Influence range: 0.2

* % 4 ENTRADAS, ESTADO THETA, DTHETA, X, + Acceptance rate: 0.2
DX « Rejectionrate: 0.1

+ entrenaX = UcontrollimX « A network with the following structure was obtained

e D =length(entrenaX)

» entrenaUX = [entrenaX(2:(D-1),1),entrenaX(2:(D-
1),2),entrenaX(2:(D-1),3),entrenaX(1:(D-
2),4),entrenaX(2:(D-1),5)] 6.7. Then, with -0.3rad and -0.3m

» TrainUX = [entrenaUX(2:(D-2)/2,:)]

* TestUX = [entrenaUX((D-2)/2:3*(D-2)/4,:)] is 0 and for x is 5e-3.

*  CheckUX = [entrenaUX(3*(D-2)/4:(D-2).:)] This last controller is the one which worked best i
The ANFIS controller with grid partition was trathe ~accordance to the established requirements and was

It was simulated for initial conditions of 0.3 radd
0.3 m, obtaining the following result.

Upon detailed analysis, the stable-state errothfera

with 2 membership functions for each of the foysiits, ~ Prepared for optimization with genetic algorithms.

with 1 linear outputFig. 49. Presets the ANFIS editor for For each control type, different parameters were

grid partition tested about the network build-up, with differemairting
The rules are shown as followsig. 50): data. This means that the search for an efficient

Direct simulation was performed, with the current controller may be very complex, aside from the faei
state provided as feedback. Notice that the coletrol Nno established story was made up except for the
does not depend on the System error, but on itentr observation of the results while varying the result
conditions and from that information it chooses the

new signal to stabilize the planEig. 51. shows the 7. ANFISCONTROLLER OPTIMIZED BY

ANFIS simulator’'s block diagramFig. 52 exemplifies GENETIC ALGORITHMS
the ANFIS simulation results in which  smooth ] ) o
merging responses are reached Genetic algorithms are used to optimize a system

A test was made for 0.1 rad and 0.1 m initial Without the use of derivatives, by a defined cidar
conditions. The result is shown as follows. It lgta With parameters such as the mutation and crossiteg r
stabilizes in 6 sec. and choices such as the coding, selection and

On the other hand, with different initial conditign ~ evaluation methods for each member of the poputatio
like 0.3 rad and 0.1 m, the system becomes unstable (Omatuet al., 1995). For a more detailed description
shown inFig. 53. of genetic algorithms, the reader is direct to

The Fig 53 and54 gives the results when the initial (Hassanzade&t al., 2008)
conditions are postive and negative and how those It with the ANFIS controller previously defined. §n
conditions affects the whole systéfig. 55-72. the parameters of the two linear output functioBs (

Finally, direct state feedback of the system wasrag parameters for each output). The controller is desd
tested, but now with more training data. The sa@@& d in the following block diagram.

of the robust controller were used, divided in fgvoups. The inverted pendulum model provides the initial
The first half was used for training and the sechatf conditions.
was further divided in two, with one quarter of tiogal As the genetic algorithms involve population

data to test and the last quarter to check. Thedagic members that are mutations, i.e., random valuasay

was used as with the earlier controllers, but n@tad happen that the system becomes unstable and the
were created for both initial and positive initial simulation goes to infinity, leading to a slowemé for
conditions. Training was performed first with the optimization. Thus, saturation blocks were added to
response to positive initial conditions and then to avoid that both the controller and the system gateout
negative initial conditions. The same was donetf@  from the permissible zone. This does not affect the
test and evaluation of the controller. results, as only the operation of the controlledamhigh

The data provided are: error conditions is limited.
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Fig. 52. ANFIS simulation results
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Fig. 59. Block diagramo of the system optimized with a genglgorithm

224 . . . .

Error

216

212 L "

20 30 40 50 60 T0 80

Fig. 60. Optimization with genetic algorithm in 100 ites (Error vs generations)

0.6 T T T T I
T heta
—

-0.6

=[.8 L i L i L
0 1040 200 300 400 S00 60

Time (ms)

Fig. 61. Optimized-system response with negative conditions
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Fig. 72. System response for two different initial condida) positive and (b) negative

The base code of the genetic algorithm used in thiss  CR-probability of crossing, should be between 0 and

paper is presented in (Storn and Price, 1997).gEnetic 1, for which it was chosen 0.4

algorithm was worked in all the simulations witheth
following parameters:

Strategy-The algorithm allows one to choose among
many strategies, but the one that served us bestawa
VTR-Value To Reach, it is a condition for stopping exponential (non-binary) value coding with a raoe-t
which, in our case, the error criterion establisttes best logic, which reinforces from the random values
be of 1x10-3, under the assumption that such valuethose that gave a better response.
would never be reached Refresh-It measures the number of generations that
Maximum number of iterations-Number of are counted before presenting results. This was an
generations, this was the main stopping condition o unimportant parameter from the optimization poifit o

the algorithm view, but it helped us to observe the processak used
D-Number of parameters to modify by the system; in it to generate optimization graphs.
our case there were 10 such parameters Several genetic-algorithm programs were created wit

XVmin-Inferior-limit ~ vector for the initial different systems and different iteration numbeasnely:
population; it was-10% the value of each output
parameter for the initial ANFIS *
XVmax-Superior limit vector for the initial s .
population;pit was +10% the value of each output * System ywth |_n|t|al conditions 0.3 rad and 0.3 p, u
parameter for the initial ANFIS to 2000 iterations . o
NP-Number of members of the population. There were* System with initial conditions both positive and

System with initial conditions -0.3 rad and -0.3 m,
up to 100 iterations

used 15*D, i.e., 150 members for each population negative (+0.3 rad and £0.3 m), up to 200 iteration
F-Step value between iterations; a value between @  System with initial conditions both positive and
and 2 is suggested-it was chosen 1 negative (0.5 rad and £0.5 m), up to 2000 iteretio
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» System with initial conditions both positive and
negative (0.5 rad and £0.5 m), up to 1000 iteretio
with a weighted stopping criterion

6.8. Now, it will be Analyzed

System with initial conditions -0.3 rad and -0.3up,
to 100 iterations.

With the system having initial conditions of -0.&dr
and -0.3 m, the following function is to be optiemil
Equation 12:

error= 20*)" thetd + 10%" % (12)

e best(3) =24.635170

e best(4) =-1.163018

« best(5) =-7.951112

+ best(6) = 7975.784165
* best(7) = 297.404686
* best(8) = 3420.556959
* best(9) = 364.341177
* best(10) =-1.014442

6.9. It isObtained

System with initial conditions both positive and
negative (0.3 rad and 0.3 m), up to 200 iteration
It was handled in a similar way as the previous, one

where, theta and x are the output values in eachout taking care that the optimization has at theestime

simulation time. A weight of twice the error is givfor
the angle considered with respect to position toaene
the controller's operation over this variable. The
simulation was executed with Simulink and the valaé
theta and x were exported in matrix form. The
optimization was made for 100 iterations:

The optimized parameters, which are the constants i
the linear output equations of the Sugeno controdiee
given by:

e best(1l) = 34.995418
e best(2) = 3.882741
e best(3) = 3.441896
e best(4) = 4.816650
» best(5) = 0.074609
e best(6) = 18.771968
e best(7) =5.367916
e best(8) = 21.764996
e best(9) = 10.569450
e best(10) = -0.256071

After running the simulation with initial conditisrof
-0.3 rad and -0.3 m, it was obtained:

With positive initial conditions of 0.3 rad and 3
we obtained:

System with initial conditions 0.3 rad and 0.3 mp, u
to 2000 iterations

It is handled in the same way as the previous

iteration, but now with positive initial conditior{6.3 rad

and 0.3 m), up to 2000 iterations (generations), as

follows:

It took the algorithm 19 h to finish, executing sem
300,000 evaluations in the simulator (block diagram
The parameters thus obtained were:

e best(l) = 46.415248
e best(2) = 0.443056
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an evaluation with positive and negative initial
conditions. This was achieved by running two 5-sec
simulations for positive and negative initial caimhs.
Both were executed every time that the optimization
criterion was evaluated and both arrays were eggdd
satisfy the criterion Equation 13:

error= 20*)" (thetg .+ thetg

13
10*Z(Xpos+xne : ( )

This case was executed with 200 iterations
(generations).

The optimized parameters are:

« best(1) = 38.348628
« best(2) = 4.352005
+ best(3) =6.595191
+ best(4) = 6.084092
+ best(5) =0.315752
* best(6) =21.473104
« best(7) =6.225609
e best(8) =20.732177
« best(9) =10.852273
e best(10) = -0.450915

6.10. It is Obtained

System with initial conditions both positive and
negative (0.5 rad and £0.5 m), up to 2000 iteretio

With more critical positive and negative initial
conditions (0.5 rad and £0.5 m), it was trainedZ600
iterations.

The system was evaluated 600,000 times; the

following values were obtained:

«  best(1) = 838.174723
. best(2) = 77.954881
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+ best(3) = 31.878815 «  best(4) = 8.654519

e best(4) =69.917063 «  best(5) = -0.795826

* best(5) =0.114835 «  best(6) = 340.727888
*  best(6) = 402.254374 «  best(7) = 79.851994

best(7) = 5.614562

e best(8) = 190.474634
e best(9) = 33.375531
e best(10) = 30.360559

6.11. Upon Execution, it Turns out to be
Unsatisfactory

System with initial conditions both positive and 7. CONTRIBUTIONSTO THE STATE OF

negative (0.5 rad and 0.5 m), up to 1000 iteratio THE ART
with a weighted stopping criterion.

The optimization technique that worked best was the ~An adequate integration of the intelligent control
fifth one, which was optimized with both positiveda methods allows to design simpler and optimal cdriitno
negative initial conditions (+0.5 rad and 0.5 mjth complex systems. A correct integration of the ANFIS

1000 iterations. A weighted stopping criterion was Method with genetic algorithms is presented.
especially used. This study proposes the application to the inverted

Trying to get out from the transient as soon as peno‘i‘ulum _problem of an existi”ng cq‘ntrol methodl@n_hl
possible and eliminate any steady-state error, thethe gen?tlc-AhNFIS contrl?ller (;]r. hneulr.al-flljzzy-vlmi
evaluation criterion was changed for another thatgenetlc-a gorithms contro e_r), which refies in =om
weighted error with respect to time, that is, wéiigh the latest advances of intelligent control. Alsts tstudy

) . LA h th let thodol for finding the eor
incremented linearly with time at a rate of 0.1 p Snows mhe comprete methodology for Tinding the ecir

o S ) . €T design of the controller.
millisecond, beginning with a y-intercept of 1 s® rzot

to neglect initial conditions: 8. CONCLUSION
This is achieved with the command:

«  best(8) = 53.532277
«  best(9) = 31.549543
«  best(10) = 1.838144

This is an excellent optimization of critical iriti
conditions.

Intelligent control provides a new area for solving
» ponderacion=1:.1:length(simout)/10 control problems. Its advantages are due to the
+ where simout are the output values of the simufatio integration of computers to generate intelligentd an
adaptive algorithms, or by a more human-like lagian
that attained with traditional control. Its effigahas
been proved by simulation, implementing in an itegr
» errorcuadradoponderado=power(simout(:,1).*ponder pendulum its main components, such as fuzzy
ac’,2) controllers, neural networks and genetic algorithas
« plot(ponderac,errorcuadradoponderado) well as the interaction between all of them witre th
genetic-ANFIS controller.
This study reached many of its objectives, prowgdin
a good training ground for intelligent control, bualso
presented a remarkable challenge given the evaluatfo
error= 20*)" pond * @, + 6 ., f " tools and methodologies.
+10% 3 PONd* (X o0 + X (14) Intelligent control implementation has a wide area
for development, as there are more and more fuzzy-
logic microcontrollers and neural-network research
projects. Work is currently being done in the
interrelation of these methodologies to better ekpl
their individual capabilities and to develop reihe-

For example, for the ANFIS controller without
optimization with GA’s, the error in theta will be:

Summarizing, the minimization criterion that is
satisfied is Equation 14:

With the given initial conditions (0.5 rad and %0.
m) and 1000 iterations (generations), one gets:
This optimization results gave:

* best(l) =41.116217 optimizable controllers that do not depend on d ful
* best(2) = 6.484782 knowledge of a system and are adaptable to changing
* best(3) =11.042188 conditions. A totally-adaptable intelligent-contiegl
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