
American J. of Engineering and Applied Sciences 4 (4): 576-585, 2011 
ISSN 1941-7020 
© 2014 S.A. Mojarad et al., This open access article is distributed under a Creative Commons Attribution  
(CC-BY) 3.0 license 

Corresponding Author: Shirin A. Mojarad, School of Electrical, Electronic and Computer Engineering, Newcastle University, 
Newcastle upon Tyne, NE1 7RU, United Kingdom  Fax: +44 (0) 191 222 81802 

576 

 
Cross Validation Evaluation for Breast Cancer 

Prediction Using Multilayer Perceptron Neural Networks 
 

1Shirin A. Mojarad, 1Satnam S. Dlay, 
1Wai L. Woo and 1,2Gajanan V. Sherbet 

1School of Electrical, Electronic and Computer Engineering, 
Newcastle University, England, UK 

2Institute for Molecular Medicine, Huntington Beach, CA, USA 
 

Abstract: Problem statement: The presence of metastasis in the regional lymph nodes is the most 
important factor in predicting prognosis in breast cancer. Many biomarkers have been identified that appear 
to relate to the aggressive behaviour of cancer. However, the nonlinear relation of these markers to nodal 
status and also the existence of complex interaction between markers have prohibited an accurate prognosis. 
Approach: The aim of this study is to investigate the effectiveness of a Multilayer Perceptron (MLP) for 
predicting breast cancer progression using a set of four biomarkers of breast tumors. The biomarkers include 
DNA ploidy, cell cycle distribution (G0G1/G2M), steroid receptors (ER/PR) and S-Phase Fraction (SPF). A 
further objective of the study is to explore the predictive potential of these markers in defining the state of 
nodal involvement in breast cancer. Two methods of outcome evaluation viz. stratified and simple k-fold 
Cross Validation (CV) are studied in order to assess their accuracy and reliability for neural network 
validation. Criteria such as output accuracy, sensitivity and specificity are used for selecting the best 
validation technique besides evaluating the network outcome for different combinations of markers. 
Results: The results show that stratified 2-fold CV is more accurate and reliable compared to simple k-
fold CV as it obtains a higher accuracy and specificity and also provides a more stable network validation 
in terms of sensitivity. Best prediction results are obtained by using an individual marker-SPF which 
obtains an accuracy of 65%. Conclusion/Recommendations: Our findings suggest that MLP-based 
analysis provides an accurate and reliable platform for breast cancer prediction given that an appropriate 
design and validation method is employed.  
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INTRODUCTION 

 
 Breast cancer has been identified as the most 
widespread cancer amongst women and also the major 
cause of female cancer death all over the world (Etchells 
and Lisboa, 2006). An important factor influencing the 
breast cancer mortality rate is the efficacy of treatment 
intervention which in turn is influenced by the stage and 
accuracy of prognosis. Hence, accurate prognosis in 
patients with early stage breast cancer is of significant 
importance to reduce mortality rate.  
 Several prognostic factors including patient age, 
tumor size, tumor grade, DNA content (ploidy) and 
receptor status have been identified for nodal metastasis 
prediction with the hope to avoid axillary lymph 
node dissection (Lyman et al., 2005). However, no 
individual or combination of these prognostic factors 
has replaced nodal dissection for node status 
determination (Giuliano et al., 1997).  

 Amongst prognostic markers, those that can be 
obtained via minimally invasive methods are preferred 
for determining nodal status and survival prediction so 
to minimize patient morbidity along with mortality. 
Several studies have investigated different prognostic 
factors in an effort to define the prognostic value of 
these markers and find an optimal combination of 
markers which can be used as an accurate and reliable 
predictor for breast cancer prognosis. However, the 
complex interaction of these markers with nodal status 
and survival rate besides the existence of inter-relation 
between the markers has prevented accurate predictions 
using these markers.  
 Multivariate statistical methods have been widely 
used to investigate the prediction significance of 
prognostic factors. These multivariate models mainly 
include logistic regression (Hosmer and Lemeshow, 
2000). However, there are several inadequacies in these 
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methods which present doubts in their reliability. The 
study conducted by Concato et al. (1993) on the 
deficiencies of these statistical methods has investigated 
the present problems of multivariate analysis in medical 
research. Some of the reported problems include over 
fitting of data, not considering the inter-relation between 
markers and unknown method of selection among 
candidate markers which necessitates the need for 
improvement in medical research using these 
multivariate statistical methods. Multivariate regression 
methods are also prone to over-optimistic results which 
lead to misleading interpretation in defining the 
prognostic value of the investigated markers (Altman and 
Lyman, 1998).  
 Another approach that has been widely used for the 
aim of cancer prognosis is Artificial Neural Network 
(ANN) (Schwarzer et al., 2000; Ahmed, 2005; Kaur 
and Wasan, 2006; Ashidi et al., 2007). ANNs are 
parallel processing structures consisting of basic 
processing units (neurons) which are interconnected by 
weighted links. ANNs have the ability to learn patterns 
existing in data and hence perform classification and 
prediction for new data. There are different types of 
ANNs depending on their structure and learning 
process. The connections between neurons can be 
formed in different directions. In feed forward ANNs, 
all connections are set up in one direction from 
network’s input towards the output. In addition, the 
learning process can be supervised or unsupervised 
depending on whether the input data is associated with 
known outputs during learning or not.  
 ANN has been confirmed as a robust method for 
the aim of cancer prognosis (Burke et al., 1994). It is 
also superior to conventional methods employed for 
breast cancer prediction such as Tumor, Node, 
Metastasis (TNM) staging system and logistic 
regression (Burke et al., 1997). One of the main 
advantages of ANNs over conventional methods is their 
ability in capturing the complex and nonlinear 
interaction between prognostic markers and the 
outcome to be predicted. They also enable taking into 
account the inter-relation between markers which can 
significantly improve the prognosis in oncology.  
 An ANN can have different structures based on the 
type of its input-output data and also its application. 
Among available structures, Multilayer Perceptron 
(MLP) has been widely used for the aim of cancer 
prediction and prognosis (Schwarzer et al., 2000). MLP 
is a class of feed forward neural networks which is 
trained in a supervised manner to become capable of 
outcome prediction for new data (Haykin, 2009).  
 In this study, three cellular markers including DNA 
ploidy, S-Phase Fraction (SPF) and cell cycle 
distribution in addition to a molecular marker-the state 

of steroid receptors including Estrogen and 
Progesterone Receptors (ER/PR) have been employed 
for nodal status prediction in breast cancer. The aim of 
the study is to employ a MLP neural network as a 
platform to predict the state of nodal involvement based 
on the four cellular and molecular biomarkers. This 
study also investigates the predictive accuracy of 
individual biomarkers in order to define their impact on 
outcome prediction in breast cancer. Besides, the relation 
between the mentioned cellular and molecular markers 
will be explored. We will also illustrate the capability of 
MLP in capturing both the linear and nonlinear 
relationship between the above markers and breast 
cancer outcome. In addition, the efficiency of stratified 
and simple k-fold Cross Validation (CV) in validating 
the MLP outcome for cancer prediction is investigated.  
 The study is organized as follows: the next section 
explains the breast cancer dataset used in this study and 
the roles of the biomarkers. Materials and methods 
include the MLP structure employed for cancer 
prediction, the validation method for assessing the 
designed network and also a brief description of 
Pearson’s correlation coefficient which its results are 
later used to compare and validate those results 
obtained by the MLP. Following that, results and 
discussion are elaborated. Finally, the findings of the 
study are presented in the conclusion.  
 
Breast cancer dataset: The data utilised for nodal 
involvement analysis contains the information 
corresponding to four cellular and molecular breast 
tumor biomarkers pertaining to 46 patients who had 
been diagnosed with a carcinoma or benign breast 
tumor. The biomarkers include DNA ploidy, cell cycle 
distribution (G0G1/G2M), Steroid Receptors (ER/PR) 
and S-Phase Fraction (SPF). Nodal status in terms of 
cancer metastasis to regional lymph nodes has been 
defined as an outcome for all 46 patients.  
 DNA aneoploidy is a state in which abnormal sets 
of chromosomes exist within the nucleus and is 
considered as an indicator of tumor malignancy. The 
degree of DNA ploidy is calculated based on the 
Integrated Nuclear Density (IND) measurement which 
is obtained by staining the aspirated tumor cells. Many 
studies have investigated the role of DNA ploidy of 
cancer cells in cancer prognosis. The results 
demonstrate that this marker is highly associated with 
relapse of the disease (Yuan et al., 1992), reduced 
survival time (Azua et al., 1997), metastasis to regional 
lymph nodes and early death (Gilchrist et al., 1993). In 
addition, aneuploidy has been identified as a significant 
prognostic biomarker for breast, prostate and 
endometrial cancer prognosis (Moureau-Zabotto et al., 
2005; Suehiro et al., 2008; Pretorius et al., 2009).  
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However, some studies have found DNA ploidy 
uncorrelated with breast cancer prognosis (Naguib et 
al., 1999). Moreover, some studies suggest DNA ploidy 
as a consequence of premature 3 cells entering the S-
phase and therefore the close correlation between 
aneoploidy and size of SPF. Nevertheless, Sherbet 
and Lakshami (Naguib and Sherbet, 2001) have 
found them totally uncorrelated. 
 The pattern of cell cycle distribution is defined by 
the G0G1/G2M ratio (ratio of the number of the cells in 
G0G1 phase over the number of the cells in G2M 
phase) which is measured by ICM (Anderson et al., 
2003). The fraction of cycling cells in the tumor has 
proven to be an effective factor in the response of the 
carcinoma to chemotherapy (Remvikos et al., 1989). 
The size of the proliferative fraction is also known to be 
a good prognostic feature (Kallioniemi et al., 1988). 
Cell cycle distribution can be measured from DNA 
profiles derived from flow cytometry which is also 

considered as a reliable method for SPF measurement 
(Naguib et al., 1999). The reliability of SPF estimation 
depends upon the differentiation clarity of the G0G1 
and G2M parts of the cell cycle distribution diagram.  
 In many studies, it has been proved that the status 
of hormone receptors of breast cancer cells can be used 
as useful information for cancer prognosis and 
treatment (Anderson et al., 2003; Grey et al., 2003; 
Esteva and Hortobagyi, 2004). The steroid receptors 
considered in this study include Estrogen Receptor 
(ER) and Progesterone Receptor (PR). Estrogen is a 
hormone with growth stimulating ability in a variety 
of target tissues. It binds to estrogen receptors which 
are then transmitted to the nucleus where they 
instigate responsive genes transcription and lead to 
appropriate psychological function. Estrogen and 
progesterone hormones can initiate the transcription 
of some target genes related with cell differentiation 
and proliferation (Phippard et al., 1996). 

 

  
 

   
 

   
 
Fig. 1: Scatter plot of the data feature vectors dichotomized by output groups (data with nodal status= 0 are marked 

by “x” and data with nodal status = 1 are marked by “o”) 
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Table 1: Descriptive statistics for continuous markers used in this 
study  

  Standard 
 Mean  deviation  Minimum  Maximum  Range  
DNA Ploidy  5.094  1.841  2.33  11.58  9.25  
SPF  12.830  7.550  0.76  30.70  29.94  
G0G1/G2M  31.000  29.090  3.56  117.60  114.04  

 
Table 2: Descriptive statistics for discrete markers and output used in 

this study  
  Proportion Proportion of Proportion of 
 Values  of value 0 (%)  value 1 (%) value 2 (%)  
DNA Ploidy  0, 1, 2  35  30  35 
SPF  0, 1  57 43  -  

 
 Tumors that are receptor positive respond well to 
treatment with anti-estrogens. So the absence of ER in 
breast cancer is considered as a sign of poor prognosis 
since these patients cannot benefit from anti-estrogen 
therapy. ER absence in breast cancer is caused by ER 
gene silencing resulting from hypermethylation (Grey 
et al., 2003). The role of the PR positivity in breast 
cancer is less significant. Normally, ER positive 
cancers are also PR positive, but there would be a poor 
prognosis for PR positive tumors that are not ER 
positive. 
 The size of the SPF indicates the percentage of 
cells in the stage of DNA replication in cell cycle and it 
is a validated marker for estimating the proliferative 
rate of tumor cells (Clark et al., 1989). SPF is also 
recognized as an independent prognostic factor in 
breast cancer (Bae et al., 2007; Gazic et al., 2008). 
A complete procedure of SPF measurement is described 
by Naguib et al. (1999).  
 Except for ER/PR, which takes discrete values, 
other markers are continuous within different ranges. 
Nodal status is defined as either 0 or 1 for the case of 
no node involved or metastasis to the regional lymph 
nodes, respectively. Table 1 and 2 show some 
descriptive statistics for continuous and discrete 
markers respectively.  
 All the mentioned markers are established as 
effective markers in breast cancer prognosis in medical 
context. However, the efficiency of the combination of 
these markers and also their inter-relation is further 
investigated in this study. In addition, the data feature 
vectors for the two output groups are plotted in the form 
of scatter plots in Fig. 1 Each scatter plot in Fig. 1 
shows two feature vectors on two axes with the two 
output groups shown by “x” and “o” for no nodal 
metastasis and nodal metastasis respectively.  
 The scatter plots in Fig. 1 show that the data 
feature vectors are not linearly separable in the 2-
dimensional space.  

METERIALS AND METHODS 
 
MLP: ANNs are a class of artificial intelligence 
methods commonly used for classification and pattern 
recognition. A MLP is a type of ANN which consists of 
a set of interconnected artificial neurons connected only 
in a forward manner to form layers. One input, one or 
more hidden and one output layer are the layers 
forming a MLP. A MLP with one hidden layer and its 
connections is illustrated in Fig. 2.  
 An artificial neuron is the basic processing element 
of a neural network, which consists of a linear combiner 
followed by a transfer function. The neuron’s output (o) 
is computed by weighting the summation of the 
neuron’s inputs which is then passed through a transfer 
function φ (.). This can be formulated in the Eq. 1 as: 

 
m
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∑  (1) 

 
where, υi is defined as the external input, m is the total 
number of inputs of the neuron and wi and bi are the 
weight and bias corresponding to the connection linking 
the ith input to the neuron. A hyperbolic tangent transfer 
function has been chosen in this paper for its special 
properties such as symmetry and monotonicity  
 A hyperbolic tangent transfer function can be 
represented in the Eq. 2 as: 
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 The simplest form of trainable neural network, first 
developed (Rosenblatt, 1959), composed of two layers 
of nodes namely input and output layer. A mapping 
between the input and output data could be established 
by assigning weights to the input numerical data during 
training. More complicated MLPs which are commonly 
used consist of some hidden layers in addition to the 
input and output layers. These hidden layers enable the 
MLP to extract higher order statistics from a set of 
given data and hence, capture the complex relationship 
between input-output data. Therefore, MLPs commonly 
consist of an input layer for which the number of nodes 
are defined by size of input vector, one or more hidden 
layers which can have variable number of nodes 
depending on the application and an output layer 
which has one or more nodes depending on the 
number of output classes. Connections between these 
layers are defined by weights which are assigned in a 
supervised learning process so that the neural network 
would respond correctly to new data.  
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Fig. 2: The structure of a feed-forward MLP with one 

hidden layer 
 
This can be done via a training algorithm, in which a 
cost function is computed by comparing the network’s 
output and the desired output and is then minimized 
with respect to the network parameters.  
 In this study, Scaled Conjugate Gradient (SCG) 
algorithm is employed as a supervised training 
algorithm for the MLP. SCG algorithm, proposed by 
Moller (1993), is a class of conjugate gradient 
optimization techniques applied for training feed 
forward neural networks. Conjugate gradient techniques 
consist of iterative algorithms for optimization in which 
the minimum of an error function is located by 
proceeding in a direction on error surface which is 
conjugate to the previous step. This is advantageous to 
standard back propagation in which the algorithm 
proceeds only in a downward direction on error surface 
and therefore one step is partially undone by the next step. 
 SCG, like other training algorithms in feed forward 
networks, consists of a forward and backward pass. In 
the forward pass, an error is computed by comparing the 
network’s output and the desired output which is then fed 
to a cost function. A Mean Square Error (MSE) cost 
function is chosen in this work, defined in the Eq. 3 as:  
 

N
2

j j
j 1

1
MSE (t O )

2N =

= −∑  (3) 

 
where, the MSE cost function is the mean of squared-
error of the total number of patterns denoted by N. tj 
and oj are the desired output and the network’s output 
respectively using the pth input pattern pj-Opj. 

 During the backward pass, the network parameters 
i.e., the weights and biases are updated by computing 
the second order partial derivative of the cost function. 
This derivative is called Hessian matrix and is 
computed in the Eq. 4 as:  
 

2

2

(W)
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W
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δ
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where, vector W indicates the network parameters. 
Using second order derivatives enable the network to 
predict the next input pattern more accurately. The 
Hessian matrix provides additional information related 
to the curvature of the cost function and hence results in 
faster and more accurate convergence to the minimum 
compared to first order techniques such as standard 
back propagation that uses first order derivatives only. 
The network parameters (i.e., weight and bias) update is 
then performed by changing the weight vector length 
and direction by Eq. 5:  
 

l l lwl 1 w a d+ = +  (5) 

 
where, αl and dl define the step size and search 
direction at step l respectively. The search direction at 
each step is chosen such that it does not have any 
component parallel to the previous search direction. 
The step size in each step is defined in the Eq. 6 as:  
 

T
l l
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where, the error surface gradient at step l is defined as. 
In conjugate gradient algorithm, the Hessian matrix is 
computed by performing a line-search (Bishop, 1995). 
However, the high computational cost of line-search is 
an issue in conjugate gradient algorithm. In order to 
reduce this computational cost in SCG, is computed by 
evaluating. This is viable by online estimation of the 
Hessian matrix eigenvectors (LeCun et al., 1993). In 
this approach, the product of Hessian matrix with an 
arbitrary vector dm is computed without computing the 
full Hessian in each step. To ensure that Hessian in Eq. 
6 is a positive definite matrix, it can be replaced by a 
modified version which is defined in the Eq. 7 as: 
 
H H I= + β%  (7) 
 
β is a positive coefficient defined such that the new 
Hessian H%  would be positive definite. In Eq. 7, I 
represent a unit matrix. 
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 The training process is formed by several passes of 
information through the network called training 
iterations. Training may only complete when one of the 
predefined stopping criteria has occurred. These criteria 
are varied depending on the type of network and the 
training algorithm. In this study, a minimum amount of 
gradient performance and a maximum number of 
iterations are employed in conjunction as the network’s 
stopping criteria to avoid over fitting and providing a 
good generalization performance for the network.  
 
K-fold crosses validation: After training, the 
network’s performance is evaluated by a test process 
through which the network’s classification outcome is 
computed using a new set of data fed to the input layer. 
Hence, the available dataset is initially divided into two 
parts which will be used for training and test 
independently. Random division of the data into two 
parts is commonly used for the training/test data division. 
However, this might not result in a reliable evaluation of 
the network for a small dataset as a part of the data is only 
reserved for the test purpose. Moreover, the random 
division might bring about training/test datasets with 
different proportions of output classes. This especially 
happens in dataset with imbalanced output classes.  
 In k-fold CV, the dataset is divided into k 
independent folds where k-1 folds are used to train the 
network and the remaining one is reserved for the test 
purpose. This procedure is then repeated until all folds 
are used once as a test set. The final output of the 
network is then computed by averaging over the 
obtained accuracy from each test set. We will refer to k-
fold CV as “simple k-fold CV” to differentiate it from 
the stratified k-fold CV.  
 Stratified k-fold CV is a special type of k-fold CV 
where the data folds are chosen such that each fold 
contains nearly the same proportion of the output data. 
Both stratified and simple k-fold CV is evaluated in this 
stuyd using different number of data folds to find an 
optimum evaluation method for the in-hand dataset. 
 
Correlation coefficient: Correlation coefficient is a 
measure of dependence between two variables. In this 
study, Pearson’s correlation coefficient (r) is used as a 
measure of linear relationship between different 
markers and the cancer outcome. Pearson’s correlation 
coefficient can be obtained for two variables A and B 
by normalizing their covariance with respect to their 
standard deviation σA and σB as in the Eq. 8:  
 

A B

A,B
A B A B

E (A )(B )cov(A,B) − µ − µ
γ = =

σ σ σ σ
 (8) 

where, µA and µB are the expected values of two 
random variables A and B and E is the expected value 
of the random variable. Pearson’s correlation coefficient 
assigns a number between -1 to +1 for the measure of 
linear dependence between variables. A positive value 
represents a positive linear relationship while a negative 
one implies negative linear relationship and 0 suggests no 
linear relation between variables.  
 

RESULTS 
 
 The designed MLP in this study consists of an 
input layer and one hidden layer with variable number 
of nodes depending on the number of input markers and 
an output layer with one neuron. The network is fed 
with different combination of markers in each run to 
investigate the predictive significance of each marker. 
Hence, the number of input neurons is defined by the 
number of markers and the number of hidden neurons 
is optimized for each marker combination. The 
network is then trained using SCG algorithm and 
validated with k-fold CV.  
 The network’s outcome is classified into four 
groups depending on the desired output. A True 
Positive (TP) outcome denotes a cancer case classified 
correctly while a False Negative (FN) implies a cancer 
case classified as normal incorrectly. Accordingly, True 
Negative (TN) and False Positive (FP) stand for the 
normal cases classified correctly and incorrectly 
respectively. The network is thus evaluated by 
computing its accuracy, sensitivity and specificity 
edfined in the Eq. 9-11 as:  
 

TP TN
accuracy

TP FN TN FP

+=
+ + +

 (9) 

 
TP

sesitivity
TP FN

=
+

 (10) 

 
TN

specificity
TN FP

=
+

 (11) 

 
 The results obtained by running stratified and 
simple k-fold CV are first obtained by the designed 
network to predict the outcome using all input markers. 
These results are then analyzed to choose the best 
validation method to further investigate network 
prediction accuracy and markers’ significance in 
outcome prediction.  
 
Results of K-fold cross validation analysis: The 
output accuracy of the designed network using different 
number of folds for stratified and simple k-fold CV are 
illustrated in Fig. 3-5.  
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Fig. 3: Network accuracy using different values of k for 

k-fold cross validation 

 

 
 
Fig. 4: Network sensitivity using different values of k 

for k-fold cross validation 
 

 
 
 
Fig. 5: Network specificity using different values of k 

for k-fold cross validation 
 
 Considering the network accuracy, sensitivity and 
specificity using different stratified and simple k-fold 
CVs illustrated in Fig. 3-5, stratified CV is preferred 
over a simple CV as it obtains better and more reliable 
results. Moreover, investigating the output results for 
different values of k for k-fold CV shows that 2-fold 
CV is a better choice for network validation with the in-
hand dataset. Hence, the MLP results are evaluated 
using a stratified 2-fold CV.  

Table 3: Pearson’s correlation coefficients computed for all 2-
member possible combinations of the set including input 
markers and the output  

 ER/PR  DNA Ploidy  SPF  G0G1/G2M  Nodal Status  
ER/PR  1.00  -0.29  -0.03  0.07  -0.10  
DNA Ploidy  -0.29  1.00  -0.27  -0.11  0.06  
SPF  -0.03  -0.27  1.00  -0.27  0.21  
G0G1/G2M  0.07  -0.11  -0.27  1.00  -0.04  
Nodal Status  -0.10  0.06  0.21  -0.04  1.00  

 
Table 4: Best MLP results for nodal status prediction using different 

number of markers  
Marker Accuracy Sensitivity Specificity 
combination   (%)   (%)   (%)  
All 4 markers  63  44  75  
ER/PR, SPF and G0G1/G2M  63  44  75  
ER/PR and G0G1/G2M  63  33  82  
SPF  65  33  85  

 
Results of correlation coefficient and MLP analysis: 
The results for Pearson’s correlation coefficient 
computed for all 2-member possible combinations of 
the set including the input markers and the output are 
presented in Table 3. The cross section of each row and 
column in Table 3 shows the coefficient between the 
associated variables. The table illustrates a symmetric 
matrix with a diagonal of 1 as the Pearson’s correlation 
coefficient is the same between variable A and B and 
vice versa and is 1 for two identical variables.  
 Results from Table 3 suggest significant linear 
relation between DNA ploidy and ER/PR (p = 0.05). The 
degree of linear dependence of SPF and DNA ploidy (p = 
0.06) and G0G1/G2M and SPF (p = 0.07) is also 
noticeable. Nonetheless, there is no significant linear 
relation between other markers and the output (p>0.1). 
These results however, do not necessarily provide any 
indication about the existence of any nonlinear interaction 
between the different markers and the output.  
 The MLP results are obtained using different 
combination of the mentioned four markers in the form 
of 3, 2 and 1-member marker sets and also for the full 
marker set. The best classification results based on 
inputs including groups of 4, 3, 2 and 1 biomarkers are 
included in Table 4. First column in Table 4 shows the 
markers used in the combination while the other 
columns represent the obtained sensitivity, specificity 
and accuracy in percentage.  
 Results in Table 4 show that the prediction 
accuracy obtained using all markers remains virtually 
unchanged despite using a 3 or 2-marker set. This can 
be explained by the interaction between the markers. 
Removing DNA ploidy from the set of all markers 
results in the same accuracy, sensitivity and specificity. 
In addition, removing SPF from the set including 
ER/PR, SPF and G0G1/G2M results in a higher 
specificity at the cost of reduced sensitivity but the 
accuracy remains unchanged.  
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 From Table 3, no significant linear relation could 
be found between the individual markers and the 
output. However, in spite of the lack of linear relation 
between them, the higher predictive accuracy provided 
by SPF alone compared to other combinations proves 
the existence of strong nonlinear relation between SPF 
and output captured by the MLP.  
 

DISCUSSION 
 
 A good deal of research conducted in the field of 
breast cancer prognosis has led to the identification of 
many new prognostic markers. However, besides 
exploring novel markers, finding the relationship 
between the new markers to those previously used 
along with the additional information they can provide 
is of great importance. Therefore, a reliable prediction 
system capable of predicting cancer progression on the 
basis of the tumor markers and which can also define 
the predictive accuracy of these markers is highly 
demanded. In the search of the best prediction models, 
many research studies have confirmed ANN as a good 
modeling approach for cancer diagnosis and prognosis 
(Hudson and Cohen, 2000).  
 This study has presented an artificial neural 
network based method to define the predictive accuracy 
of the features or subsets of features in breast cancer 
prognosis in terms of nodal status prediction. The final 
network structure is a three-layered network trained 
using a SCG algorithm. Although a single perception 
can perform nonlinear classification, there is no 
evidence that it can realize optimal decision boundary 
and has poor ability to generalize to unseen data. On the 
other hand, MLP has been proven to realize the optimal 
decision boundary and has the ability to generalize well 
to unseen data (Hornik et al., 1989). Finally, the 
designed network is evaluated using different number 
of folds in stratified and simple k-fold CV.  
 The results show that stratified 2-fold CV is a more 
accurate and reliable method as it obtains a higher 
accuracy and specificity and also provides a more stable 
network validation in terms of sensitivity. This can be 
explained by the same proportion of the output data 
existing in each group (fold) in stratified CV. when 
simple CV is used to partition the data into k folds, one 
fold may contain only one output data. This gives rise 
to biased output accuracy as the network is tested with 
only one group of outputs in the test set.  
 This is rectified in stratified CV by having a 
balanced number of output groups in each fold.  
 The low variance and high accuracy of stratified 2-
fold CV in small sample sizes has been confirmed for 
k-nearest neighbor classifiers (Weiss, 1991). This is 

also proved for the MLP used for the breast cancer data 
in this study as the stratified 2-fold CV obtains higher 
accuracy and specificity compared to simple CV and 
other number of folds in k-fold CV. 
 In addition, stratified CV shows more consistent 
results compared to simple CV especially for 
sensitivity. Although the sensitivity achieved by the 
simple 2-fold CV is higher than that of stratified 2-fold 
CV, the later is chosen as it is more reliable. 
 All the three marker combinations including 4, 3 
and 2 markers include ER/PR. This shows the 
important role of including ER/PR as an individual 
marker in nodal involvement prediction. Amongst 3-
marker input combinations, the arrangement including 
ER/PR, SPF and cell cycle distribution results in the 
best output accuracy which indicates the efficiency of 
this pattern for accurate prediction of nodal 
involvement. Between 2-marker combinations of 
ER/PR with other markers, the amalgamation with 
steroid receptors ends in the same accuracy achieved in 
the case of including all 4 biomarkers in the input 
which verifies the previous assumption about the 
efficiency of this combination for accurate prediction. 
 Pearson’s correlation coefficient shows almost no 
linear relation between G0G1/G2M and nodal status 
outcome. ER/PR and G0G1/G2M are also hardly 
correlated linearly, based on the correlation 
coefficient results. However, the combination 
including ER/PR and G0G1/G2M provides a 
prediction as accurate as those results obtained by 
using all markers. These findings confirm the ability 
of the designed MLP in capturing nonlinear relations 
between these markers and the nodal status outcome.  
 Leaving DNA ploidy out from the network inputs 
does not cause any variation in classification accuracy. 
This can be explained by the close relation between 
G0G1/G2M and DNA ploidy. Since DNA ploidy is 
determined based on the percentage of cells being in 
G0G1 phase of cell cycle, it can be considered as an 
aspect of cell cycle distribution. Therefore, the inclusion 
of cell cycle distribution seems to compensate for the lack 
of DNA content information. It is worthy of note however 
that best prediction results are obtained by using only one 
marker-SPF. This confirms the predictive significance of 
this marker and also the negative correlation of markers in 
some cases which results in a lower predictive outcome 
using all the available markers. 
 

CONCLUSION 
 
 This study presents an evaluation of four cellular 
and molecular breast cancer markers for the purpose of 
nodal status predication using a MLP neural network. 
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The main aim of the study is to investigate the neural 
network ability in capturing nonlinear interaction of 
these markers and nodal status in breast cancer. We 
have also assessed the effectiveness of stratified and 
simple k-fold CV for MLP outcome evaluation in case 
of having breast cancer dataset containing limited 
number of data. The results confirm the superiority of 
stratified 2-fold CV over the simple k-fold CV 
especially for a limited number of data. The ability of 
neural network in extracting the complex patterns 
existing in breast cancer tumor markers is further 
confirmed in this study. 
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